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Setting

e Input space X

e LabelspaceY = {0,1}

e Source domain Dg and target domain Dy are distributions over X x Y

e Unsupervised setting: labeled source sample S from Dg and unlabeled target sample 7 from D
e DX is the marginal distribution of Drover X

e Goal: Find a classifier h: X — Y, h € H with small target risk Rp, (h) = Pr( ) p, (h(z) # v)
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Distance Between Distributions

e H-divergence: dH(ng,D%) = 2sup |P7'$ND~§ lh(z) = 1] — PT%DQY [h(z) = 1]
heH -

It searches for the hypothesis and the example with the biggest disagreement under the two
distributions. It is small if we are unable to tell from which distribution every sample comes from.
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o n-divergence: di (D5, D7) = 2sup|Pr,_px[h(z) = 1] — Pr,_px[h(z) =1]|
heH

It searches for the hypothesis and the example with the biggest disagreement under the two
distributions. It is small if we are unable to tell from which distribution every sample comes from.

. N
e Empirical H-divergence: d i (S, T) = 2 (1 - mm ' Z I[h(z;) = 0] + # > I[h(z;) = 1]])
i=n+1
Sis the source sample of size n, T'is the target sample of size n’, I'is the indicator function. This holds for
a symmetric hypothesis space H. Proof in Ben-David et al. 2010.
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. N
e Empirical H-divergence: d i (S, T) = 2 (1 - mm ' Z I[h(z;) = 0] + # > I[h(z;) = 1]])
i=n+1
Sis the source sample of size n, T'is the target sample of size n’, I'is the indicator function. This holds for
a symmetric hypothesis space H. Proof in Ben-David et al. 2010.

e Proxy distance: Construct a new dataset U = {(=;,0)}"; U{(z;,1)}Y,, ;. train a classifier ’that
discriminates domains and it's risk ¢ is going to approxmate min part. Then: d 5 (S, T) = 2(1 — 2¢)
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and a domain classifier

The class classifier returns the gradient
as usual

The domain classifier uses a gradient
reversal layer to return a gradient of the
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The feature extractor learns a map of the
input x to a new space through G,

The G (x) are passed to a class classifier
and a domain classifier

The class classifier returns the gradient
as usual

The domain classifier uses a gradient
reversal layer to return a gradient of the
opposite direction

This is making the feature extractor to
map the input to a space where the
domains are not discriminatable and
therefore aligned
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Results

SOURCE MNIST SYN NUMBERS SVHN SYN SIGNS
METHOD

TARGET MNIST-M SVHN MNIST GTSRB
SOURCE ONLY .5749 .8665 5919 .7400
SA (FERNANDO ET AL., 2013) 6078 (7.9%) 8672 (1.3%) 6157 (5.9%) 7635 (9.1%)
PROPOSED APPROACH .8149 (57.9%) .9048 (66.1%) .7107 (29.3%) .8866 (56.7%)
TRAIN ON TARGET .9891 9244 19951 9987

Table 1. Classification accuracies for digit image classifications for different
source and target domains. MNIST-M corresponds to difference-blended
digits over non-uniform background. The first row corresponds to the lower
performance bound (i.e. if no adaptation is performed). The last row
corresponds to training on the target domain data with known class labels
(upper bound on the DA performance). Table from Ganin et al. 2016.

NETHOH SOURCE AMAZON DSLR WEBCAM
TARGET WEBCAM WEBCAM DSLR
GFK(PLS, PCA) (GONG ET AL., 2012) 464 + .005 613 +.004 .663 £ .004
SA (FERNANDO ET AL., 2013) 450 648 .699
DA-NBNN (ToMmMASI & CAPUTO, 2013) 528 +.037 766 + .017 .762 £ .025
DLID (S. CHOPRA & GOPALAN, 2013) 519 782 .899
DECAFg SOURCE ONLY (DONAHUE ET AL., 2014) 522+ .017 915+ .015 -
DANN (GHIFARY ET AL., 2014) 536 + .002 712 £+ .000 .835 + .000
DDC (TZENG ET AL., 2014) 594 + .008 925 +.003 917 £ .008
PROPOSED APPROACH 673 £.017 .940+ .008 .937 +.010

Table 2. Accuracy evaluation of different DA approaches on the
standard OFFICE dataset. Table from Ganin et al. 2016.
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Discussion



Background

e Let Xbeaninstance set, Z be a feature space and R : X — Z a representation that maps them

e We define a distribution D over X and a target function f: X — [0,1]

e We also define a distribution D’ over Z and a target function f' : Z — [0, 1]using the representation R

e Specifically: Py [B] = Pp[R™'(B)|and f'(z) = Ep[f(z)|R(z) = 2]

e Adomain is a distribution D over the instance X. We can define the corresponding distribution D’ over Z

e We assume two domains: The source domain with Ds, D'sand the target domain with Dr, D7.. f, f'are common
e The goal is to approximate f' by estimating a hypothesis functionk : Z — [0,1], h € H from the hypothesis space H
e The source error is defined as es(h) = E,.p, |f'(2) — h(2)| and the target error as er(h) = E..p, |f'(2) — h(2)|
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Distance Between Distributions

e Variational Distance: dr,(Ds,Dr) = 2sup |Prp,[B] — Prp, B
BeB

Is the largest possible difference between the probabilities that the two distributions can assign to the
same event.

Supremum is over all measurable subsets under Dy, Dy. Cannot be computed for real valued
distributions from finite samples. Batu et al. 2000

e H-Divergence: dgy(Dg,Dr) = 2sup |Prp, [h(xz) = 1] — Prp, [h(z) = 1]|
heH

Limits the supremum over the hypothesis set. For H of finite VC dimension it can be estimated from finite
samples.
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Target Error Bound

Theorem 2 Ben-David et al. 2006

Let R be a fixed representation and H be a hypothesis space of VC dimension d. If a random labeled sample S of
size m is generated by applying R to a D, i.i.d. sample and an unlabeled sample 7 of size m’ is generated by
applying R to a D_*i.i.d. sample, then with probability 1-8, for every hypothesis h:

R dlog (2m!)+log (£
Ro, () < Rs(h) +du(S,T) m%\/dlog(z':,"')+log<%)+4\/ e ibe P

A > inf [Rp, (h*) + Rp, (h*)]
heH

The dataset size m, m’ and uncertainty

O trade-off. For complete certainty:

while & approaches zero the terms

approach to infinity. When the dataset

sizes m, m' approach to infinity, the

terms approach zero. 50



