
Dense Linear-Time Correspondences for Tracking

Štěpán Obdržálek, Michal Perd’och and Jiřı́ Matas
Center for Machine Perception

Czech Technical University Prague

Abstract

A novel method is proposed for the problem of frame-
to-frame correspondence search in video sequences. The
method, based on hashing of low-dimensional image de-
scriptors, establishes dense correspondences and allows
large motions. All image pixels are considered for match-
ing, the notion of interest points is reviewed. In our for-
mulation, points of interest are those that can be reliably
matched. Their saliency depends on properties of the cho-
sen matching function and on actual image content.

Both computational time and memory requirements of
the correspondence search are asymptoticaly linear in the
number of image pixels, irrespective of correspondence
density and of image content. All steps of the method are
simple and allow for a hardware implementation.

Functionality is demonstrated on sequences taken from
a vehicle moving in an urban environment.

1. Introduction

Establishing correspondences in video streams is a
widely studied problem in both computer vision and
robotics. Applications include simultaneous localisation
and mapping (SLAM) [14], visual odometry for au-
tonomous vehicles (in support of GPS, wheel odometry, or
accelerometers) [12, 4], motion segmentation (detection of
objects of interest by motion) [8], optical flow [3], video
compression, medical image registration, mosaicing, and
tracking (trajectory detection) of moving objects.

Two classes of approaches to the problem can be found
in the literature. The first are approaches using a gradi-
ent descent. Methods differ in optimisation procedure em-
ployed, in criterion minimised (e.g. sum of square differ-
ences), and in parameterisation of the frame-to-frame local
transformations. Refer to [2] for more details and compar-
ative evaluation. For example, the approach by Lucas and
Kanade [11], improved later by Shi and Tomasi in [18], ex-

∗The authors were supported by Toyota Motor Corporation and by
Czech Ministry of Education project 1M0567.

tracts interest points in the initial image and tracks them in
consecutive frames by gradient descent.

Methods of the other class are based on detection and
matching of local features or regions. They identify corre-
spondences (motion vectors) as best matches of small spa-
tial neighbourhoods between adjacent frames. Many ap-
proaches can be found in the literature, from the earliest
works of Moravec [13] or Förstner [6] to the recent appli-
cations as in the work of Nister [14]. Good overview of
the methods is given by Lepetit and Fua in [9]. In gen-
eral, feature points are matched between pairs of frames us-
ing a similarity measure (e.g. normalised correlation) over a
small window. A feature in one frame is compared to every
feature within a fixed distance in the other, and mismatches
are rejected by enforcing global geometry constraints.

Our application is detection of moving objects in scenes
observed by a moving camera, tied to a collision avoidance
and reaction planning system. This application introduces
following specifics to the correspondence problem:
(i) Given the resolution of images (640x480 pixels), frame
rate (10 Hz), and speed of moving objects and of the camera
itself, the frame-to-frame difference in object position (the
length of motion vectors) goes up to circa 40 pixels. Un-
less a multi-scale variant is used, gradient descent solutions
fail on such large displacements by converging into a closer,
false local minima of similarity.
(ii) The object detection performance increases with in-
creasing density of correspondences. Hence, densest pos-
sible correspondences are sought, complete motion field
would be ideal. This differs from the problem of visual
odometry [14], where the correspondences are used only
to robustly recover a 5-parametric camera motion, and tens
of correspondences per frame suffice.
(iii) Since independently moving objects are observed, a
guided matching, based on a global geometry of the scene,
has limited use. Instead of first solving for camera motion
(e.g. by determining epipolar geometry) from sparse cor-
respondences, and densifying the correspondences later by
guided (constrained to epipolar lines) matching, we search
for dense correspondences from the beginning.
(iv) Thanks to the collision avoidance application, a solu-



tion is sought that would allow an implementation with real-
time responses.

This paper presents a novel method for establishing
frame-to-frame correspondences. According to the stated
prerequisites, the method handles large displacements, pro-
duce dense correspondences, and its computation time is
linear with respect to the number of pixels, i.e. independent
of correspondence density.

In Section 2 the correspondence-in-video problem is
analysed in detail and the method is proposed. Section 3
describes implementation particulars and Section 4 gives an
experimental verification.

2. Overview of the method
We motivate our approach by establishing an analogy to

the correspondence search algorithms used in object recog-
nition and wide-baseline stereo matching. Let us first re-
view general structure of these algorithms:

1. Decompose the image to local features – circular, el-
liptical or square patches around interest points, which
have location and shape locally covariant with image
transformations.

2. Photometrically normalise the patches.

3. Represent the patches by a misalignment-insensitive
descriptor (e.g. SIFT [10] or DCT [16]).

4. Match patches between images, form a set of tenta-
tive correspondences (TCs). The correspondences are
obtained by nearest neighbour search in the patch rep-
resentation space.

5. Identify mismatches, select a subsets of TCs that are
geometrically consistent with respect to e.g. epipolar
geometry or local homography.

6. (optional) Compute dense pixel-to-pixel correspon-
dences by guided matching. In the case of matching
guided by the epipolar constraint, the dense correspon-
dence search is restricted to search along a single line.

Let us consider how the scheme simplifies for the
correspondnces-in-video problem, and what consequent
simplifications to the algorithm can be made:

1. The geometric transformations between consecutive
video frames can be at local scale approximated by
translation (only 2 degrees of freedom). Scaling, rota-
tion and skew are typically negligible. Consequently,
circular or square patches of a fixed size and orienta-
tion can be used to form descriptors of interest points.

2. The photometric changes are small unless shadows or
specular reflections are present. Hence, there is no
need for photometric normalisation at local scale.

3. Compared to object recognition or wide-baseline
matching problems, the set of potentially correspond-
ing points is relatively small. The number of match
candidates is limited by a predefined search-range –
the maximal motion vector length. If the matches
are sought in a search window of say 64 × 64 pix-
els, there are at most 4096 pixels (match candidates)
to choose from. Consequently, low-dimensional de-
scriptors, even though having low discriminative po-
tential, are befitting. Using a high dimensional de-
scriptor, such as the 128-dimensional SIFT [10], is un-
necessary.

4. The advantage of having a low-dimensional descriptor
is in the ability to organise all match candidates into a
table indexed directly by the descriptor. Each tentative
correspondence can then be retrieved in a constant-
time.

5. If the scene contains moving objects, no global model,
as e.g. the epipolar geometry, can be imposed on the
correspondences. Mismatches are therefore identified
only by requiring that, locally, multiple correspon-
dences infer similar motion vectors.

What descriptor to use, and what is the most appropriate
definition of interest points in the correspondence-in-video
problem? Let us start by considering the matching func-
tion first. The matching scheme in the wide baseline al-
gorithm has quadratic O(n2) asymptotic complexity (here
n is the number of interest points in the search window),
and will inevitably slow down as the density of correspon-
dences increases. We instead propose to take advantage of
having a low-dimensional descriptor, and to organise match
candidates into hash tables indexed directly by values of the
descriptor. The matching function then retrieves correspon-
dences from the table in a constant time.

Any low-dimensional descriptor that provides good dis-
criminativity and insensitivity to noise and geometric mis-
alignments can be used. Good examples are Gabor fil-
ters [5], low-frequency coefficients of two-dimensional dis-
crete cosine transform [17], or other low-dimensional pro-
jections [7].

Based on the results in [15, 16], our descriptor con-
sists of three low-frequency DCT coefficients. The DCT
is computationally efficient and hardware implementations
are widely available due to its widespread use in image and
video compression (JPEG, MPEG, etc.). The discrete co-
sine transform of an image window I is defined as:

Dp,q = αpαq

K−1X
m=0

K−1X
n=0

Im,n cos
π(2m+ 1)p

2K
cos

π(2n+ 1)q

2K
,

(1)
whereK is the window size in pixels, D is an output matrix
of coefficients, p : 0 ≤ p ≤ K − 1 and q : 0 ≤ q ≤ K − 1



(a) (b)
Figure 1. (a) A hash table representing a search window, indexed by quantised DCT coefficients. (b) Coordinates of points with identical
quantised descriptor listed in a cell.

Figure 2. Three numbers describe local appearance in K × K
neighbourhood of each pixel. The numbers are low-frequency
DCT coefficients obtained by convolving the image with separable
masks of DCT bases.

are coefficient indices, and

αp, αq =
{

1/
√
K if p resp. q = 0√

2/K otherwise.

The DCT coefficients are then quantised to form a hash
key (of e.g. 15 bits). In other words, the intensity informa-
tion in aK×K window is hashed into a key, where the hash
function is computed as (i) compute the low-dimensional
descriptor, (ii) uniformly quantise its values, (iii) concate-
nate the quantised values to obtain the key.

A table is then formed for every search window, with
cells listing coordinates of points with identical keys. See
Figure 1 for an illustration. Capacity κ of each bin is lim-
ited to a low number of points, κ = 3 in our experiments. If
there are more than κ points with identical key in a search
window (e.g. there is a uniform surface in the scene), the bin
capacity is saturated. The points are considered ambiguous
and are not stored. Matching proceeds as follows. For a
point p in frame t the key is computed. Up to κ correspon-
dences from frame t − 1 are retrieved from the table cell
indexed by p’s key.

The remaining question in the algorithm is what inter-
est points to select for the matching. Maximising the num-

Figure 3. Video frame t − 1: A table is crafted for each search
window. The windows are placed with a granularity of 16 pixels.

ber of correspondences, the obvious answer is all for which
matches can be reliably found. I.e. all points that are unique
within the search window, all that have an unambiguous de-
scriptor. Which are those that remain listed in non-saturated
cells of the table. In other words, there is no a-priori as-
sumption about properties of interest points, as is e.g. for the
Harris corner points. The only requirement is that the local
K×K neighbourhood is reasonably unique. Therefore, the
selection is driven solely by image-content, the saliency of a
point is directly given by uniqueness of its descriptor within
the search window.

3. Implementation

This section gives a step by step description of the corre-
spondence search process.

DCT representation is computed. For every pixel in
video frame (t − 1), three low-frequency DCT coefficients



(a) (b)
Figure 4. Coverage of an image by salient points. (a) A frame from an input video sequence. (b) Uniqueness of pixel descriptors within a
search window. All pixels that are not white here are used for matching.

Figure 5. Video frame t: Retrieval of correspondences from pre-
computed tables, pixels in a 16 × 16 block share a single table,
hence a single search window.

are computed as a dot product of image intensities inK×K
(K = 7) windows and precomputed 2-D DCT bases. See
Figure 2 for an illustration. Since the DCT bases are sepa-
rable, the coefficients are obtained each by convolving the
image with two one-dimensional kernels of length K. Coef-
ficient with indices (p, q) ∈ {(1, 0), (1, 1), (0, 1)} (Eqn. 1)
are used. The coefficients are then discretised to 5 bits each,
yielding 25·3 = 32768 possible quantised keys. The com-
putation has complexity comparable to that of the Harris
corner detector, and is linear in the number of image pixels.

Hashing. Three-dimensional tables are created for each
search window, 80 × 80 pixels in size. The tables list co-
ordinates of pixels in the search window, indexed by the
descriptors. For efficiency, the window position does not
change with every pixel, but is rather ’jumping’ over the
image with a predefined granularity (16 pixels in our im-
plementation). The situation is illustrated in Figure 3. It
means, that in tth frame, blocks of 16 × 16 pixels share
the same search window (in frame (t − 1)). The maximal
length of motion vector thus varies, from 33 to 48 pixels,

according to the position of the pixel in the block.
Capacity of the table cells is limited to κ (κ = 3), i.e.

there are at most κ pixel coordinates listed for each quan-
tisation of the descriptor. If more than κ pixels have the
same descriptor, the cell is marked as saturated (an analogy
to stop-lists used in text search). Salient pixels are those
in non-saturated cells. Figure 4 shows an example of the
saliency – uniqueness of the descriptors. Intensity of a pixel
in 4(b) encodes the number of other pixels within the cell.
The image is black where the descriptor is unique within
the search window, white areas are where the cells are satu-
rated.

The computational time is linear in the number of pixels.
Coordinates of each pixel are entered into 5×5 = 25 tables
(there are 5 × 5 blocks of 16 × 16 pixels in the 80 × 80
search windows, refer to Figures 3 and 5). Thanks to the
limited capacity of the table cells, the tables occupy a fixed
memory space.

Matching. DCTs are computed for tth video frame. A
pixel position identifies a search window and its associated
hash table. The quantised descriptor identifies the cell, in
which the pixel’s correspondences are listed. See Figure 5
for an illustration. Correspondences for all pixels from e.g.
the red block are retrieved from the red table, which was
computed using pixels from the red rectangle (search win-
dow) in the previous frame. Zero to κ correspondences are
retrieved for each pixel. If the indexed cell was marked as
saturated, no correspondences are established due to ambi-
guity. Experiments show that circa 5–10% of pixels have a
correspondence assigned by this procedure. The computa-
tional complexity is again linear in the number of pixels.

Consistency check. The set of correspondences ob-
tained in the previous step contain a rather large number
of mismatches – typically more than one half of the corre-
spondences is incorrect. This is by design, since multiple
matches per pixel are allowed.

Consistent subsets of correspondences are identified,
which (a) are spatially close, and (b) represent similar mo-



(a) (b)
Figure 6. Illustration of accumulator voting in the consistency check step. (a) Tentative correspondences (motion vectors). (b) Correspond-
ing votes in a log-polar accumulator. The red ones are rejected as inconsistent.

(a) (b)

(c) (d) (e)
Figure 7. Progress of the correspondence search. (a), (b) Consecutive video frames from the input sequence, 640 × 480 pixels, (c)
22 051 tentative correspondences including many mismatches, (d) 10 205 correspondences after consistency check, (e) 194 390 dense
correspondences. Only a subset, with 4× 4 spacing, is displayed for presentation clarity.

tions. A Hough-transform-like approach is employed. The
process has two passes. In the first pass, the motion vectors
vote in a two dimensional accumulator, incrementing value
in the bin representing their length and direction. In the
second pass, the correspondences are checked against the
accumulator, and only those that have in the corresponding
bin more than Θc votes (Θc = 10) are kept. See Figure 6
for an illustration. The process is linear in the number of
correspondences established in the matching step.

Densification of the correspondences. As an optional
step, the correspondences are propagated to neighbouring
pixels where no matches were established, i.e. to pixels with
ambiguous appearance. An approach similar to the consis-
tency check is used. Voting in local accumulators identifies
dominant motion vectors. Unmatched pixels are assigned
a motion vector which got a high number of votes, given
that the DCT representation of pixels being put into corre-
spondence is similar. I.e. the descriptors must be similar but

do not have to be unique – the ambiguity is resolved by the
presence of motion vectors in close neighbourhood. After
the densification, about 50% of all image pixels have a mo-
tion vector assigned. Complexity of the procedure is again
linear in the number of image pixels.

Altogether, asymptotic complexity of the whole process
is linear, respectively constant for a fixed image size. Fig-
ure 7 illustrates the steps of the method, showing the initial
tentative correspondences (c), correspondences found to be
consistent (d), and the dense correspondences (e).

With only a minor modification, the process can be ap-
plied to the problem of dense stereo matching on rectified
images. There, the correspondences are sought along epipo-
lar lines, which, by the rectification, coincide with image
scanlines. Adapting the shape of the search windows by
elongating them along the epipolars and shortening them
in the perpendicular direction (down to a single pixel, or
e.g. three pixels if some tolerance is required), the method



(a) (b) (c)
Figure 8. The matching procedure can be applied to dense stereo matching in rectified images. The only modification is in the shape of the
search windows. (a), (b) an example of input stereo pair, (c) dense correspondences (disparity map).

provides dense stereo correspondences. The modification,
as well as an example of computed dense disparity map, is
shown in Figure 8.

4. Experiments
The algorithm was tested on video sequences taken in an

urban environment. The results of the proposed algorithm
were compared to two state-of-the-art methods. A quanti-
tative evaluation was not performed, we only demonstrate
and highlight the differences between the methods. Addi-
tionally, we present results in a visual odometry application.

4.1. Comparison to Other Methods

The proposed method is compared to two state-of-the-
art methods for finding correspondences in video – multi-
scale version of Kanade Lucas Tomasi (KLT) tracker and
a method based on the correlation of rectangular patches
around Harris points.

The KLT tracker, provided by S. Birchfield1, was tested
in three setups. The first setup (KLT1) represents the origi-
nal KLT tracker without a multi-scale functionality. Second
setup (KLT2) uses the configuration that comes with Birch-
field’s implementation, only the minimum distance between
features was decreased to three pixels. Since there is no
threshold on ’cornerness’ (the lower eigenvalue of the sec-
ond moment matrix of image gradients), this setup usually
produced the most dense motion field of all tested methods.
However, it generated a large amount of mismatches on uni-
form surfaces. In the last setup (KLT3), only such points
were considered where the lower eigenvalue was above a

1http://www.ces.clemson.edu/˜stb/klt

empirically set threshold.
The correlation-based tracker closely follows the imple-

mentation described by Nister in [14]. Mutually nearest
matches are established using normalised cross-correlation
of 11 × 11 windows around feature points. The feature
points were selected as local maxima of the Harris response
function. No threshold was imposed on the value of the
response, only extremality in 5 × 5 neighbourhood was re-
quired.

Figure 9 shows motion fields computed by the tested
methods. The result of the proposed method is shown in
Figure 9(b). The optional densification step was not ap-
plied, still the method produced the highest number of cor-
respondences, most of them correct. Figure 9(c) shows the
result of the correlation-based tracker. The motion field is
sparse but again mostly correct. The number of mismatches
is low, especially considering that no geometric consistency
was enforced. Fig. 9(d) is for KLT1 tracker without the
multi-scale functionality. The correspondences are correct
only on static parts of the scene. The moving objects cause
large displacements in the image and the iterative process
did not converge there. Fig. 9(e) shows results for KLT2

with the multi-scale extension. The tracker additionally
identified the large motions. Sometimes, wrong detections
on a lower resolution (a higher level of a multi-resolution
pyramid) caused errors from which the process on full res-
olution would not recover (see e.g. the motorcycle on the
right, where most of the motion vectors point up). As there
is no threshold on the ’cornerness’ of the points, the corre-
spondences cover the images very evenly. In uniform image
areas with only a little information available, the motion is
propagated from lower resolutions to higher. The effect is
that the correspondences ’spill out’ from moving objects to



(a) (b) (c)

(d) (e) (f)
Figure 9. Comparison of motion fields computed by the tested methods. The dots indicate points where correspondences were established,
their colour correspond to length of the motion vectors. (a) An image from the test sequence. The pedestrian is moving to the left, the
cars and the motorcycle are moving to the right. (b) The proposed method, 24890 correspondences. (c) Correlation-based tracker, 2006
correspondences. (d) KLT1, 11059 correspondences. (e) KLT2, 14646 correspondences. (f) KLT3, 8229 correspondences.

their surroundings, see the walking man for an example. Fi-
nally, in Fig. 9(f) the motion field is shown for the KLT3

variant. Requiring a minimal cornerness of the points re-
move the often dubious correspondences on uniform sur-
faces, but the propagated mismatches are still present.

To summarise, the proposed method provides frame-to-
frame correspondences which are, even without the densifi-
cation step, as dense as correspondences of any of the tested
methods, and are as reliable as those of the correlation-
based method. Further examples are shown in Figure 10.

4.2. Application: Visual Odometry

The proposed algorithm was successfully applied to the
visual odometry problem. A stereo sequence of 5 000
frames was acquired by a calibrated stereo camera pair
mounted on a vehicle travelling through a city. A simple
egomotion estimation method provided camera translation
and rotation based on correspondences between every pair
of consecutive frames. The trajectory shown in Figure 11
is an aggregation of 5 000 independently computed frame-
to-frame trajectory increments. Even though there is nei-
ther multi-frame feature tracking nor loop-closing involved,
the accumulated error of the trajectory is rather small, indi-
cating that high-precision egomotion increments were ob-
tained. The method is also highly reliabile, there is not a sin-
gle incorrectly computed increment (mismatch) along the
sequence. Such would manifest itself as an abrupt change

in the aggregated trajectory.

5. Conclusions

We have proposed a novel approach to the problem of
correspondence search in video sequences. Utilising a hash-
ing technique, the detector of interest points (regions) is
avoided. The hashing both identifies distinct areas in the
image and enables a constant-time matching. The hash
keys are formed by quantising three low-frequency DCT
coefficients, though any other low-dimensional discrimina-
tive representation of local appearance can be used. The
DCTs were chosen for their properties, they are fast to com-
pute and insensitive to misalignments and small appearance
changes. The implied hash function is insensitive to noise
and preserves adjacency of similar appearances.

The algorithm has asymptoticaly linear complexity with
respect to the number of image pixels, the matching does
not slow down with increasing density of correspondences.
Computation time for the first three steps of the algorithm
(descriptors, hashing and matching) is practically constant
for a fixed image size, i.e. predictable. The time depends on
the scene content only when outputing the established cor-
respondences. Memory requirements are, except for storage
of the correspondences, constant as well. All steps of the
method are highly parallelisable and algorithmically sim-
ple, easily implemented in hardware.

Future work. The method has only a pixel accuracy,



Figure 10. Examples of correspondences established by the proposed method.

making it difficult to analyse fine motions. Subpixel accu-
racy can be achieved e.g. as in the work of Anandan [1] by
searching for maxima of biquadratic approximation of the
pixel similarity surface.

For consecutive frames, the appearance changes are suf-
ficiently modelled by local translations. Accommodating
for deformations over longer tracks would require a model
more complex than translational.

The size of the search window affects not only computa-
tion speed, but also the density of correspondences. A larger
search window increases the chance that a descriptor would
not be unique within the window. We consider two exten-
sions to reduce the search window size. First is in employ-
ing a hierarchical multi-scale matching, where correspon-
dences at a finer resolution would be sought in small neigh-
bourhoods of correspondences at coarser scales. The other
is in using a dynamic motion prediction based on tracks ob-
served in history.

References
[1] P. Anandan. A computational framework and an algorithm

for the measurement of visual motion. IJCV, 2(3):283–310,
January 1989.

[2] S. Baker and I. Matthews. Lucas-kanade 20 years on: A
unifying framework. IJCV, 56(3):221 – 255, March 2004.

[3] J. L. Barron, D. J. Fleet, and S. S. Beauchemin. Performance
of optical flow techniques. IJCV, 12(1):43–77, 1994.

[4] P. I. Corke, D. Strelow, and S. Singh. Omnidirectional visual
odometry for a planetary rover. In IROS ’04, 2004.

[5] I. Fogel and D. Sagi. Gabor filters as texture discriminator.
BioCyber, 61:102–113, 1989.

[6] W. Forstner. A feature based correspondence algorithm for
image matching. In ISPRS86, pages III: 150–166, 1986.

[7] G. Hua, M. Brown, and S. Winder. Discriminant embedding
for local image descriptors. In ICCV ’07, Rio de Janeiro.

[8] M. Irani and P. Anandan. A unified approach to moving ob-
ject detection in 2d and 3d scenes. IEEE Trans. Pattern Anal.
Mach. Intell., 20(6):577–589, 1998.

[9] V. Lepetit and P. Fua. Monocular model-based 3d tracking of
rigid objects: A survey. Foundations and Trends in Computer
Graphics and Vision, 1(1):1–89, 2005.

Figure 11. Visual odometry: Vehicle trajectory computed from
correspondences obtained by the proposed method. The accumu-
lated error is relatively small, the red cross marks a crossing, at
which the sequence later (after circa 3000 frames) ends.

[10] D. Lowe. Distinctive image features from scale-invariant
keypoints. IJCV, 60(2):91–110, 2004.

[11] B. D. Lucas and T. Kanade. An iterative image registration
technique with an application to stereo vision. In IJCAI ’81,
pages 674–679, April 1981.

[12] M. Maimone, Y. Cheng, and L. Matthies. Two years of visual
odometry on the mars exploration rovers: Field reports. J.
Field Robot., 24(3):169–186, 2007.

[13] H. P. Moravec. Towards automatic visual obstacle avoidance.
In Proc IJCAI, page 584, 1977.

[14] D. Nister, O. Naroditsky, and J. Bergen. Visual odometry. In
CVPR, volume 01, pages 652–659, Los Alamitos, CA, USA,
2004. IEEE Computer Society.

[15] Š. Obdržálek. Object Recognition Using Local Affine
Frames. Phd thesis, Center for Machine Perception, Czech
Technical University, April 2007.

[16] Š. Obdržálek and J. Matas. Image retrieval using local com-
pact DCT-based representation. In DAGM 2003, pages 490–
497, 9 2003.

[17] K. Rao and P. Yip. Discrete Cosine Transform: Algorithms,
Advantages, Applications. Academic Press, 1990.

[18] J. Shi and C. Tomasi. Good features to track. In CVPR ’94,
pages 593 – 600, 1994.


