Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks

Chelsea Finn, Pieter Abbeel, Sergey Levine
Presented by: Teymur Azayev

CTU in Prague

17 January 2019
Deep Learning

- Very powerful, expressive differentiable models.
- Flexibility is a double edged sword.
How do we reduce the amount of required samples?

Use Prior knowledge (not in a Bayesian sense). This can be in the form of:

- Model constraint
- Sampling strategy
- Update rule
- Loss function
- etc...
Learning to learn fast.
Essentially learning a prior from a distribution of tasks.
Several recent successful approaches:

- Model based meta-learning [Adam Santoro et al.], [Jx Wang et al.], [Yan Duan et al.]
- Metric meta-learning
 [Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov.],
 [Oriol Vinyals et al.]
- Optimization based meta-learning
 [Sachin Ravi and Hugo Larochelle],
 [Marcin Andrychowicz et al.],
Model Agnostic Metal Learning

Main idea: Learn a parameter initialization for a distribution of tasks, such that given a new task a small amount of examples (gradient updates) suffice.
Task $T_i \sim p(T)$ is defined as a tuple $(H_i, q_i, \mathcal{L}_{T_i})$ consisting of

- time horizon H_i where for supervised learning $H_i = 1$
- initial state distribution $q_i(x_0)$ and state transition distribution $q_i(x_{t+1}|x_t)$
- Task loss function $\mathcal{L}_{T_i} \rightarrow \mathbb{R}$
- Task distribution p
Losses

\[\theta_i^* \] is the optimal parameter for task \(T_i \)

\[\theta_i' \] is the parameters obtained for task \(T_i \) after a single update

\[2) \text{ is the meta objective} \]
Algorithm 1 Model-Agnostic Meta-Learning

Require: \(p(\mathcal{T}) \): distribution over tasks
Require: \(\alpha, \beta \): step size hyperparameters

1: randomly initialize \(\theta \)
2: while not done do
3: Sample batch of tasks \(\mathcal{T}_i \sim p(\mathcal{T}) \)
4: for all \(\mathcal{T}_i \) do
5: Evaluate \(\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_\theta) \) with respect to \(K \) examples
6: Compute adapted parameters with gradient descent: \(\theta'_i = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_\theta) \)
7: end for
8: Update \(\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i}) \)
9: end while
Reinforcement learning

\[\mathcal{L}_{T_i}(f_\phi) = -\mathbb{E}_{x_t, a_t \sim f_\phi, q_{T_i}} \left[\sum_{t=1}^{H} R_i(x_t, a_t) \right] \]
Reinforcement learning adaptation

Algorithm 3 MAML for Reinforcement Learning

Require: $p(\mathcal{T})$: distribution over tasks
Require: α, β: step size hyperparameters

1: randomly initialize θ
2: while not done do
3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
4: for all \mathcal{T}_i do
5: Sample K trajectories $\mathcal{D} = \{(x_1, a_1, \ldots, x_H)\}$ using f_θ in \mathcal{T}_i
6: Evaluate $\nabla_\theta \mathcal{L}_{\mathcal{T}_i}(f_\theta)$ using \mathcal{D} and $\mathcal{L}_{\mathcal{T}_i}$ in Equation 4
7: Compute adapted parameters with gradient descent: $\theta'_i = \theta - \alpha \nabla_\theta \mathcal{L}_{\mathcal{T}_i}(f_\theta)$
8: Sample trajectories $\mathcal{D}'_i = \{(x_1, a_1, \ldots, x_H)\}$ using $f_{\theta'_i}$ in \mathcal{T}_i
9: end for
10: Update $\theta \leftarrow \theta - \beta \nabla_\theta \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$ using each \mathcal{D}'_i and $\mathcal{L}_{\mathcal{T}_i}$ in Equation 4
11: end while
Sin wave regression

Tasks: Regressing randomly generated sin waves

- amplitudes ranging in [0.1, 5]
- phases [0, 2\pi]
- Sampled uniformly in range [−5, 5]
Sin wave regression

MAML, $K=5$

MAML, $K=10$

pretrained, $K=5$, step size=0.01

pretrained, $K=10$, step size=0.02
Classification tasks

Omniglot

- 20 instances of 1623 characters from 50 different alphabets
- Each instance drawn by a different person
- Randomly select 1200 characters for training and the remaining for testing

MiniImagenet

- 64 training classes, 12 validation classes, and 24 test classes
RL experiment

- Rllab benchmark suite, Mujoco simulator
- Gradient update are computed using policy gradient algorithms.
- Tasks are defined by the agents simply having slightly different goals
- Agents are expected to infer new goal from reward after receiving only 1 gradient update.
Conclusion

- Simple effective meta learning method
- Decent amount of follow up work [?], [?]
- Concept extendable to meta learning other parts of the training procedure
Thank you for your attention
References

Marcin Andrychowicz et al.
Learning to learn by gradient descent by gradient descent.
NIPS 2016

Yan Duan et al.
2016

Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov.
Siamese Neural Networks for One-shot Image Recognition
ICML 2015

Zhenguo Li et al.
Meta-SGD: Learning to Learn quickly for few shot learning.
2017

Matthias Plappert et al.
Meta-SGD: Parameter Space Noise for Exploration
2017

Sachin Ravi and Hugo Larochelle
Meta-SGD: Optimization as a Model for Few-shot Learning
ICLR 2017

Adam Santoro et al.
One-shot Learning with Memory-Augmented Neural Networks
ICML 2016

Oriol Vinyals et al.
Matching Networks for One Shot Learning
NIPS 2016

Jx Wang et al.
Learning to Reinforcement Learn
2016

Risto Vuorio, Shao-Hua Sun, Hexiang Hu, Joseph J. Lim
Model-Agnostic Meta-Learning for Multimodal Task Distributions
2017

Ignasi Clavera, Anusha Nagabandi, Simin Liu, Ronald S. Fearing, Pieter Abbeel, Sergey Levine, Chelsea Finn
Learning to Adapt in Dynamic, Real-World Environments through Meta-Reinforcement Learning
2018
References I