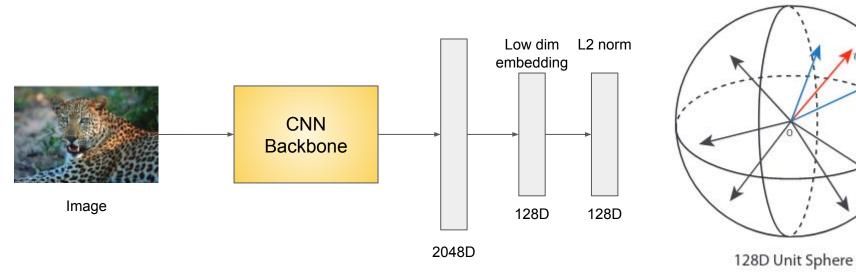
# Momentum contrast for Unsupervised representation learning (MoCo)

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, Ross Girshick

# Self-supervised learning

- Random initialization vs. Pre-training
- Target of self-supervision learning transferable features



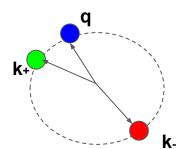
# General Contrastive learning

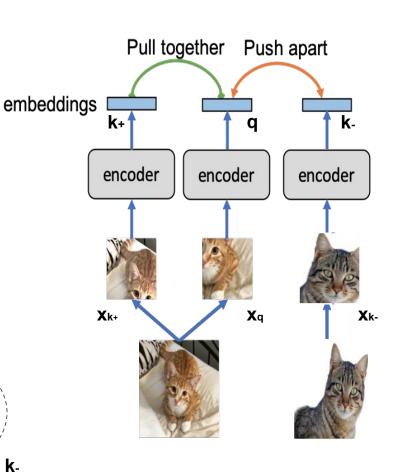
- Proxy task Instance discrimination
- q query
- k+ Augmented from query original image
- **k** - Unmatching image to the query

$$\mathcal{L}_{q,k^{+},\{k^{-}\}} = -\log \frac{\exp(q \cdot k^{+}/\tau)}{\exp(q \cdot k^{+}/\tau) + \sum_{k^{-}} \exp(q \cdot k^{-}/\tau)}$$

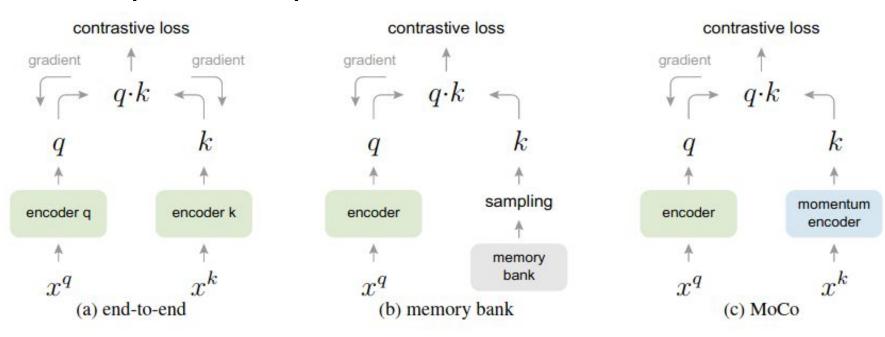








# Conceptual comparison of three mechanisms



Inconsistent encoding

Limited k-dim

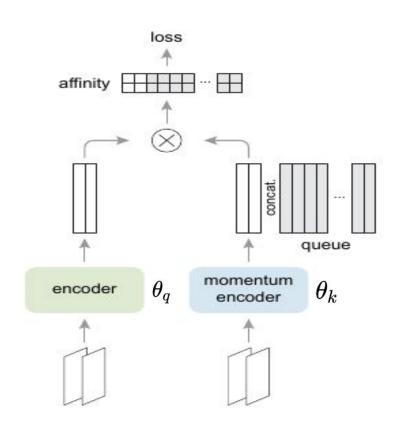
- More consistent feature encoding
- Large Memory

## MoCo solution

- Encodes the keys on-the-fly
- Maintains the queue of keys
- Key encoder update:

$$heta_k := m \cdot heta_k + (1-m) \cdot heta_q$$

| momentum $m$ | 0    | 0.9  | 0.99 | 0.999 | 0.9999 |
|--------------|------|------|------|-------|--------|
| accuracy (%) | fail | 55.2 | 57.8 | 59.0  | 58.9   |



# Comparison on ImageNet

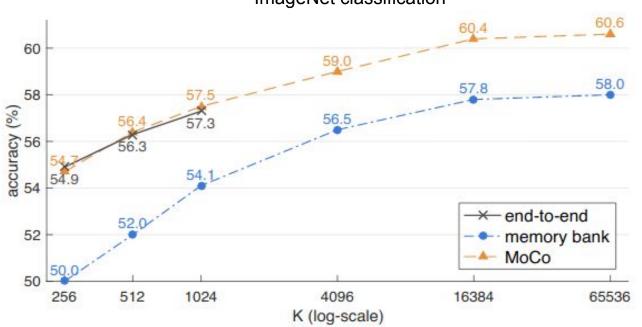
| mechanism  | batch | memory / GPU       | time / 200-ep. |
|------------|-------|--------------------|----------------|
| MoCo       | 256   | 5.0G               | 53 hrs         |
| end-to-end | 256   | 7.4G               | 65 hrs         |
| end-to-end | 4096  | 93.0G <sup>†</sup> | n/a            |

Pretext task: Instance Discrimination

Table 3. Memory and time cost in 8 V100 16G GPUs

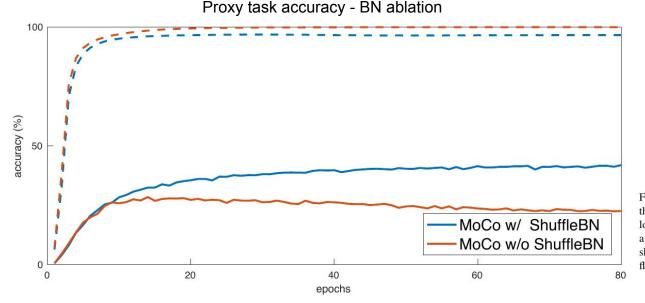
Computation: 8 x 32GB GPU





# **Shuffling Batch Normalization**

- BN leaks intra-batch information, where positive key is
- Solution: Shuffle batch for key encoder forward pass



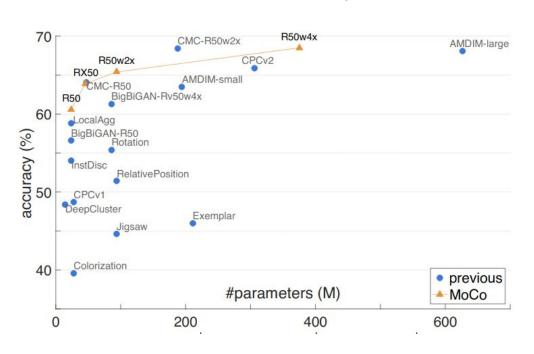
• Dash: Training curve

• Solid: Validation curve

Figure A.1. **Ablation of Shuffling BN**. *Dash*: training curve of the pretext task, plotted as the accuracy of (K+1)-way dictionary lookup. *Solid*: validation curve of a kNN-based monitor [61] (not a linear classifier) on ImageNet classification accuracy. This plot shows the first 80 epochs of training: training longer without shuffling BN overfits more.

## MoCo Results

### Self-supervised methods on ImageNet



- IN-1M
  - ImageNet pretraining
- IG-1B
  - o Instagram: 1 billion images

| pre-train    | AP <sub>50</sub> | AP          | AP <sub>75</sub> |
|--------------|------------------|-------------|------------------|
| random init. | 60.2             | 33.8        | 33.1             |
| super. IN-1M | 81.3             | 53.5        | 58.8             |
| MoCo IN-1M   | 81.5 (+0.2)      | 55.9 (+2.4) | 62.6 (+3.8)      |
| MoCo IG-1B   | 82.2 (+0.9)      | 57.2 (+3.7) | 63.7 (+4.9)      |

(b) Faster R-CNN, R50-C4

Table 2. Object detection fine-tuned on PASCAL VOC

## Different task results

- MoCo can outperform ImageNet supervised pre-training in 7 vision tasks
- MoCo in IG-1B setup is consistently better than IN-1M
  - Perform well of large-scale and uncurated dataset
  - Real-world unsupervised learning setup

|              | COCO keypoint detection |                |                |  |  |  |
|--------------|-------------------------|----------------|----------------|--|--|--|
| pre-train    | AP <sup>kp</sup>        | $AP_{50}^{kp}$ | $AP_{75}^{kp}$ |  |  |  |
| random init. | 65.9                    | 86.5           | 71.7           |  |  |  |
| super. IN-1M | 65.8                    | 86.9           | 71.9           |  |  |  |
| MoCo IN-1M   | 66.8 (+1.0)             | 87.4 (+0.5)    | 72.5 (+0.6)    |  |  |  |
| MoCo IG-1B   | 66.9 (+1.1)             | 87.8 (+0.9)    | 73.0 (+1.1)    |  |  |  |

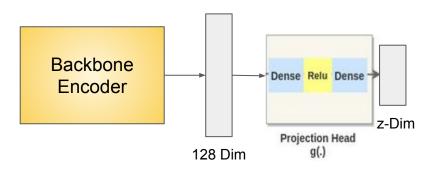
|              | COCO dense pose estimation |                |                |  |  |
|--------------|----------------------------|----------------|----------------|--|--|
| pre-train    | $AP^{dp}$                  | $AP_{50}^{dp}$ | $AP_{75}^{dp}$ |  |  |
| random init. | 39.4                       | 78.5           | 35.1           |  |  |
| super. IN-1M | 48.3                       | 85.6           | 50.6           |  |  |
| MoCo IN-1M   | 50.1 (+1.8)                | 86.8 (+1.2)    | 53.9 (+3.3)    |  |  |
| MoCo IG-1B   | 50.6 (+2.3)                | 87.0 (+1.4)    | 54.3 (+3.7)    |  |  |

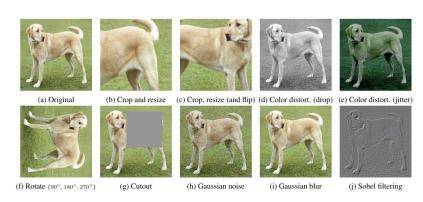
|                           | LVIS v0.5 instance segmentation |                |                                |  |  |
|---------------------------|---------------------------------|----------------|--------------------------------|--|--|
| pre-train                 | AP <sup>mk</sup>                | $AP_{50}^{mk}$ | AP <sup>mk</sup> <sub>75</sub> |  |  |
| random init.              | 22.5                            | 34.8           | 23.8                           |  |  |
| super. IN-1M <sup>†</sup> | 24.4                            | 37.8           | 25.8                           |  |  |
| MoCo IN-1M                | 24.1 (-0.3)                     | 37.4 (-0.4)    | 25.5 (-0.3)                    |  |  |
| MoCo IG-1B                | 24.9 (+0.5)                     | 38.2 (+0.4)    | 26.4 (+0.6)                    |  |  |

| ĺ            | Cityscapes i     | nstance seg.   | Semantic seg. (mIoU) |             |
|--------------|------------------|----------------|----------------------|-------------|
| pre-train    | AP <sup>mk</sup> | $AP_{50}^{mk}$ | Cityscapes           | VOC         |
| random init. | 25.4             | 51.1           | 65.3                 | 39.5        |
| super. IN-1M | 32.9             | 59.6           | 74.6                 | 74.4        |
| MoCo IN-1M   | 32.3 (-0.6)      | 59.3 (-0.3)    | 75.3 (+0.7)          | 72.5 (-1.9) |
| MoCo IG-1B   | 32.9 ( 0.0)      | 60.3 (+0.7)    | 75.5 (+0.9)          | 73.6 (-0.8) |

### MoCo v2

- Improved Baselines with Momentum Contrastive Learning
- Combining approach from SimCLR
  - Addition of MLP (projection head)
  - heavy data augmentation



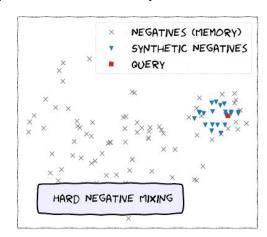


|                 | unsup. pre-train  |           |          |         |       | ImageNet |
|-----------------|-------------------|-----------|----------|---------|-------|----------|
| case            | MLP               | aug+      | cos      | epochs  | batch | acc.     |
| MoCo v1 [6]     |                   |           |          | 200     | 256   | 60.6     |
| SimCLR [2]      | <b>√</b>          | <b>✓</b>  | 1        | 200     | 256   | 61.9     |
| SimCLR [2]      | <b>\</b>          | ✓         | 1        | 200     | 8192  | 66.6     |
| MoCo v2         | <b>✓</b>          | <b>V</b>  | <b>✓</b> | 200     | 256   | 67.5     |
| results of long | e <b>r</b> unsupe | rvised tr | aining   | follow: |       |          |
| SimCLR [2]      | <b>/</b>          | <b>√</b>  | <b>\</b> | 1000    | 4096  | 69.3     |
| MoCo v2         | <b>√</b>          | ✓         | 1        | 800     | 256   | 71.1     |

Table 2. MoCo vs. SimCLR: ImageNet linear classifier accuracy

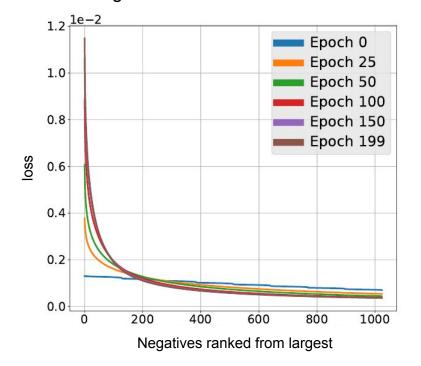
# Hard Negative Mixing for Contrastive Learning

- "(M)ixing (o)f (C)ontrastive (H)ard negat(i)ves - MoCHi
- Synthesizing negative samples in representation space on-the-fly



Yannis Kalantidis, et al. NeurlPS 2020

Effect of negatives in one batch on contrastive loss



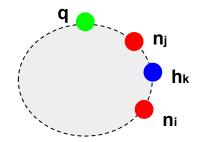
# Synthesizing of Hard negatives

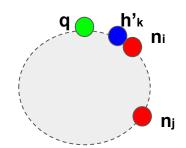
- Positive query features q, negative features n
- Convex linear combinations of pairs of its "hardest" existing negatives

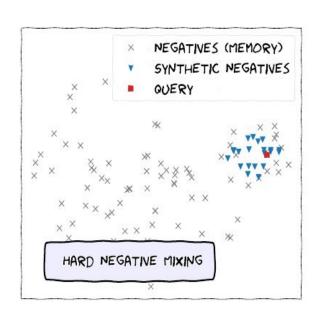
$$\mathbf{h}_k = \frac{\tilde{\mathbf{h}}_k}{\|\tilde{\mathbf{h}}_k\|_2}$$
, where  $\tilde{\mathbf{h}}_k = \alpha_k \mathbf{n}_i + (1 - \alpha_k) \mathbf{n}_j$ ,

Hardest negatives from q

$$\mathbf{h}'_k = \frac{\tilde{\mathbf{h}}'_k}{\|\tilde{\mathbf{h}}'_k\|_2}$$
, where  $\tilde{\mathbf{h}}'_k = \beta_k \mathbf{q} + (1 - \beta_k) \mathbf{n}_j$ 

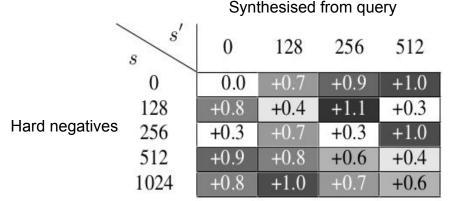






# MoCHi Experiments

- Training a ResNet-50 model on ImageNet using 4x V100 GPU take about 6-7 days
- Consistent gains over the MoCo-v2 baseline



(b) Accuracy gains over MoCo-v2 when N = 1024.

| Method                     | Top1 % $(\pm \sigma)$     | diff (%)    |
|----------------------------|---------------------------|-------------|
| MoCo [30]                  | 73.4                      |             |
| MoCo + iMix [56]           | 74.2 <sup>‡</sup>         | ↑0.8        |
| CMC [64]                   | 75.7                      |             |
| CMC + iMix [56]            | 75.9 <sup>‡</sup>         | <b>↑0.2</b> |
| MoCo [30]*                 | 74.0                      |             |
| MoCo-v2 [13]*              | $78.0 (\pm 0.2)$          |             |
| + MoCHi (1024, 1024, 128)  | <b>79.0</b> ( $\pm 0.4$ ) | <b>†1.0</b> |
| + MoCHi (1024, 256, 512)   | <b>79.0</b> ( $\pm 0.4$ ) | <b>1.0</b>  |
| + MoCHi (1024, 128, 256)   | <b>78.9</b> ( $\pm 0.5$ ) | <b>↑0.9</b> |
| Using Class Oracle         |                           |             |
| MoCo-v2*                   | 81.8                      |             |
| + MoCHi (1024, 1024, 128)  | 82.5                      |             |
| Supervised (Cross Entropy) | 86.2                      |             |

Table 1: Results on ImageNet-100 after training for 200 epochs. The bottom section reports results when using a class oracle (see Section 3.3). \* denotes reproduced results,  $^{\ddagger}$  denotes results visually extracted from Figure 4 in [56]. The parameters of MoCHi are (N, s, s').

# Different task results

| Mathad                    | IN-1k | (Fig. 2)                                     | VOC 2007                                |                                                           |
|---------------------------|-------|----------------------------------------------|-----------------------------------------|-----------------------------------------------------------|
| Method                    | Top1  | AP <sub>50</sub>                             | AP                                      | $AP_{75}$                                                 |
|                           | 100   | epoch training                               |                                         |                                                           |
| MoCo-v2 [13]*             | 63.6  | 80.8 (±0.2)                                  | $53.7 (\pm 0.2)$                        | 59.1 (±0.3)                                               |
| + MoCHi (256, 512, 0)     | 63.9  | $81.1 (\pm 0.1) (\uparrow 0.4)$              | 54.3 ( $\pm 0.3$ ) ( $\uparrow 0.7$ )   | $60.2 (\pm 0.1) (\uparrow 1.2)$                           |
| + MoCHi (256, 512, 256)   | 63.7  | <b>81.3</b> (±0.1) (↑ <b>0.6</b> )           | 54.6 ( $\pm 0.3$ ) ( $\uparrow 1.0$ )   | $60.7 (\pm 0.8) (\uparrow 1.7)$                           |
| + MoCHi (128, 1024, 512)  | 63.4  | 81.1 (±0.1) (↑0.4)                           | <b>54.7</b> (±0.3) († <b>1.1</b> )      | <b>60.9</b> (±0.1) ( <b>↑1.9</b> )                        |
|                           | 200   | epoch training                               |                                         |                                                           |
| MoCo-v2 [13]*             | 67.9  | 82.5 (±0.2)                                  | 56.8 (±0.1)                             | 63.3 (±0.4)                                               |
| + MoCHi (1024, 512, 256)  | 68.0  | 82.3 ( $\pm 0.2$ ) ( $\downarrow 0.2$ )      | 56.7 ( $\pm 0.2$ ) ( $\downarrow 0.1$ ) | 63.8 $(\pm 0.2)$ $(\uparrow 0.5)$                         |
| + MoCHi (512, 1024, 512)  | 67.6  | 82.7 ( $\pm 0.1$ ) ( $\uparrow 0.2$ )        | 57.1 ( $\pm 0.1$ ) ( $\uparrow 0.3$ )   | 64.1 (±0.3) (†0.8)                                        |
| + MoCHi (256, 512, 0)     | 67.7  | <b>82.8</b> ( $\pm 0.2$ ) ( $\uparrow 0.3$ ) | 57.3 ( $\pm 0.2$ ) ( $\uparrow 0.5$ )   | 64.1 ( $\pm 0.1$ ) ( $\uparrow 0.8$ )                     |
| + MoCHi (256, 512, 256)   | 67.6  | $82.6 (\pm 0.2) (\uparrow 0.1)$              | 57.2 ( $\pm 0.3$ ) ( $\uparrow 0.4$ )   | 64.2 (±0.5) (†0.9)                                        |
| + MoCHi (256, 2048, 2048) | 67.0  | 82.5 (±0.1) ( 0.0)                           | 57.1 ( $\pm 0.2$ ) ( $\uparrow 0.3$ )   | 64.4 (±0.2) (†1.1)                                        |
| + MoCHi (128, 1024, 512)  | 66.9  | 82.7 (±0.2) (†0.2)                           | $57.5 (\pm 0.3) (\uparrow 0.7)$         | $\overline{64.4} \ (\pm 0.4) \ (\uparrow \overline{1.1})$ |
| Supervised [30]           | 76.1  | 81.3                                         | 53.5                                    | 58.8                                                      |

# MoCo and MoCHi Comparison

- MoCHi does not show performance gains over MoCo-v2 for linear classification on ImageNet-1K
- Model learn faster with MoCHi and achieves performance gains over MoCo-v2 for transfer learning
  - In 200 epochs MoCHi can achieve performance similar to MoCo-v2 after 800 epochs on PASCAL VOC
- Performance gains of MoCHi are consistent across multiple configurations
- Both methods outperforms its supervised pre-training counterpart in 7 detection/segmentation tasks

# Summary and conclusion

- Identified the need for harder negatives
- Provides more generalizable feature representations
- Considerable gains without extensive hyperparameters searches
- These approaches can be implemented on top of any contrastive learning loss that involves a set of negatives
- Highly computationally demanding

Rethinking ImageNet pre-training: K. He, et al.

### References

Momentum Contrast for Unsupervised Visual Representation Learning: <a href="https://arxiv.org/abs/1911.05722">https://arxiv.org/abs/1911.05722</a>, CVPR 2020

Hard Negative Mixing for Contrastive Learning

https://arxiv.org/pdf/2010.01028.pdf, NeurIPS 2020

A Simple Framework for Contrastive Learning of Visual representations <a href="https://arxiv.org/abs/2002.05709">https://arxiv.org/abs/2002.05709</a>, ICML 2020

Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination https://arxiv.org/pdf/1805.01978.pdf , CVPR 2018

Improved Baselines with Momentum Contrastive Learning

https://arxiv.org/pdf/2003.04297.pdf, Technical report