SuperGlue: Learning Feature Matching with Graph Neural Networks

Paper Authors:

Paul-Edouard Sarlin Daniel DeTone

Tomasz Malisiewicz Andrew Rabinovich

Report by Ilia Shipachev

A minimal matching pipeline

SuperGlue: context aggregation + matching + filtering

- > Classical: SIFT, ORB
- > Learned: SuperPoint, D2-Net

Nearest Neighbor Matching

- > Heuristics: ratio test, mutual check
- > Learned: classifier on set

[Yi et al, 2018]

The importance of context

no SuperGlue NN+distance inliers: 10/29 with SuperGlue SuperGlue inliers: 81/88

Problem formulation

- Images A and B
- 2 sets of M, N local features
 - \circ Keypoints: $\mathbf{p}_i := (x, y, c)_i$
 - Coordinates (x, y)
 - Confidence *C*
 - \circ Visual descriptors: \mathbf{d}_i

Single a match per keypoint

Outputs

- + occlusion and noise
- → a soft partialassignment:

$$\mathbf{P} \in [0, 1]^{M \times N}$$

A Graph Neural Network with attention

Solving a partial assignment problem

Encodes contextual cues & priors

Reasons about the 3D scene

Differentiable solver

Enforces the assignment constraints

= domain knowledge

Optimal Matching Layer

- ullet Initial representation for each keypoints $i:^{(0)}\mathbf{x}_i$
- Combines visual appearance and position with an MLP:

$$^{(0)}\mathbf{x}_{i}=\mathbf{d}_{i}+\mathrm{MLP}\left(\mathbf{p}_{i}\right)$$
Multi-Layer Perceptron

Optimal Matching Layer

Update the representation based on other keypoints:

- in the same image: "self" edges
- in the other image: "cross" edges

$$(\ell)\mathbf{x}_i^A \longrightarrow (\ell+1)\mathbf{x}_i^A$$

→ A complete **graph** with two types of edges

Optimal Matching Layer

Update the representation using a Message Passing Neural Network

$$\mathbf{x}_{i}^{(\ell+1)}\mathbf{x}_{i}^{A} = \mathbf{x}_{i}^{(\ell)}\mathbf{x}_{i}^{A} + \text{MLP}\left(\left[\mathbf{x}_{i}^{(\ell)}\mathbf{x}_{i}^{A} \mid\mid \mathbf{m}_{\mathcal{E}\rightarrow i}\right]\right)$$
the message

Attentional Aggregation

- ullet Compute the **message** $\mathbf{m}_{\mathcal{E} o i}$ using **self** and **cross attention**
- ullet Soft database retrieval:query ${f q}_i$, key ${f k}_j$,and value ${f V}_j$

$$\mathbf{m}_{\mathcal{E} \to i} = \sum_{j:(i,j) \in \mathcal{E}} \alpha_{ij} \mathbf{v}_{j} \quad \mathbf{q}_{i} = \mathbf{W}_{1}^{(\ell)} \mathbf{x}_{i} + \mathbf{b}_{1}$$

$$\alpha_{ij} = \operatorname{Softmax}_{j} (\mathbf{q}_{i}^{\top} \mathbf{k}_{j}) \quad \begin{bmatrix} \mathbf{k}_{j} \\ \mathbf{v}_{j} \end{bmatrix} = \begin{bmatrix} \mathbf{W}_{2} \\ \mathbf{W}_{3} \end{bmatrix}^{(\ell)} \mathbf{x}_{j} + \begin{bmatrix} \mathbf{b}_{2} \\ \mathbf{b}_{3} \end{bmatrix}$$

 \mathbf{X}_i = [tile, position (70, 100)]

= [tile, pos. (80, 110)]

= [corner, pos. (60, 90)]

= [grid, pos. (400, 600)]

[Vaswani et al, 2017]

Self-attention

intra-image information flow

Cross-attention

= inter-image

Attention builds a soft, dynamic, sparse graph

Optimal Matching Layer

Compute a score matrix $\mathbf{S} \in \mathbb{R}^{M \times N}$ for all matches:

$$\mathbf{f}_{i}^{A} = \mathbf{W} \cdot {}^{(L)}\mathbf{x}_{i}^{A} + \mathbf{b}$$

 $\mathbf{S}_{i,j} = <\mathbf{f}_{i}^{A}, \mathbf{f}_{j}^{B} >$

Optimal Matching Layer

- Occlusion and noise: unmatched keypoints are assigned to a dustbin
- ullet Augment the scores with a learnable dustbin score $\mathcal Z$

$$\bar{\mathbf{S}}_{i,N+1} = \bar{\mathbf{S}}_{M+1,j} = \bar{\mathbf{S}}_{M+1,N+1} = z \in \mathbb{R}$$

Optimal Matching Layer

- ullet Compute the assignment $\, {f P} \,$ that maximizes $\, \sum ar{{f S}}_{i,j} ar{{f P}}_{i,j} \,$
- Solve an **optimal transport** problem
- With the Sinkhorn algorithm: differentiable & soft Hungarian algorithm

[Sinkhorn & Knopp, 1967]

Optimal Matching Layer

- Compute **ground truth correspondences** from pose and depth
- Find which keypoints should be unmatched
- Loss: maximize the log-likelihood $\bar{\mathbf{P}}_{i,j}$ of the GT cells

Loss function

$$\mathcal{M} = \{(i,j)\} \subset \mathcal{A} \times \mathcal{B}$$
 - set of GT matches

$$\mathcal{I} \subseteq \mathcal{A}$$
 and $\mathcal{J} \subseteq \mathcal{B}$

- set of unmacthed points in GT

$$Loss = -\sum_{(i,j)\in\mathcal{M}} \log \bar{\mathbf{P}}_{i,j} - \sum_{i\in\mathcal{I}} \log \bar{\mathbf{P}}_{i,N+1} - \sum_{j\in\mathcal{J}} \log \bar{\mathbf{P}}_{M+1,j}$$

Results: indoor -ScanNet

SuperPoint + NN + heuristics

SuperPoint + SuperGlue

SuperGlue: more correct matches and fewer mismatches

Results: outdoor -SfM

SuperPoint + NN + OA-Net (inlier classifier)

SuperGlue: more correct matches and fewer mismatches

Results: attention patterns

match candidates

Flexibility of attention → **diversity of patterns**

Homography estimation

Local features	Matcher	Homography 6			
		RANSAC	DLT	Р	R
SuperPoint	NN	39.47	0.00	21.7	65.4
	NN + mutual	42.45	0.24	43.8	56.5
	NN + PointCN	43.02	45.40	76.2	64.2
	NN + OANet	44.55	52.29	82.8	64.7
	SuperGlue	53.67	65.85	90.7	98.3

Indoor pose estimation

Local	Matcher	Pose estimation AUC				MC
features		@5°	@10°	@20°	P	MS
ORB	NN + GMS	5.21	13.65	25.36	72.0	5.7
D2-Net	NN + mutual	5.25	14.53	27.96	46.7	12.0
ContextDesc	NN + ratio test	6.64	15.01	25.75	51.2	9.2
SIFT	NN + ratio test	5.83	13.06	22.47	40.3	1.0
	NN + NG-RANSAC	6.19	13.80	23.73	61.9	0.7
	NN + OANet	6.00	14.33	25.90	38.6	4.2
	SuperGlue	6.71	15.70	28.67	74.2	9.8
SuperPoint	NN + mutual	9.43	21.53	36.40	50.4	18.8
	NN + distance + mutual	9.82	22.42	36.83	63.9	14.6
	NN + GMS	8.39	18.96	31.56	50.3	19.0
	NN + PointCN	11.40	25.47	41.41	71.8	25.5
	NN + OANet	11.76	26.90	43.85	74.0	25.7
	SuperGlue	16.16	33.81	51.84	84.4	31.5

Outdoor pose estimation

Local features	Matcher	Pose estimation AUC				MC
		@5°	@10°	@20°	Р	MS
ContextDesc	NN + ratio test	20.16	31.65	44.05	56.2	3.3
SIFT	NN + ratio test NN + NG-RANSAC NN + OANet SuperGlue	15.19 15.61 18.02 23.68	24.72 25.28 28.76 36.44	35.30 35.87 40.31 49.44	43.4 64.4 55.0 74.1	1.7 1.9 3.7 7.2
SuperPoint	NN + mutual NN + GMS NN + OANet SuperGlue	9.80 13.96 21.03 34.18	18.99 24.58 34.08 50.32	30.88 36.53 46.88 64.16	22.5 47.1 52.4 84.9	4.9 4.7 8.4 11.1

Ablation of SuperGlue

Matcher		Pose AUC@20°	Match precision	Matching score
NN + mutua	ıl	36.40	50.4	18.8
SuperGlue	No Graph Neural Net No cross-attention No positional encoding Smaller (3 layers) Full (9 layers)	38.56 42.57 47.12 46.93 51.84	66.0 74.0 75.8 79.9 84.4	17.2 25.3 26.6 30.0 31.5

Evaluation

SuperGlue yields largeimprovements in all cases