Motivation

› Where standard object detection fails
› Context helps – regular structures
› Some challenges:
Types of Symmetry

In 2D images we deal with
› Translation, reflection, rotation
› Groups – wallpaper, dihedral
Grouping Principles

Human perception priors are based on
– Proximity
– Similarity
– Reflection
– Continuation

Also known as Gestalt laws or symmetry in general.

We seek a language to describe such structures for computer vision.

Complexity – unknown number of components
Thesis Progress

› Weak Structure Model
 – **Simple** model implementing grouping principles
 – Window detection, sampling

› Spatial Pattern Templates
 – Learn **where** grouping principles apply
 – Facade parsing: semantic labels

› Reflection Symmetry Detection
 – More **general** approach resembling clustering
 – Improved inference engine, dihedral group
Weak Structure Model

- Can we infer global structure from local interactions?
- Markov Chain Monte Carlo sampling to find MAP solution
- Random Walk
- Reversible Jump
- Proposal Efficiency
- Convergence
Facade Image Parsing

- *Can we learn where grouping principles should be applied?*
- Dense Graphical Model
- More semantic labels and context
- New database for learning
Spatial Pattern Templates

› Binary and ternary terms
› Relative spatial location
› Approximate inference
Multiple Reflection Symmetry

› Correspondence matching problem
 – **Keypoints**: detected from corners and edges
 – **Primitives**: two corresponding keypoint(s)
 – **Components**: axes of reflection symmetry
 – **Groups**: clusters of components (dihedral)
Bayesian Modeling

› Data clustering problem
 – Gaussian mixture + outliers

› Target distribution
 = data model + allocation + priors

\[p(X, Z, \theta, k) = p(X \mid Z, \theta, k) \, p(Z \mid \theta, k) \, p(\theta \mid k) \, p(k) \]

– \(X \) … data primitives with attributes
– \(Z \) … allocation of data points to components
– \(\theta \) … component and shape parameters
– \(k \) … complexity

› Bayesian choice
 – prior design requires some skills
Bayesian Inference

1. Model Selection
 - Consider multiple models with different complexity and choose one to maximize the posterior marginal
 \[k^* = \arg \max p(k \mid X) \]
 - Integrate over parameters by MCMC sampling
 \[p(k \mid X) \propto \sum_Z \int_{\theta} p(X, Z, \theta, k) \, d\theta dZ \]

2. Parameter Estimation
 - Determine the most probable parameters
 \[\theta^* = \arg \max p(X, Z, \theta \mid k^*) \]
 - Use Stochastic EM to find locally optimal values

 › Inference Engine: LiSAEM
 - Efficient: improved mixing rate, ~10k samples needed
Multiple Reflection Symmetry

› General difficulties:
 – Multiplicity
 – Hierarchy

› Domain specific ambiguities:
 – Figure-Ground
 – Local-Global

Addressed with:
 ➢ Model selection
 ➢ Grouping priors
 ➢ Dihedral
 ➢ Objectness
 ➢ Compactness
Experimental Results

› Improved state-of-the-art results on reflection symmetry benchmarks (~10%)
Main Contributions

› Application of statistical methods for object counting new to computer vision
 – Parsimony by means of model selection
 – Learning without overfitting

› Minimal modeling principle
 – Simple language for consistent models

› Grouping priors
 – Components are not independent
 – Hierarchy of symmetries
Thank You

› Questions?
Questions

› What are the alternative models and their properties?
 – Complexity estimation
 › Bayesian Information Criterion \(\text{BIC} = n \cdot \ln(\hat{\sigma}_e^2) + k \cdot \ln(n) \)
 – Fixed penalty for increase of complexity
 › Multi-RANSAC
 – complexity estimation greedy or empirical
 – Symmetry modeling
 › Near Regular Textures – element unknown
 › Grammars – strong but restricted layout
 › Sequential inference – generally suboptimal
Questions

› Would larger datasets improve the results?
 – WSM, BMRS:
 › Yes, hyper-parameter learning would be possible on the next level
 – SPT:
 › Yes, now only limited number of samples used for training (MPL)
 › Results from CNNs suggest large data are useful
 – Computationally demanding
Questions

› Hierarchical Bayesian model