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A minimal matching pipeline

> Classical: SIFT, ORB

> Learned: SuperPoint, D2-Net
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> Heuristics: ratio test, mutual check

> Learned: classifier on set

deep net
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SuperGlue: context aggregation + matching + filtering
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[DeTone et al,2018] [Yi et al,2018]



The importance of context
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Outputs

Single a matchper keypoint

+ occlusionand noise

→ a soft partialassignment:

Inputs

● Images Aand B

● 2 sets of M, N local features

○ Keypoints:

- Coordinates

-Confidence

○ Visual descriptors:
sum ≤1

sum ≤1

Problem formulation



Solving a partial  
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Encodes contextual cues& priors

Reasons about the 3Dscene

Differentiablesolver

Enforces the assignment constraints

= domainknowledge



● Initial representation for each keypoints :

● Combines visual appearanceand position with an MLP:
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Update the representation based on other keypoints:

- in the same image:“self” edges

- in the other image: “cross”edges

→ A complete graph withtwotypes of edges
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Update the representation using a Message Passing Neural Network
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Attentional Aggregation

● Compute themessage

● Soft database retrieval:query

using selfand cross attention

,key , and value

= [tile, position (70,100)]

= [tile, pos. (80,110)]

= [corner, pos.(60, 90)]

= [grid, pos. (400,600)]

queryneighbors

query

salientpoints
[Vaswani et al,2017]
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Self-attention

= intra-image
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● Occlusion and noise: unmatched keypoints are assigned toa dustbin

● Augment thescores with a learnable dustbin score
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● Compute the assignment that maximizes

● Solve an optimal transportproblem

● With the Sinkhorn algorithm: differentiable & soft Hungarianalgorithm

[Sinkhorn & Knopp,1967]
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● Compute groundtruthcorrespondences from pose and depth

● Find which keypoints shouldbe unmatched

● Loss: maximizethelog-likelihood of the GT cells
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Loss function

- set of GT matches

- set of unmacthed points in GT



SuperPoint + NN + heuristics

Results: indoor -ScanNet
SuperPoint + SuperGlue

SuperGlue: more correctmatches and fewer mismatches



SuperPoint + NN + mutual checkSuperPoint + NN + OA-Net (inlier classifier)

Results: outdoor -SfM
SuperPoint + SuperGlue

SuperGlue: more correctmatches and fewer mismatches
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Results: attention patterns

globalcontext neighborhood distinctive keypoints self-similarities

match candidates

Flexibility of attention → diversity ofpatterns



Homography estimation



Indoor pose estimation



Outdoor pose estimation



Ablation of SuperGlue



Evaluation

Heuristics  

Learned

inlierclassifier

SuperGlue yields largeimprovements in all cases


