
IEEE Intelligent Vehicles Symposium
San Diego, USA, June 2010

A Voting Strategy for Visual Ego-Motion from Stereo

Štěpán Obdržálek and Jiřı́ Matas
Center for Machine Perception, Czech Technical University Prague

xobdrzal@fel.cvut.cz, matas@fel.cvut.cz

Abstract— We present a procedure for egomotion estimation
from visual input of a stereo pair of video cameras. The
3D egomotion problem, which has six degrees of freedom in
general, is simplified to four dimensions and further decom-
posed to two two-dimensional subproblems. The decomposition
allows us to use a voting strategy to identify the most probable
solution, avoiding the random sampling (RANSAC) or other
approximation techniques.

The input constitutes of image correspondences between
consecutive stereo pairs, i.e. feature points do not need to
be tracked over time. The experiments show that even if a
trajectory is put together as a simple concatenation of frame-
to-frame increments, it comes out reliable and precise.

I. INTRODUCTION

This paper concerns estimation of egomotion of a vehicle
carrying a stereo pair of video cameras. The problem is well
studied in the literature [1], [2], [3], [4]. Our situation differs
from the majority of the published work in two key aspects.
First, the intended use is in urban scenes with the possibility
of a heavy traffic. A large part, even a majority, of the field
of view can be covered by moving objects, which distract
the egomotion estimate. Second, the vehicle moves in an
open space, where the distance to the observed objects is
large compared to the baseline of the stereo pair. This results
in very imprecise 3D triangulation, with spatial uncertainty
of triangulated points in tens of meters. This is different to
navigation in small closed environments, e.g. in laboratories
or corridors, where the triangulation errors are smaller.

Our intended application is a detection of moving objects
around the vehicle, respectively estimation of motion of the
objects in the world coordinate frame. We are thus interested
in reliable and precise egomotion estimation, but only locally,
within a short time span. The problem of obtaining a globally
correct trajectory is not dealt with, nor is the problem of
detecting a repeated visit of a location (drift removal, or
loop closing). Solutions to these are found in the literature
(e.g. [5], [6], [7]). We assume that a GPS system solves these
problems in practice.

A 3D motion has six degrees of freedom, three for rotation
(change in orientation) and three for translation (change in
position). A standard approach to recover the six unknowns
is to align three pairs of corresponding triangulated 3D
points [8], which however becomes tricky once the triangula-
tion errors are large. Or, if only a single camera is available,
the motion can be computed from a correspondence of at
least five points, e.g. [9].

∗The authors were supported by Toyota Motor Corporation and by Czech
Government under the reseach program MSM6840770038.

In our task, however, it is not necessary to recover all six
parameters. We are interested only in horizontal projection
of the motion, as if seen on a map. In that case the motion
has only three unknowns. Two for 2D location on the ground
plane and one for orientation – the heading (or yaw) angle.
We also estimate the pitch angle for a total of four unknowns.
Pitch is the vertical angle between the optical axis and the
ground plane and is used to compute elevation of observed
objects, relative to our vehicle. The remaining two unknowns,
computation of which we avoid, are the rotation around the
camera optical axis (roll) and the absolute elevation of our
vehicle. The rolling we assume being negligible for ground
vehicles under normal driving conditions. And the vehicle’s
absolute elevation is not useful to us.

The egomotion estimation is based on a voting scheme.
The four-dimensional problem is decomposed into two two-
dimensional subproblems, which makes the voting feasible.
The rotation angles (yaw and pitch) are estimated first. The
2D translation is computed in a second voting step, in which
each vote explicitly reflects the triangulation imprecision.

II. EGOMOTION ESTIMATION

The egomotion is computed in the form of increments
from one stereo image pair to another. Therefore, only four
images are involved in the computation at a time - the current
pair and the immediately preceding one. The situation is
illustrated in Fig. 1.

Fig. 1. Illustration of images involved in the computation – two stereo
pairs that are connected by three sets of image correspondences.

The figure depict the four images: a current stereo pair
taken at time t (images It

L and It
R) and a preceding one

taken at time t − 1 (images It−1
L and It−1

R). Three sets of

pixel correspondences are computed. Two sets (Ct and Ct−1 :
{ci = (xL, yL, xR, yR)}) link pixels in the stereo pairs, the
third one (CL : {ci = (xt

L, y
t
L, x

t−1
L , yt−1

L)}) connects the
two images of the left camera. A 3D scene point X is at time
t projected to It

L and It
R at locations (xt

L, y
t
L) and (xt

R, y
t
R).

At time t − 1, it was projected to the preceding image pair
to pixels (xt−1

L , yt−1
L) and (xt−1

R , yt−1
R).

Image correspondences are computed with the approach
described in [10]. This method gives a semi-dense correspon-
dence map, typically tens of thousands of correspondences
are found for a pair of 640 × 480 images. The camera pair is
calibrated, whence the two stereo correspondence sets Ct and
Ct−1 can be triangulated, yielding two sets of 3D points X t

and X t−1 in camera-centric coordinates. The two 3D point
sets are connected together by the correspondence set CL,
forming a set of 3D vectors.

A 3D camera motion can be decomposed into two inde-
pendent components, alignment of directions of the camera
axes (camera rotation) and alignment of the camera centers
(camera translation). The decomposition is commutative.

A. Estimation of Rotation

The rotation is computed using the ’in-time’ corre-
spondence set CL, containing motion vectors cL =
(xt

L, y
t
L, x

t−1
L , yt−1

L) ∈ CL. Let us inspect the effect of
the rotation on the motion vectors, assuming for now that
the vehicle position is not changing and that the scene is
static. Fig. 2 illustrates image motion vectors caused by
pitch, yaw and roll components of the 3D rotation (for a
camera with spherical projection, which well approximates
a perspective camera for narrow fields of view). Assuming
zero roll for ground vehicles, the motion vectors caused by
rotation are linear segments that are identical across the
image, independent of object distance.

Fig. 2. Image motion vectors due to individual components of 3D rotation.
We are interested only in the yaw and pitch, the roll is ignored.

Fig. 3. Image motion vectors due to vehicle translation. Forward motion
on the left, sidewise on the right.

If the camera also moves, in addition to rotating, the
observed motion field is affected differently. Fig. 3 illustrates
the effect. Forward motion produces motion vectors oriented
in the direction of the so called focus of expansion, i.e. image
of the scene point towards which the camera moves. A
sidewise motion produces parallel motion vectors similar

to the rotation. What is important, in both types of the
translation the length of the motion vectors decreases with
distance to the observed scene point.

The observed motion field is a combination of the trans-
lation and rotation components, where the effect of the
translation decreases with distance – motion vectors of points
at infinity are affected only by the rotation. And the distances
are known from the stereo triangulation. This leads us to
a very simple voting algorithm for rotation estimation. It
is estimated by adding votes to an accumulator, as in the
Hough transform. Votes are cast by motion vectors cL ∈ CL
with the weight of the vote being proportional to cL’s 3D
distance to the camera. The accumulator domain is in image
pixels, its resolution is set to one pixel and its range to
(−Θx,Θx) on the x-axis and (−Θy,Θy) on the y-axis.
The resolution is given by the precision with which are
the image correspondences computed. The bounds on the
maximal rotation are set empirically and depend on maximal
angular speed and framerate and resolution of the cameras.
In our setup we have Θx = 100 and Θy = 50 pixels, which
cover all realistic situations with a large margin.

The procedure is summarised in Algorithm 1. At the end
we identify the rotation vector r = (rx, ry), in pixels, which
has the largest support by the motion vectors. The precision
of the estimate is further improved (on the x-axis only) by
fitting a quadratic curve to its neighbouring support values in
the accumulator, i.e. to A(rx−1, ry), A(rx, ry) and A(rx +
1, ry). Position of the maximum on the parabola is found in
a closed form, and it gives us the rotation vector r with a
sub-pixel precision.

A final step is to convert the pixel-based vector r to yaw
(ψ) and pitch (θ) angles. As shown in Fig. 4, the angle is the
inverse tangent of the vector length multiplied by the pixel
size p and divided by the focal length f :

ψ = tan−1(
rxpx

f
), θ = tan−1(

rypy

f
),

where px and py are horizontal and vertical pixel dimensions,
in millimeters. Conveniently, in the standard representation
of intrinsic camera parameters by an upper triangular 3× 3
matrix K [11], the f

px
and f

py
ratios are found on its first

two diagonal elements. We can therefore write

ψ = tan−1(
rx
K1,1

), θ = tan−1(
ry
K2,2

).

Naturally, the system would be fooled if the field of view is
obstructed by a large moving object, e.g. a truck pasing close
in front of the vehicle. These situations can be detected, as
the 3D depths are known, and failure in the estimation can be
reported. We have not implemented such a detection though,
and, as shown in the experiments, failures of this kind occur.

B. Estimation of Translation

We had two sets of triangulated 3D points, X t and X t−1,
observed in two consecutive views. The points were in
camera-centric coordinates, i.e. the origins of coordinate
systems coincided with the cameras.

Fig. 4. Left: Relation between a rotation vector r, in image coordinates,
and the angle of rotation. Right: Estimation of 3D reconstruction tolerance.

Algorithm 1 Rotation by voting
Input: CL: correspondences between points of two consecutive

images from one of the cameras
Input: Ct: correspondences between points of the stereo image pair
Output: r: vector of rotation, in pixels

/*Initialise the accumulator*/
A∆x,∆y := 0, ∆x ∈ (−Θx,Θx), ∆y ∈ (−Θy,Θy)

foreach cti := (xti,L, y
t
i,L, x

t
i,R, y

t
i,R) ∈ Ct,

cj,L := (xtj,L, y
t
j,L, x

t−1
j,L , y

t−1
j,L) ∈ CL

where xti,L = xtj,L and yti,L = ytj,L do
/*X: a 3D point in camera-centric coordinates*/
X := triangulate(xt

i,L, y
t
i,L, x

t
i,R, y

t
i,R)

/*d: distance between X and the camera*/
d := ||X, 0||
/*vote for the rotation, weighted by distance d*/
∆x := xt−1

j,L − x
t
j,L

∆y := yt−1
j,L − y

t
j,L

A∆x,∆y := A∆x,∆y + d
end

/*find where the maximum is*/
r := (rx, ry) := argmax

∆x∈(−Θx,Θx),∆y∈(−Θy,Θy)

A∆x,∆y

We are looking for a coordinate system transformation
that will align the scene points while moving the cameras
accordingly. Knowing the rotation between the two views,
X t is rotated around the origin (camera) by θ and ψ. See
Fig. 5 for an illustration. After that, the transformation from
X t−1 to X t is a translation s.

What complicates its identification are great imprecisions
in the triangulated coordinates and errors in the established
correspondences. In the following we search for a translation
vector s that would best explain the difference between the
two point sets, given the triangulation errors. Again, a voting
scheme is adopted in order to be robust to mismatches in the
correspondence sets.

C. Triangulation Uncertainty

A 3D point X is a measurement given by a stereo corre-
spondence cti = (xt

i,L, y
t
i,L, x

t
i,R, y

t
i,R) ∈ Ct, with uncertainty

increasing with distance to the object. The uncertainty is a
function of imprecision in the correspondence (in pixels), of
camera resolution and calibration, of the disparity, pixel’s po-
sition in image, and generally of the image content (e.g. there
may be a smaller uncertainty in higher contrast areas).

Fig. 5. Two-stage egomotion estimation. The rotation (yaw and pitch) is
compensated first, followed by the translation.

Let us assume that the images are rectified, i.e. that for
any stereo correspondence cti = (xt

i,L, y
t
i,L, x

t
i,R, y

t
i,R) ∈ Ct

it holds that yt
i,L = yt

i,R. The correspondence of (xt
i,L, y

t
i,L)

is then given by a single number, the disparity di = xt
i,R −

xt
i,L. Let the disparities be computed with a tolerance of ε,

say ε = 1 pixel. I.e. if a correspondence with a disparity
d̂ was established, the actual disparity is considered to be
d ∈ (d̂−ε, d̂+ε) with a uniform distribution over the interval.

The pixel-wise tolerance is transformed to the 3D by trian-
gulating both ends of the interval, i.e. both (xt

i,L, y
t
i,L, x

t
i,R−

ε, yt
i,R) and (xt

i,L, y
t
i,L, x

t
i,R + ε, yt

i,R). See Fig. 4 for an
illustration. This gives us two endpoints of a 3D line segment
on which the scene point Xi is located with distribution
approximately again uniform (the distribution is in fact a
piece of a quadratic function, since the triangulation errors
grow quadratically with the disparity).

The segment goes in the direction to the reference (left)
camera and its length increases with the distance, reflecting
the higher uncertainty of more distant depth measurements.
Table I shows the uncertainty of our stereo configuration,
tabulated for some typical distances.

There are other forms of triangulation imprecisions, com-
ing from imprecise calibration of the stereo pair, but their
magnitude is significantly smaller. They are all together
modelled as Gaussian and we treat them later.

Distance to the object Uncertainty of 3D triangulation
5 m ±6 cm

10 m ±22 cm
15 m ±49 cm
20 m ±88 cm
30 m ±200 cm
50 m ±555 cm
80 m ±1600 cm

100 m ±2500 cm

TABLE I
3D TRIANGULATION UNCERTAINTY FOR IMAGE CORRESPONDENCES

WITH TOLERANCE ±1 PIXEL.

D. Translation by voting

Fig. 5 illustrates the two-step egomotion recovery from
a top view. Two scene points, X1 and X2, are shown as
their respective tolerance segments. We denote as X− the
closer end of the tolerance segment, obtained as triangulation

of (xL, yL, xR − ε, yt
L), and as X+ the farther end, of

(xL, yL, xR + ε, yt
L).

In the figure on the left, the points are in camera-centric
coordinates, as triangulated from the two stereo pairs. The
middle figure shows the situation after rotation by the esti-
mated yaw ψ was applied to the points from the current t-th
frame. Finally, on the right, the points from the t-th frame
are aligned with their counterparts from the (t− 1)-th frame
by the translation vector s, yet unknown.

Fig. 6 shows what the vector s can be, i.e. how can
we move from Xt−1 in the previous frame, represented by
tolerance segment X−,t−1X+,t−1, to Xt, represented by
segment X−,tX+,t, in the current frame. All possible trans-
lation vectors form (in the 2D top view projection) a tetragon
shown in the middle of the figure. The coordinates of its
vertices are the differences between the tolerance segment
endpoints: X−,t−1−X+,t, X−,t−1−X−,t, X+,t−1−X+,t

and X+,t−1 − X−,t. This tetragon represents the vote that
X casts into the accumulator.

Under the assumption that the distance to the point X
does not change much between the frames, i.e. that it is
relatively larger than the length of the translation vector s,
the tolerance segments do not change significantly. We can
assume them identical, i.e. X+,t−1 − X−,t−1 = X+,t −
X−,t. In that case, the vote degenerates to a line segment
(X−,t−1 −X+,t) (X+,t−1 −X−,t), as shown on the right
side of Fig. 6.

The voting procedure is resumed in Algorithm 2. An
accumulator of votes is initialised first, its domain being
the translations in world coordinates. We have its resolution
set to 1 mm, its range for left-right offset Θmin

X = −200
mm and Θmax

X = 200 mm and its backward-forward range
Θmin

Z = −500 mm and Θmax
Z = 1500 mm. Then, each point

X that was successfully triangulated in both t-th and (t−1)-
th frame adds a vote in the form of the top-view projected
2D line segment.

As a final step, the accumulator is convolved with a kernel
of 2D normal distribution, with deviation σ appropriate to
cover all the other imprecisions in the triangulation. We have
σ = 5 mm. A position of the maximum in the convolved
accumulator is then found as the translation vector s. Fig. 7
shows examples of the accumulated votes. Note that a typical
length of a vote is, in the world coordinates, in the order of
meters or tens of meters. Yet, as shown in the experiments,
the maximum can be localised with a precision of few
millimeters.

The computational cost of the procedure is low once the
correspondences were obtained. Since the correspondences
are discretised in the pixel domain, the triangulation in
camera-centric coordinates can be implemented as a ta-
ble look-up. The voting itself requires rendering of line
segments, which, if implemented on graphics hardware, is
almost instantaneous. The only remaining non-trivial opera-
tions relate to the accumulator management – initialisation,
convolution with a Gaussian kernel and the maximum search
– which are all fast and easily parallelisable.

Fig. 6. Shape of the translation vote. See text for explanation.

Fig. 7. Estimation of translation: two examples of the voting accumulators,
each showing the accumulator A and its N (0, σ) smoothed variant A. Both
cases represent an almost forward motion. The right one is at a lower speed
and there was another motion candidate, caused by a car in front of our
vehicle going at about the same speed and turning to the right. The illusory
motion is therefore to the left, with no forward component. The coordinate
lines intersect at s = (0, 0).

III. EXPERIMENTS

The approach was tested on sequences that were taken
with a stereo camera pair mounted on a vehicle driven
through a city. The sequences, each several thousands of
images long, represent real-world scenarios. They include
sections of high-speed driving on an expressway as well as
traffic congestions and a drive through a city centre with
pedestrian-crowded alleyways. Sample images are shown in
Fig. 8.

Fig. 8. Sample frames from sequences used to test the egomotion
estimation. From open areas to crowded alleyways.

The egomotion was computed on frame-to-frame basis.
An update to the orientation and location was calculated
from one frame to the immediatelly following one, never
considering preceding images. Therefore, the trajectories pre-
sented here are concatenations of thousands of increments.

Algorithm 2 Translation by voting
Input: CL: correspondences between points of two consecutive

images from one of the cameras
Input: Ct, Ct−1: correspondences between points of stereo image

pairs, current and previous frames
Output: s: vector of translation, in world coordinates

/*Initialise the accumulator*/
A∆X,∆Z := 0,
∆X ∈ (Θmin

X ,Θmax
X), ∆Z ∈ (Θmin

Z ,Θmax
Z)

foreach cti := (xti,L, y
t
i,L, x

t
i,R, y

t
i,R) ∈ Ct,

ct−1
j := (xt−1

j,L , y
t−1
j,L , x

t−1
j,R , y

t−1
j,R) ∈ Ct−1

ck,L := (xtk,L, y
t
k,L, x

t−1
k,L , y

t−1
k,L) ∈ CL

where xti,L = xtk,L and yti,L = ytk,L and xt−1
j,L = xt−1

k,L and
yt−1
j,L = yt−1

k,L do

/*X̂±,t, X±,t−1: endpoints of 3D tolerance segments in
camera-centric coordinates*/

X̂−,t := triangulate(xt
i,L, y

t
i,L, x

t
i,R − ε, yt

i,R)

X̂+,t := triangulate(xt
i,L, y

t
i,L, x

t
i,R + ε, yt

i,R)
X−,t−1 := triangulate(xt−1

j,L , yt−1
j,L , xt−1

j,R − ε, y
t−1
j,R)

X+,t−1 := triangulate(xt−1
j,L , yt−1

j,L , xt−1
j,R + ε, yt−1

j,R)

/*Rotate X̂±,t by θ and ψ*/
X±,t := Rθ,ψ · X̂±,t

/*vote for the translation s with a line segment uv*/
u := (X−,t−1

X −X+,t
X , X−,t−1

Z −X+,t
Z)

v := (X+,t−1
X −X−,tX , X+,t−1

Z −X−,tZ)
addLineSegment(A, uv)

end
/*add tolerance to other forms of noise*/
A := convolve(A,N (0, σ))

/*find where the maximum is*/
s := (sX , sZ) := argmax

∆X∈(Θmin
X

,Θmax
X

),∆Z∈(Θmin
Z

,Θmax
Z

)

A∆X,∆Z

If an error was made in the computation of an increment, it
was not compensated later. Nonetheless, the trajectories are
precise, indicating that there were only few mistakes and that
no significant errors accumulated over time.

Fig. 9 shows top view of the sequences. The sequence on
the left lasted about 8 minutes and consists of about 14000
image pairs taken at 30 frames per second. The figure shows
our reconstructed trajectory (yellow) overlaid on a satellite
map. The actual path, hand-drawn, is shown in red. For this
sequence we also have a record of the in-car data from
the CANbus, with speed and turning angle readings. The
trajectory restored from the CANbus data is shown in green.

Using the CANbus data as ground-truth, we can sepa-
ratelly evaluate rotation and translation estimates. The ro-
tations are shown in left part of Fig. 10. By summing the
incremental changes in yaw (ψ) computed at each frame,
we obtain the cummulative orientation drawn in red. The
green line is for the CANbus orientation, which is again a
cumulative sum of per-frame readings. The differences in the
graphs are within the precision of camera calibration, which
indicates that there is no systematic error in the computation
accumulating over time.

Right side of Fig. 10 shows progression of vehicle’s speed.
At each frame, the actual speed is the length of the translation

Fig. 10. Comparision of computed (red) and CANbus (green) estimates on
the sequence from the left side of Fig. 9. Left: progression of orientation
(heading) of the test vehicle. The computed orientation (red) is the cumu-
lative sum of about 14000 yaw angle increments (ψ). Right: Speed of the
vehicle. The computed speed (red) is the length of the translation vector s.

vector s. Again, our measurements are shown in red while
the CANbus data are in green. The graphs correspond well,
but there are some mistakes to be seen. Mostly they concern
acceleration from a stop at a crossing when there is another
car immediatelly in front of us accelerating concurrently. In
such cases the visually perceived speed is lower than actual.
The most pronounced case can be seen at frames around
2200. Yet the mistakes are only few and their overall effect
on the trajectory shown in Fig. 9 is small. In numbers, the
difference between vision and CANbus speeds is in 92.5%
of the meassurements less than 1m/s (33mm for 30fps), in
79.5% less than 10mm and in 55% less than 5mm.

The second sequence shown in Fig. 9 is longer, lasting
almost half an hour, and consisting of about 50000 stereo
image pairs. Although the trajectory looks rather like a mess,
it is in fact mostly correct at local scale. We start at the
bottom right corner and until we reach the topmost part,
about 25000 video frames later, the differences are small.
There we fail to get the orientation correctly, bending the
trajectory by about 45 degrees. The same happens in the
leftmost part, resulting in a total difference in orientation of
about 90 degrees at the end of the sequence. In both cases,
the failure was due to other vehicles passing from left to
right very close in front of our car, obscuring most of the
field of view (see Fig. 12).

Figure 11 shows in detail parts of the sequences. Trajec-
tory segments are accompanied with representative images
from the on-board cameras. The first segment is an over
a minute long passage through a detour, with presence
of multiple distracting moving objects, but none of them
dominant. The second one shows a turnabout maneuver that
includes reversing. The orthomap backgrounds under the
trajectories were aligned manually.

Fig. 12. A situation where we fail to recover the rotation correctly. The
car passing in front of us makes for a phantom rotation to the left.

Fig. 9. Comparison of reconstructed trajectories (yellow) with hand-drawn ground-truth (red). For the sequence on the left a trajectory obtained from the
vehicle’s CANbus data is also shown (green).

Fig. 11. Two segments of the computed trajectory with corresponding scene images. Left: repeated structures on the fences interfere with the correspondence
search process, and other moving objects in the surroundings that create illusions of false egomotion. Right: turnabout maneuver which includes reversing.

IV. CONCLUSIONS

We have proposed a solution to the problem of estimation
of egomotion from a visual input, if it is acquired with a
stereo pair of video cameras. The general 3D motion problem
with six unknowns was simplified to four dimensions and
further decomposed to two two-dimensional subproblems.
The decomposition allowed us to use a voting scheme to
reliably identify the most representative egomotion, even
when the input data – image correspondences – were noisy.

Experimental evaluation on real-world sequences has
shown that although the egomotion was computed in the
form of differences between consecutive video frames, the
method provides reliable and precise output. The occasional
mistakes occur when the visual input is dominated by another
object moving in the scene.

A complex egomotion estimation system can be build on
top of the proposed procedure. Results of the visual estimator
should be combined with other sensors available, e.g. ac-
celerometers or the CANbus car controls. Restrictions from
a vehicle motion model should be considered, e.g. reflecting
the minimal turning radius. And corrections at global scale
should be obtained using a positioning system (GPS) and/or
by any of the vision methods for the long-term drift removal.

REFERENCES

[1] C. F. Olson, L. H. Matthies, M. Schoppers, and M. W. Maimone,
“Rover navigation using stereo ego-motion,” Robotics and Autonomous
Systems, vol. 43, no. 4, pp. 215 – 229, 2003.

[2] T. Lemaire, C. Berger, I.-K. Jung, and S. Lacroix, “Vision-based slam:
Stereo and monocular approaches,” Int. J. Comput. Vision, vol. 74,
no. 3, pp. 343–364, 2007.

[3] A. Howard, “Real-time stereo visual odometry for autonomous ground
vehicles,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems. IEEE, 2008, pp. 3946–3952.

[4] D. Nister, O. Naroditsky, and J. Bergen, “Visual odometry for ground
vehicle applications,” Journal of Field Robotics, vol. 23, 2006.

[5] K. Cornelis, F. Verbiest, and L. Van Gool, “Drift detection and removal
for sequential structure from motion algorithms,” IEEE PAMI, vol. 26,
no. 10, pp. 1249–1259, 2004.

[6] T. Thormählen, N. Hasler, M. Wand, and H.-P. Seidel, “Merging of
feature tracks for camera motion estimation from video,” in Confer-
ence on Visual Media Production, 2008.

[7] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “Monoslam:
Real-time single camera slam,” IEEE PAMI, vol. 29, 2007.

[8] R. M. Haralick, C.-N. Lee, K. Ottenberg, and M. Nölle, “Review and
analysis of solutions of the three point perspective pose estimation
problem,” Int. J. Comput. Vision, vol. 13, no. 3, pp. 331–356, 1994.

[9] D. Nistér, “An efficient solution to the five-point relative pose prob-
lem,” IEEE PAMI, vol. 26, no. 6, pp. 756–777, 2004.

[10] Š. Obdržálek, M. Perd’och, and J. Matas, “Dense linear-time correspon-
dences for tracking,” in Workshop on Visual Localization for Mobile
Platforms, CVPR 2008, June 2008.

[11] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, 2nd ed. Cambridge University Press, 2004.

