
The Angular bisector network Implementation

and the CGAL library

�St�ep�an Obdr�z�alek

xobdrzal@fel.cvut.cz

Statement

I grant the permission to the Electrotechnical Faculty of Czech Technical Univer-
sity to reuse the results of my work in accordance to its needs without notifying
me.

Abstract

The CGAL (Computational Geometry Algorithms library) [1] is a C++ library,
which tries to help the users with an implementation of algorithms of compu-
tational geometry. The library is well-designed, but being still in early stage of
development and due to di�erent compilers' limitations, the usage is not yet as
straightforward, as one wishes.

Straight skeleton (Angular Bisector Network, ABN) of a planar polygon,
which can be grasped as a modi�cation of a planar Voronoi diagram without
parabolic arcs, has been successfully used by Oliva et al. [8] as a part of a
system for three dimensional reconstruction of objects from a given set of 2D
contours in parallel cross sections. The Oliva's algorithm itself is used for the
construction of intermediate contour layers during the reconstruction process,
in order to neither create self intersecting surface nor a surface with holes.

This work �rst discusses the CGAL library as it was originally planned tool
for a Straight Skeleton algorithm developing. Then, the idea and the implemen-
tation of the algorithm is described. The algorithm is implemented without the
support of the CGAL, because the CGAL revealed to be unsuitable.

Chapter 1

Introduction

Aichholzer [3] resp. Oliva et al. [8] introduced a new internal structure for simple
planar polygon called Straight Skeleton resp. Angular Bisector Network, ABN,
which is made of straight line segments, which are pieces of angular bisectors of
polygon edges. The Straight Skeleton is in structure similar to the Generalized
Voronoi Diagram, but instead of parabolic arcs, whose are contained in GVD,
it contains only straight line segments.

There is a lot of literature about construction of the Voronoi Diagram, eg. [9,
4] and publicly available algorithms for its computation, but the idea of straight
skeleton is mentioned very rarely and there is no known implementation of the
algorithm available in public.

The �rst part of this work is dedicated to the CGAL library [1]. Character-
istics of the CGAL are discussed regarding the Straight Skeleton construction,
and �nally a conclusion is made, that there is no advantage of the CGAL usage.
That is because the library does not o�er any more advanced data structure nor
any algorithm, which could be used to simplify the algorithm implementation.

The second part of this work describes the algorithm itself. The text was
presented as a stand-alone article on Spring Conference on Computer Graphic
1998 [6].

In praxis, the algorithm is exploited in segmentation of the capillary bed
of the human placenta during a 3D reconstruction from contours in parallel
cross-sections.

The reconstructed surface, constructed from easily segmentable slices, is
then used for prediction of the contour shape in the slices in between, where the
boundaries of the object of interest are not sharp enough [5].

The reconstruction itself is based on a method, that was described by Oliva
et al. [8]. This method ensures correct results for arbitrary complex 3D struc-
tures, it can properly handle all di�erent variations between neighbouring cross-
sections, such as multi-branching, holes, disconnected areas etc., and always
ensures a valid topology of the resulting reconstructed shape.

1

Chapter 2

The CGAL

2.1 Overview

Geometric algorithms are used in many application domains. However, imple-
menting these algorithms isn't always easy. As a result, many useful geometric
algorithms haven't found their way into practice yet.

The most common problems are caused by the dissimilarity between fast
oating-point arithmetic normally used in practice, and exact arithmetic over
the real numbers assumed in theoretical works, the lack of explicit handling of
degenerate cases in these works, and the inherent complexity of many e�cient
solutions. Therefore, development of a new library CGAL, the Computational
Geometry Algorithms Library [1], has been started.

The CGAL library consists of a number of di�erent parts. The elementary
part of the library (called kernel) consists of primitive geometric objects (points,
lines, spheres, etc.) and predicates on them (orientation, test for points, inter-
section tests, etc.). The other part of the library contains a number of standard
geometric algorithms and data structures such as convex hull, smallest enclos-
ing circle, and triangulation. The last part of the library consists of a support
library, for example for I/O, visualization, and random generators.

The CGAL library itself is based on two other libraries, LEDA, the Library
of E�cient Data types and Algorithms [2], and STL, the Standard Template
Library [10]. The LEDA is primarily used to provide data types for rational
numbers with exact arithmetic support, while the STL provides data containers.

2

2.2 Characteristics of the CGAL regarding the

Straight Skeleton construction

Advantages

Robustness { Using templates for parametrisation of numeric data types achie-
ves the possibility to compute with exact arithmetic. In such a case, algo-
rithms implemented in CGAL are guarantied to produce correct results.
On the other hand, using inexact data types, such as double or oat, pro-
duces far quicker code, but there is a possibility of incorrect result given
by an algorithm.

Generality { Using templates allows the user to choose data types the algo-
rithms will work with. It's not only the selection between exact/inexact
number types, but also geometric elements or data containers can be freely
chosen. For example the same algorithm is provided for computation in
both homogeneous and cartesian coordinates, or also in user de�ned.

E�ciency { Using templates allows the authors of the library to provide more
versions of an algorithm. When, for some special or degenerated case
of input data, a more e�cient version of the algorithm exists, it can be
supplied as a C++ template specialization. Also generic data structures
and algorithms implemented by templates are more e�cient than those
implemented by generic pointers or any other common method, for the
exact type is known at the compile time. Therefore no run time overhead
is needed and also compiler optimizations for individual data types could
take place.

Disadvantages

Portability { The CGAL library is based on templates. All algorithms and
data structures are parametrised by template arguments, whose are often
again types parametrised by templates. Although most of today's C++
compilers support templates, when it comes to portability issues, most
of them fail to ful�l pretensions set by such a complex library as the
CGAL is. Authors of the CGAL were aware of this and ensured correct
compilation for some common UNIX compilers. It is performed using
speci�c workarounds for each compiler; these are implemented by means
of conditional compilation. Nevertheless compilationwith an unsupported
compiler is either impossible or requires too big e�ort.

Compilation times { Regarding the portability, the choice of HW platform
for development of applications is limited. On such available platform
(SGI INDY), simple sample application, like a computation of a polygon
di�erence, took nearly 20 minutes to compile.

3

2.3 Conclusion over the CGAL

The primary idea was to use the CGAL to help with an implementation of an
algorithm, which constructs the Straight Skeleton. But it revealed, that the
CGAL is of no use for several reasons. First, the CGAL doesn't contain any
advanced data structure nor any algorithm suitable for the algorithm imple-
mentation. Next, the implemented algorithm heavily uses goniometric func-
tions, therefore the usage of exact arithmetic is also impossible, for it supports
only rational numbers. Containers used within the CGAL are taken over the
STL [10], so it's enough to use only the STL (which is a cross-platform standard).
As a result, the only part of CGAL useful for the algorithm implementation is
the kernel (elementary primitives), but the overhead caused by the CGAL usage
would be too high. Furthermore, the present implementation of the algorithm
is compileable at least under Watcom C++, Microsoft Visual C++, Irix CC
and GNU C++. Such a portability would be with the CGAL impossible.

As a consequence, the decision was made not to use CGAL, and to implement
the algorithm from scratch. The supervisor of the work agreed to this change.

4

Chapter 3

Straight skeleton

Skeleton like structure is often used for the description of basic topological
characteristics of a 2D object. In the image processing and the computer vision
�elds, skeleton, informally de�ned as a set of points located in the centers of
such circles included in the object, that they touch the object's boundary in at
least two distinct points, is used. Such a structure is the well-known Generalized
Voronoi Diagram.

The Straight Skeleton di�ers, in general, from the GVD. If the given poly-
gon is convex, then both structures are identical. Otherwise, the GVD contains
parabolically curved segments in the neighborhood of reex vertices. Parabol-
ically curved segments are avoided in the Straight skeleton. Both structures
reect the shape of a polygon in a similar manner, however the Straight Skele-
ton is more sensible to local changes of the given shape, for adding a reex vertex
with very small external angle may change the skeleton structure completely.

3.1 Straight Skeleton Computation

The principle of the algorithm can be imagined as a construction of a roof with
constant slope from given shape of the walls [3, 7]. It can be done by a sweep
algorithm,which simulates cutting of the roof by parallel planes and checks local
changes of the polygonal base in the cross sections. In a 2D view, it appears
as shrinking of the polygon. The polygon edges are moving in constant speed
inward the polygon and they are changing their lengths. The polygon vertices
move along the angular bisectors as long as the polygon does not change its
topology. Aichholzer [3] described two possible types of changes:

� Edge event: An edge shrinks to zero, making its neighboring edges adja-
cent.

5

� Split event: A reex vertex runs to this edge and splits it, thus split the
whole polygon. New adjacencies occur between the split edge and each of
the two edges incident to the reex vertex.

The straight skeleton S(P) of the polygon P is de�ned as a union of pieces
of angular bisectors traced out by polygon vertices during the shrinking process.
Each edge (a straight line segment) e sweeps out certain area which we call face
of e. Bisector pieces are called arcs, and their endpoints which are not vertices
of P are called nodes of S(P). An example is in �g. 3.1, where the straight
skeleton arcs are drawn by a thick lines and shape of intermediate levels by
a thin line. For more details refer to [3]. The algorithm handles vertices and
nodes in the same way.

Figure 3.1: Polygon hierarchy (thin line) and straight skeleton (thick line)

The method for the straight skeleton computation will be described in two
steps. First for a convex polygon, then for a non-convex one. The algorithm
applies the principle of the roof construction by sweeping, but instead of con-
structing the polygonal base in the cross sections, it manages only the pointers
to the edges of the original polygon.

The basic data structure used by the algorithm is a set of circular lists
of active vertices (SLAV). This structure stores a loop of vertices for outer
boundary and for all holes and sub-polygons created during the straight skeleton
computation. In the case of convex polygon, it always contains only one list
(LAV). In the case of a simple non-convex polygon, it stores a list for every
sub-polygon (as described later) and in the case of polygons with holes also a
list for each hole.

6

All vertices in the SLAV have references to both neighbors (vertices of the
polygon) in the circular lists (LAV) stored in the SLAV.

3.1.1 Convex Polygon Skeleton Computation

Given a simple convex polygon P , only the edge events occur and the straight
skeleton S(P) is computed in the following steps (We suppose the polygon
vertices and edges are oriented counter-clockwise and the polygon interior is on
the left-hand side of its boundary):

1. Initialization:

(a) Organize given vertices V1; V2 : : : ; Vn into one double connected circu-
lar list of active vertices (LAV) and store it in the SLAV. The vertices
in LAV are all active (not processed) at this moment.

(b) for each vertex Vi in LAV add the pointers to two incident edges
ei�1 = Vi�1Vi and ei = ViVi+1, and compute the vertex angle bisector
(ray) bi,

(c) for each vertex Vi compute the nearer intersection of the bisector bi
with adjacent vertex bisectors bi�1 and bi+1 starting at the neighbor-
ing vertices Vi�1; Vi+1 and (if the intersection exists) store it into a
priority queue according to the distance to the line L(ei) supporting
the edge ei. For each intersection point Ii store also two pointers
to the vertices Va, Vb, these vertices are two the origins of bisectors
which have created the intersection point Ii. They are necessary for
the identi�cation of appropriate edges (ea and eb in �g. 3.2) during
the bisector computation in later steps of the algorithm.

2. While the priority queue with the intersection points is not empty do:

(a) Pop the intersection point I from the front of the priority queue,

(b) if the vertices/nodes Va and Vb, pointed by I, are marked as processed
then continue on the step 2,
else the edge e between the vertices/nodes Va, Vb shrinks to zero
length (edge event - this edge is in �g. 3.2 marked by a cross),

(c) if the predecessor of the predecessor of Va (according to the LAV) is
equal to Vb (peak of the roof)
then output three straight skeleton arcs VaI, VbI and VcI, where Vc
is both the predecessor of Va and the successor of Vb in the LAV,
mark Va, Vb and Vc as processed, and continue on the step 2,

(d) output two skeleton arcs of the straight skeleton VaI and VbI,

(e) modify the list of active vertices/nodes (See �gure 3.2 for details):

7

� Mark the vertices/nodes Va; Vb (pointed to by I) as processed
(marked by a cross in �g. 3.2),

� create a new node V with the coordinates of the intersection I

(a square mark in �g. 3.2),

� insert this new node V into the LAV. That means connect it with
the predecessor of Va and the successor of Vb in the LAV (thick
arrows in the �g. 3.2),

� link the new node V with appropriate edges ea and eb (pointed
to by the vertices Va and Vb),

(f) for the new node V , created from I:

� compute a new angle bisector b between the line segments ea and
eb,

� compute the intersections of this bisector with the bisectors start-
ing from the neighboring vertices in the LAV in the same way as
in the step 1c,

� store the nearer intersection (if it exists) to the priority queue.

As can be seen in the steps 1c and 2f, there are duplicities among the in-
tersection points in the priority queue. The algorithm always computes one
intersection for one vertex. Step 2b removes these duplicities.

3.1.2 Non-convex Polygon Skeleton Computation

The principle of the method for the straight skeleton computation is in the
case of non-convex polygons similar. New intersection points (one for each
vertex/node in all LAVs in the SLAV) are after their computation stored into the
priority queue as in the section 3.1.1, but they have a new attribute indicating
their event type: edge event or split event.

At �rst, let's discuss the circumstances which we have to take into account.
Presence of a reex vertex may (but may not) lead into a polygon splitting

(see �g. 3.3). In case of the point A a standard edge event occurs which is
handled the same way as the edge event of non-reex vertex (as described in
the section 3.1.1). Let's concentrate on the case of the point B, where a split
event occurs.

The �rst task is to determine the coordinates of the point B. Then we
will discuss the insertion of B into the appropriate LAV in the SLAV and a
special case of a multiple split edge. The name B represents the coordinates of
the tested intersection point and also the coordinates of the new vertex later
inserted into LAV. They will distinguished in the algorithm.

Determination of the coordinates of the point B

Point B can be characterized as having the same perpendicular distance to the
straight line supporting the edge "opposite" to the vertex V and from both

8

V
b

Va

ae

Vb eb

V

b

Va
ae Vb eb

V
b

Vaae

Vb

eb

= active vertices/nodes in the list (LAV)

= vertices/nodes marked as processed

= intersection points in the priority queue

= the current node V

= pointers in the list of active vertices (LAV)
= pointer to the appropriate edge for bisector computation

Figure 3.2: Initialization and the �rst three steps of the skeleton algorithm for
convex vertices

straight lines supporting the edges starting at the vertex V . We have to �nd
such an "opposite" edge.

All edges e of the original polygon are traversed and tested whether they can
be the "opposite" edges. Unfortunately a simple test of the intersection between
a bisector starting at V and the currently tested edge cannot be used (see
�g. 3.4b). It's necessary to test the intersection with the whole line supporting
the edge ei and to test whether the candidate point Bi lays in the area limited
by the currently tested edge ei and by the bisectors bi and bi+1 leading from
the vertices at both ends of this edge (see �g. 3.4a,b).

Simple intersection test between the bisector starting at V and the (whole)
line supporting the currently tested edge ei rejects the edges laying "behind"

9

Figure 3.3: Reex vertex can yield to both cases: an edge event (point A) or a
split event (point B)

the vertex V . Then the coordinates of the candidate point Bi are computed as
the intersection between the bisector at V and the axis of the angle between
one of the edges starting at V and the line supporting the tested edge ei (see
�g. 3.4). Simple check should be performed to properly handle the case when
one of the edges starting at V is parallel to ei.

The resulting pointB is selected from all the candidates Bi as the one nearest
to the vertex V .

Managing the LAV in the case of a split event

When the intersection B (called I on Fig. 3.6) of the split event type is processed,
it is necessary to split the appropriate polygon into two parts. Splitting of
the polygon also implies splitting of the appropriate LAV into two parts and
implies insertion of two new nodes V1 and V2 with the coordinates taken from
I into them { each copy into one LAV (see details in Fig. 3.6 and in the second
algorithm).

Both vertices V1 and V2 points to the same split edge ei and share it.

A special case { an edge split more than once

As mentioned before, the algorithm works with the original edges and doesn't
construct the intermediate roof shapes in the cross-sections. This yields the sit-
uation when one original edge is shared by more than one intermediate polygon
after the previous polygon split. In a case when one edge is already split and
the next edge event for this edge occurs, we have to choose the opposite edge
end-points correctly (resp. the vertices/nodes which are active in the current
roof construction level as the points X and Y in �g. 3.5 when processing the
vertex

10

Figure 3.4: Intersection point computation for a reex vertex V which yields a
split event (point B)

In the case of the sub-edge SY (a part of the edge ei = ZY), the real end
point of the original edge ei is the point Z, but we search for the point X, which
is necessary for the correct interconnection of pointers when the tow new nodes
with the coordinates of B are inserted into the SLAV. We mention two methods
how to determine X.

One possible solution is to really split the border edge and to create a new
auxiliary vertex S. It would remove the cause of the problem, because no edge
will be split more than once and the split edge end-points determination is
trivial. It implies that the insertion of the two new nodes into the SLAV is also
trivial, as we know exactly in which of the sub-polygons (LAVs) it has to be
interconnected. It solves the problem with the shared edge ei but such a vertex
S has to be handled in a special way, for it is not included in the skeleton.

Our solution is based on the idea to store only the nodes which are present
in the straight skeleton and on the fact, that the references to the split edges
are stored in all of the sub-polygons, which share these edges. It reveals during
the traversal of all sub-polygon LAVs in multiple hits of the split edge, each
time for each sub-polygon sharing it.

For instance the two subpolygons in �g. 3.5 share a reference to the edge ei.
During the processing of the intersection B associated with the vertex V , the
polygon XMVNY is split into two parts XMB and BNY and the vertex V is
marked as processed.

All this is done for the reason to correctly connect V1 and V2 on created on
B's coordinates between Y and X and not between original endpoints Y and
Z. During the SLAV traversal the correct part of the split edge ei is selected
by means of the same criterion as described before, i.e. the candidate point B
have to lay rightwards to the traversed vertex's (Y) bisector and leftwards to
the bisector of the traversed vertex's successor (X) in the LAV.

11

Figure 3.5: Correct selection of the active vertex/node X for already split edge

The algorithm for simple non-convex polygons

Algorithm for non-convex polygons is in the principle similar to the algorithm
described in the section 3.1.1. As an extension, it handles the intersections that
may generate polygon splits (split events):

1. Initialization

(a) Generate one LAV as in the convex case, store it in SLAV,

(b) compute the vertex bisectors as in the convex case,

(c) compute intersections with the bisectors from the previous and the
following vertices as in the convex case and for reex vertices compute
also the intersections appropriate to the opposite edges (point B in
�gs. 3.3 and 3.4). Store the nearest intersection point I of these
three into the priority queue. In addition store also the type of the
intersection point (edge event or split event).

2. While the priority queue is not empty do:

(a) Pop the lowest intersection I from queue as in the convex case. If
the type of I is the edge event,
then process steps 2b to 2g of the algorithm for convex polygons,
else (split event) continue within this algorithm,

(b) if the intersection point points to already processed vertex/node con-
tinue on step 2 as in the convex case,

(c) output one arc V I of the straight skeleton, where vertex/node V is
the one pointed to by the intersection point I. Intersections of the

12

Figure 3.6: Split event at the reex vertex: a) managing the edge pointers, b)
LAV split caused by the new nodes V1 and V2

split event type always point to exactly one vertex in LAV/SLAV
(compare with the convex version of the algorithm, where the edge
event type intersections point to two vertices/nodes Va and VB),

(d) modify the set of lists of active vertices/nodes (SLAV):

� Mark the vertex/node V (pointed to by I) as processed,

� create two new nodes V1 and V2 with the same coordinates as
the intersection point I,

� search for the opposite edge in SLAV (sequentially),

� insert both new nodes into the SLAV (break one LAV into two
parts | see �g. 3.6b for an example). Vertex V1 will be inter-
connected between the predecessor of V (M on �g. 3.6) and the
vertex/node which is an end point of the opposite edge (X on
�g. 3.6). V2 will be connected between the successor of V (N on
�g. 3.6) and the vertex/node which is a starting point of the op-
posite edge (Y on �g. 3.6). This step actually splits the polygon
into two parts (as discussed before in this section).

� if one of the new LAVs consists of only two vertices, don't store
this LAV into SLAV, but output one skeleton arc instead (see
the discussion earlier in this section),

� link the new nodes V1 and V2 with the appropriate edges (see
�g. 3.6a).

(e) for both nodes V1 and V2:

� compute new angle bisectors between the edges linked to them
in step 2f,

� compute the intersections of these bisectors with bisectors start-
ing at their neighboring vertices according to the LAVs (e.g. at

13

points N and Y for node V2 and at M and X for node V1 in
�g. 3.6a), the same way as in step 1c. New intersection points of
both types may occur,

� store the nearest intersections (one for V1, one for V2) into the
priority queue.

3.1.3 Straight Skeleton Computation for Polygons with
Holes

The algorithm can also handle the polygons with holes as long as they have
appropriate orientation. That means the polygon interior lays leftwards to all
of the edges, vertices on the outer boundary are counter-clockwise ordered and
the vertices on the holes are clockwise ordered. It results in more cycles of
vertices (LAVs) in the SLAV in the step 1a of the algorithm.

An example of the straight skeleton of a polygon with one hole is in �g. 3.7.

Figure 3.7: An example of the straight skeleton of a polygon with a hole

3.2 Implementation

The algorithm is implemented in C++ and is platform independent. In adition
to standard libraries, it utilizes only the STL [10], which is quite multi-platform
standard now. The implementation was successfully tested with some common
compilers, Watcom C++, Microsoft Visual C++, Irix CC and GNU C++.

The source code is divided into two �les. First of them, PRIM.CPP, pro-
vides some basic primitives, such as Point and Ray classes, and also some basic
operations on them, e.g. distance or intersection computation.

The main burden lays on the SKELET.CPP source code. At �rst, it declares
some datatypes the algorithm uses, then execution routines follows. Below is
described the interface required to use the algorithm:

14

struct Point

{

Number x, y;

};

This is how the point is represented. The type Number is currently based on
the double type and exact arithmetic is simulated by inexact comparison:

struct Number

{

Number (const double x = 0.0) : n (x) { };

operator const double& (void) const { return n; }

operator double& (void) { return n; }

operator == (const Number &x) const; // comparison with tolerance

operator != (const Number &x) const { return !(*this == x); }

operator <= (const Number &x) const { return n < x.n || *this == x; }

operator >= (const Number &x) const { return n > x.n || *this == x; }

operator < (const Number &x) const { return n < x.n && *this != x; }

operator > (const Number &x) const { return n > x.n && *this != x; }

operator == (const double x) const { return *this == Number (x); }

operator != (const double x) const { return *this != Number (x); }

operator <= (const double x) const { return *this <= Number (x); }

operator >= (const double x) const { return *this >= Number (x); }

operator < (const double x) const { return *this < Number (x); }

operator > (const double x) const { return *this > Number (x); }

double n;

};

However the type Number could be of any type as long as it has well-de�ned
standard mathematic operations and also that basic goniometric functions are
de�ned for it.

struct Ray

{

Point origin;

Number angle; // in radians

};

This is the representation of a ray (semi-�nite line). Representation with
angle explicitly expressed makes the algorithm simpler, but requires the usage
of goniometric functions.

typedef vector <Point> Contour;

typedef vector <Contour> ContourVector;

15

Each contour (outer boundary or a hole) is represented as a STL vector
of points. The input to the algorithm is a vector of such contours (Contour-
Vector). It's presumed, that the outer boundary is oriented counter-clockwise,
and that holes are oriented clockwise. However, no check is performed to ensure
the orientation is correct.

struct Vertex

{

Point point; // vertex's coordinates

Ray axis; // vertex's angle bisector

Ray leftLine; // Rays supporting appropriate original

Ray rightLine; // polygon edges

Vertex *leftVertex; // 2 processed vertices, (*this) one

Vertex *rightVertex; // was created during their processing

Vertex *nextVertex, // links within the LAV

Vertex *prevVertex;

bool done; // processed (non-active) flag

int ID; // unique identification number

};

Vertex is the structure that represents both vertices on the boundary and
nodes created by the algorithm during the skeleton construction. Internally,
vertices/nodes are stored in a STL list, and the SLAV is managed by pointers
within this list.

struct SkeletonLine

{

struct SkeletonPoint

{

const Vertex *vertex; // contains point's coordinates

SkeletonLine *left, *right; // two wings for each end-point

} lower, higher; // 2 end-points in each segment

int ID; // unique identification number

};

The result of the algorithm is given in winged edge representation. The
SkeletonLine represents such an edge.

class Skeleton : public list <SkeletonLine>

{

...

};

16

The resulting skeleton is nothing more than a STL list of individual winged
edges.

Skeleton &makeSkeleton (ContourVector &contours);

Finally, this is the prototype of the function, which creates the skeleton.

Not all data structures was presented, as the resting are used only internally
and are not exported by the algorithm implementation. These include segments,
intersections, intersection queue and vertex list representations.

3.3 The complexity of the algorithm

In this section, both the storage and the time complexity will be discussed. Let
n be the total number of vertices of the input polygon, m the number of reex
ones, let p be a number of local peaks of the roof shape (always equal to one for
convex polygons), and �nally let t be a total number of both vertices and nodes
the algorithm will handle.

First step to state the complexities is to determine the total number of
vertices and nodes (t), that will ever be processed.

At the beginning of the algorithm, the number of active vertices is equal to n.
Processing one intersection of the Edge event type decreases the number of active
vertices by one, for two vertices/nodes are marked as processed (removed from
SLAV, made inactive), and only one new node is created. On the other hand,
processing intersection of the Split event type increases the number of active
vertices by one, for only one vertex/node is marked as processed and two new
nodes are created. These two nodes are guarantied to be non-reex (see nodes
V1 and V2 on �g. 3.6). Finally, if a LAV contains only three vertices/nodes (peak
of the roof), these three are marked as processed and no new node is created.

For a convex polygon, t can be expressed as

t = n+ n� 3 = 2n� 3;

because for the n original vertices, (n�3) times the Edge event occurs and once
a peak of roof is encountered.

For non-convex polygon, there is only (n�m) non-reex vertices, and there
is p peaks of the roof. As an addition to convex case, m reex vertices may (in
worst case) produce 2m new nodes during Split events, and these new nodes
would generate additional 2m nodes when they will be processed. So the equa-
tion for t in non-convex case is:

t = (n�m) + (n�m) � 3p+m + 2m+ 2m = 2n+ 3m� 3p:

This equation respects the worst case, when every of the m reex vertices
causes the Split Event. But, if we let s be the number of reex vertices, that

17

really causes the Split Event, then the expression

t = 2n+ 3s� 3p

will be valid in all cases. Finally, let's consider the correspondence between
number of Split Events (s) and the number of local peaks (p). It's clear, that
each Split event splits one polygonal shape into two parts, thus increases the
total number of local peaks by one. If no Split Event occurs, only one peak
exist. So the correspondence is simple:

p = s + 1:

As a result, the total number of vertices and nodes is expressed as:

t = 2n� 3;

so it is linear to the number of input vertices n.
Memory requirements of the algorithm include two data structures. The �rst

is the list of all vertices and nodes the algorithm will ever use. There is exactly
t of them. The second structure is the priority queue of intersections. It stores
one intersection per one active vertex/node, so the total number of intersections
that may be in the queue at once is at most t. It makes the storage complexity
linear to the number of input vertices.

Now, let's consider the time complexity. It should be stated here, that the
push and pop operations over the priority queue are performed in logarithmic
time.

The time complexity of the initialization part of the algorithm is n log(n).
That's because for each input vertex only constant-time operations are per-
formed with the only exception { pushing the computed intersection point into
the priority queue, it takes the logarithmic time.

The second part of the algorithm runs t times. Each time the pop operation
is performed (logarithmic time) and then, for the peaks of the roof or for the
vertices processed earlier, the constant-time code follows. For the Edge Events
logarithmic-time code follows, because there is a new intersection pushed into
the queue. The worst case is the Split Event, when the sequential search for
opposite edge is required; it has linear complexity.

So the �nal time complexity is n log(n)+ t log(t)+ t:s, the asymptotical time
complexity is then O(n logn+ n:m) or simply O(n2).

3.4 The Results

The implemented algorithm for the construction of a straight skeleton of non-
convex polygons with holes runs in O(nm + n logn) time, where n denotes the

18

total number of polygon vertices and m the number of reex ones. The algo-
rithms handles convex, non-convex polygons and polygons with holes correctly.

Handling the split events takes time O(n logn) with O(n) storage in the
priority queue, but it is not the signi�cant part of the whole complexity. The
most time consuming task is the computation of the split events | that means
handling m (m < n) reex vertices. That results in the global time complexity
of the presented algorithm O(n2) with O(n) storage. That is a similar result as
in [8].

Measurements of the time complexity of the algorithm for polygons with
increasing number of vertices has been performed. The execution times for
di�erent non-convex polygons (as shown in �g. 3.8 and table 3.1) con�rm the
theoretical presumptions of the quadratic time complexity.

0

2

4

6

8

10

12

14

16

18

0 100 200 300 400 500 600 700 800

E
xe

cu
tio

n
tim

e
[s

]

Number of vertices

Figure 3.8: Results of the tests for polygons with di�erent number of vertices

19

No. of vertices Execution time

71 0.16 s
173 0.88 s
249 2.03 s
277 2.58 s
380 5.00 s
518 8.68 s
714 15.99 s

Table 3.1: Results of the tests for polygons with di�erent number of vertices

20

Chapter 4

Conclusion

The task was to implement an algorithm for the Straight Skeleton construction
using the CGAL library. But, as discussed in the �rst part of this text, the
CGAL revealed to be unsuitable for the algorithm implementation. The most
important reason is that the data structures and the algorithms the CGAL
provides do not �t the needs the Straight Skeleton construction has. Thus the
algorithm was implemented without the use of the CGAL, only standard C++
libraries (including STL [10]) was utilised.

The task of this work was ful�led, the implemented algorithmworks properly
for arbitrary polygons, and runs with O(n2) time complexity and O(n) storage
complexity.

21

Figure 4.1: A more complex example of a Straight skeleton

22

Bibliography

[1] Computational geometry algorithms library. http://www.cs.uu.nl/CGAL/.

[2] Leda - library of e�cient data types and algorithms. http://www.mpi{
sb.mpg.de/LEDA/leda.html.

[3] O. Aichholzer, F. Aurenhammer, D. Alberts, and B. G�artner. A novel
type of skeleton for polygons. Journal of Universal Computer Science,
http://www.iicm.edu/jucs 1 12, Institute for Image Processing and Com-
puter Supported New Media, 1(12):752{761, 1995.

[4] M. de Berg, M. vam Kreveld, M. Overmars, and O. Schwarzkopf. Com-
putational Geometry, Algorithms and Applications. Springer Verlag Berlin
Heidelberg New York, 1997.

[5] P. Felkel. 3D Reconstruction from Cross Sections by means of Contour
Tiling. In A. Strejc, editor, Workshop '98, volume I, pages 241{242. Czech
Technical University Publishing House, Prague, Czech Republic, Feb. 3.{5.
1998.

[6] P. Felkel and �S. Obdr�z�alek. Straight skeleton computation. In L. Szirmay-
Kalos, editor, Spring Conference on Computer Graphics, pages 210{218,
Budmerice, Slovakia, Apr. 23{25 1998.

[7] P. Felkel and J. �Z�ara. The Roof Construction Problem. In A. Strejc, editor,
Proceedings of CTU Workshop '93, volume I - Informatics & Cybernetics,
pages 85{86. CTU-Publishing House, Prague, Jan. 18{21, 1993.

[8] J.-M. Oliva, M. Perrin, and S. Coquillart. 3D Reconstruction of Complex
Polyhedral Shapes from Contours using a Simpli�ed Generalized Vorono��
Diagram. Computer Graphics Forum, 15(3):C{397{C{408, 1996.

[9] F. P. Preparata and M. I. Shamos. Computational Geometry { An Intro-
duction. Springer-Verlag, New york, 1985.

[10] A. Stephanov. STL - The Standard Template Library.

23

List of Figures

3.1 Polygon hierarchy and straight skeleton : : : : : : : : : : : : : : 6
3.2 Initialization and the �rst three steps of the skeleton algorithm

for convex vertices : 9
3.3 Edge event and split event caused by reex vertices : : : : : : : : 10
3.4 Intersection point computation for a reex vertex : : : : : : : : : 11
3.5 Correct selection of the active vertex/node for already split edge 12
3.6 Split event at the reex vertex : : : : : : : : : : : : : : : : : : : 13
3.7 An example of the straight skeleton of a polygon with a hole : : 14
3.8 Results of the tests for polygons with di�erent number of vertices 19

4.1 A more complex example of a Straight skeleton : : : : : : : : : : 22

24

Contents

1 Introduction 1

2 The CGAL 2

2.1 Overview : 2
2.2 Characteristics of the CGAL regarding the Straight Skeleton con-

struction : 3
2.3 Conclusion over the CGAL : 4

3 Straight skeleton 5

3.1 Straight Skeleton Computation : : : : : : : : : : : : : : : : : : : 5
3.1.1 Convex Polygon Skeleton Computation : : : : : : : : : : 7
3.1.2 Non-convex Polygon Skeleton Computation : : : : : : : : 8
3.1.3 Straight Skeleton Computation for Polygons with Holes : 14

3.2 Implementation : 14
3.3 The complexity of the algorithm : : : : : : : : : : : : : : : : : : 17
3.4 The Results : 18

4 Conclusion 21

Bibliography 23

List of �gures 24

25

