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● Was the state of the art at that time
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Figure 1. The domain alignment concept schematically. The color defines the domain 
and the shape defines the class. We don’t know the class of the target domain

Source domain

Target domain Cannot discriminate 
the domains

Assumption:

The alignment will 
respect the label

Domain alignment:
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● Input space X

● Label space 

● Source domain       and target domain       are distributions over 

● Unsupervised setting: labeled source sample S from       and unlabeled target sample T from

●       is the marginal distribution of       over X

● Goal: Find a classifier                               with small target risk 

Setting
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● H-divergence: 

It searches for the hypothesis and the example with the biggest disagreement under the two 
distributions. It is small if we are unable to tell from which distribution every sample comes from.

● Empirical H-divergence: 

S is the source sample of size n, T is the target sample of size n’, I is the indicator function. This holds for 
a symmetric hypothesis space H. Proof in Ben-David et al. 2010.

● Proxy distance: Construct a new dataset                                                         , train a classifier h’ that 
discriminates domains and it’s risk ε is going to approximate min part. Then: 
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Figure 2. The proposed architecture. Image from Ganin et al. 2016.
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Figure 2. The proposed architecture. Image from Ganin et al. 2016.

● The feature extractor learns a map of the 
input x to a new space through  Gf

● The Gf(x) are passed to a class classifier 
and a domain classifier

● The class classifier returns the gradient 
as usual

● The domain classifier uses a gradient 
reversal layer to return a gradient of the 
opposite direction

● This is making the feature extractor to 
map the input to a space where the 
domains are not discriminatable and 
therefore aligned
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Figure 2. The proposed architecture. Image from Ganin et al. 2016.

Learning rate
progress of training

DA parameter
For Feature Extractor updating

For Domain Classifier updating

Batch size 128
64-Source & 64-Target
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Table 2. Accuracy evaluation of different DA approaches on the 
standard OFFICE dataset. Table from Ganin et al. 2016.

Table 1. Classification accuracies for digit image classifications for different 
source and target domains. MNIST-M corresponds to difference-blended 
digits over non-uniform background. The first row corresponds to the lower 
performance bound (i.e. if no adaptation is performed). The last row 
corresponds to training on the target domain data with known class labels 
(upper bound on the DA performance). Table from Ganin et al. 2016.
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● Let X be an instance set, Z be a feature space and                     a representation that maps them

● We define a distribution D over X and a target function 

● We also define a distribution D’ over Z and a target function                        using the representation R

● Specifically:                                 and                                                   

● A domain is a distribution D over the instance X. We can define the corresponding distribution D’ over Z

● We assume two domains: The source domain with               and the target domain with               .         are common

● The goal is to approximate     by estimating a hypothesis function                                  from the hypothesis space

● The source error is defined as                                                 and the target error as 

Background
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Distance Between Distributions

● Variational Distance: 

Is the largest possible difference between the probabilities that the two distributions can assign to the 
same event.

Supremum is over all measurable subsets under               . Cannot be computed for real valued 
distributions from finite samples. Batu et al. 2000

● H-Divergence:

Limits the supremum over the hypothesis set. For H of finite VC dimension it can be estimated from finite 
samples.
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Theorem 2 Ben-David et al. 2006

Let R be a fixed representation and H be a hypothesis space of VC dimension d. If a random labeled sample S of 
size m is generated by applying R to a DS i.i.d. sample and an unlabeled sample T of size m’ is generated by 
applying R to a DT

X i.i.d. sample, then with probability 1-δ, for every hypothesis h:

Target Error Bound
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The dataset size m, m’ and uncertainty 
δ trade-off. For complete certainty: 
while δ approaches zero the terms 
approach to infinity. When the dataset 
sizes m, m’ approach to infinity, the 
terms approach zero.


