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Topic

Compensation of illumination effects on facial appearance
using a 3D model.

In facial image analysis tasks, such as facial feature extraction, face verifica-
tion and identification, the face illumination has crucial effect on exactness and
credibility achieved.

The goal of this work is to develop and implement a method for the recovery
of a ’canonical illumination’ of facial image, where the effects of the unknown
illumination conditions are minimized.

The quality of the recovery should be assessed at least using a simple, pix-
elwise evaluation, and, if possible, in conjunction with some face identification
or face verification system.

Impact of the 3D model accuracy on results achieved, and possibility to use
only one universal 3D model for all faces, should be also investigated.
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Abstract

In this work a method for recovery of a canonical illumination of a facial image
is presented, assuming that a 3D model of the face is available.

Having an arbitrarily illumined facial image, and a 3D model of the face
available, the global scene illumination characteristics are estimated so that the
3D model is rendered to an image as similar to the to-be-compensated image as
possible. The facial image is then compensated for the estimated illumination,
to appear like an image acquired under frontal or omnidirectional illumination.

The recovery quality is evaluated using a simple eigen-face recognition sys-
tem, where, on a test set of illuminated facial images, the recognition rate
increases from 33% for original images to 94% for compensated images.

Experiments are made to investigate dependency of the compensation results
on the 3D model precission. The possibility to substitute all individual facial
models with a generic one is also studied.

1 Introduction

Computer vision systems processing facial images must often solve the problem
of unknown environmental conditions. Images of faces acquired in real-time
applications usually vary in face position, orientation, facial expression and face
illumination.

The lighting variability includes not only intensity, but also direction and
number of light sources. As is evident from figure 1, the same person, with the
same facial expression and seen from the same viewpoint, can appear dramati-
cally different when light sources illuminate the face from different directions.

Figure 1: The same person seen under different lighting conditions can appear
significantly different: In the left image the dominant light source is nearly
frontal, in the right image, the dominant light source is above and to the right.

As a typical application, let us consider a face recognition system. Given
a database of face images labeled with person’s identity (the learning set), the
task is then, for a facial image acquired in different environmental conditions,
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to identify the person in the image using the image database. For a survey on
face recognition methods see [CWS95], [SI92].

Variations in illumination can be addressed in two ways. First, the image
database may contain several images of the individuals, taken under different
illumination conditions. Under some idealization of the face surface, all images
of the same face taken from the same viewpoint but under varying illumination
forms a three-dimensional linear subspace in the image space (see [BHK97]).
Search for the most similar face image in the database then becomes a search
for the closest linear subspace. Or just simply for the closest image if the
coverage of different illuminations of every single face is dense enough.

The second possibility stands for evaluators independent on illumination
conditions. So each face is in the database stored only once. Either the face
description is built invariant to changes in the illumination, ie. using only shape
feature descriptors, or the acquired facial image is somehow compensated for
the changes in the lighting before evaluation.

In this work, the problem of compensation of a facial image for an unknown
illumination is addressed, assuming that in addition to 2D images of individual
faces, also 3D models are available. Variations in face pose and expressions are
not considered at all. Furthermore, an assumption has been made that the face
had been located and aligned within the image, as there are numerous methods
for finding faces in scenes.

To compensate the illumination influence, illumination characteristics are
first approximated. This is done minimizing the difference between the acquired
image and an image rendered from a textured 3D model of the face, while varying
the 3D scene illumination. Then, the acquired image is compensated according
to the best illumination approximation found.

Section 2 gives a description of 3D facial models, and of two 3D acqui-
sition systems used to obtain the models. Next sections report methods for
determination of the illumination characteristics, for the compensation for the
approximated illumination, and for rendering of the 3D models. Sections 7
and 8 describe the eigen-face recognition system and the face database used
to qualitatively evaluate the effect of the illumination compensation. Finally,
conclusions and suggestions for future work are given.

2 3D Models

Two different systems are used to obtain the 3D models. For further use, models
from both systems are converted to a common file format, which is described in
appendix A.1.

2.1 Quadrifocal Stereo Vision System (QFSVS) Models

Some of the 3D models were acquired using a quadrifocal stereo vision system
(QFSVS) developed at Center for Machine Perception (CMP), Czech Technical
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University (CTU) Prague. This system is interoperated into the Matlab pro-
gramming environment [Matlab], and as it is in development stage, 3D data are
provided as Matlab variables. The following information is provided:

• matrix[v][3] - 3D coordinates of mesh vertices

• matrix[v][3] - surface normals at each vertex

• matrix[t][3] - triangles, as indices of vertices forming the triangle

• 4 ∗matrix[3][4] - four projection matrices, one for each camera

• 4 ∗matrix[x][y] - four photo images, one from each camera

where v stands for number the of vertices, t for the number of triangles, and x
and y are the dimensions of images captured by the cameras.

To obtain a texture for the model, the same camera system is exploited.
Choosing the image from one of the cameras as the texture, texture coordinates
for each vertex are computed transforming the vertex’s 3D coordinates with the
projection matrix of the selected camera.

2.2 Orientation and Correction of QFSVS Input Data

Data provided by the QFSVS 3D reconstruction system is just an unorganized
set of triangles. Before further use, two steps should be performed:

1. Orientation of triangles, so all of them are oriented the same way (either
clockwise, or counterclockwise).

2. Removal of such triangles, that causes the surface to be physically nonsen-
sical. Moebius strip is an example of such a pathological structure which
can occur.

Example of an original model (without texture) is on figure 2.
All the triangles are traversed by an algorithm, which in a breadth-first-

search way assigns orientation to those triangles, for which the orientation was
not set yet. As the 3D mesh can consist of multiple isolated parts, all of these
parts must be processed. The algorithm runs as follows:

While there is any not-yet-oriented triangle (thus any not yet oriented iso-
lated part of the mesh) do:

1. Pick any not-yet-oriented triangle

2. Assign it the desired orientation (clockwise or counter-clockwise)

3. Remember it as the only member in the list of open triangles

4. While there is any triangle in the list of open triangles do:
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Figure 2: Original QFSVS 3D model, visibility of a triangle depends on its
orientation

(a) pop triangle T from the beginning of the list

(b) find all triangles from the mesh neighboring with T

(c) for each of them, three possibilities can occur:

i. The triangle has no orientation assigned yet. It is then oriented
in accordance with T , and then put at the end of the list of open
vertices.

ii. The triangle is oriented, and its orientation is conforming with
the orientation of T . It means that the triangle was already
processed before T . No action is taken then.

iii. The triangle is oriented in contrary to the orientation of T . As
this can not occur on correct surface, it means structure similar
to Moebius strip occur, and the mesh must be broken at this
place. That is why T is discarded from the mesh.

An example of an oriented model without texture is in figure 3, an example
of a texture for the 3D model is in fig. 4.

2.3 3D Model from the ShapeSnatcher System

Another system used to provide the 3D models was the ShapeSnatcher, devel-
oped by Eyetronics Inc. This system uses only one camera to acquire an image
of a scene where a regular square grid was projected from a slightly different
angle. From the deformation of the grid observed by the camera, the 3D shape
is reconstructed. Figure 5 shows an example of such a scene. Texture for the
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Figure 3: An oriented QFSVS 3D model

3D model is obtained from the same image, removing the grid. The result of
the 3D reconstruction is the texture along with an two dimensional array of
vertices placed on the nodes of the grid. For each vertex V of the grid following
information is provided:

• 3D coordinates
(
x y z

)
of V

• texture coordinates
(
xtex ytex

)
of V , ie. coordinates of the grid node

corresponding to V in the image in fig. 5

• identifiers of the four neighboring vertices (N , E, W , S) on the grid, see
figure 6.

Information missing but required for further processing, that is to be ap-
proximated:

• normal vectors at vertices, necessary for Gouraud shading (see section 6).

• projection matrix mapping the 3D coordinates to the texture, necessary
for registration of the 3D model to the acquired image (see section 3).

Vertex normals are computed as an average of normals of the neighboring
triangles. According to figure 6, a normal of triangle NEV is computed as a
cross-product of vectors N −V and E−V . Similarly for triangles ESV , SWV ,
and WNV . The V ’s normal is then the sum of all four these normals (if V lies
on the 3D mesh boundary, there are less of them), normalized to unit length.

Calculation of the model’s projection matrix is a task similar to the regis-
tration of the 3D model to the acquired image (see section 3). The sought pro-
jection matrix in homogenous coordinate system has four rows, three columns
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Figure 4: A texture for a QFSVS 3D model

and contains eleven independent variables (see eq. 2). The model consists of
several thousands of vertices (typically 3000 − 5000), for each of them the tex-
ture coordinates are known. Setting two linear equations for each vertex, a
very overdetermined set of several thousands of equations of eleven variables is
constructed (see equation 3). The approximate solution, which minimalizes the
overall square error, is then used to form the projection matrix. See section 3
for detailed explanation.

3 Registration of 3D Shape to 2D Image

To estimate the illumination characteristics, and later to eliminate the illumina-
tion influence, it is necessary to render the 3D shape to the coordinate system
of the acquired image; both the rendered and the acquired face should occupy
the same region of the 2D image. In other words, the projection matrix used
to render the 3D shape should be determined from the size, position and ori-
entation of the face on the acquired image. Using homogenous coordinates, the
equation (

x y z w
)
·P =

(
x′ y′ w′

)
(1)

should be ideally valid for each point on the face, which on the 3D shape has
coordinates

(
x
w

y
w

z
w

)
, and on the acquired image is projected to image

coordinates
(

x′

w′
y′

w′

)
=
(
x′′ y′′

)
. P is a projection matrix of four rows
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Figure 5: An example of a scene figuring as an input to the ShapeSnatcher
reconstruction system

and three columns, having eleven independent variables

P =


a e i
b f j
c g k
d h 1

 (2)

For each point on the face, following equations are set (let’s assume that w
equals to 1)

x′ = ax+ by + cz + d

y′ = ex+ fy + gz + h

w′ = ix+ jy + kz + 1

so

x′′ =
x′

w′
=
ax+ by + cz + d

ix+ jy + kz + 1

y′′ =
y′

w′
=
ex+ fy + gz + h

ix+ jy + kz + 1
then

ax+ by + cz + d− ixx′′ − jyx′′ − kzx′′ = x′′

ex+ fy + gz + h− ixy′′ − jyy′′ − kzy′′ = y′′.

This forms a set of two linear equations of eleven variables for each point.
To determine all eleven variables, five and a half point is necessary (only one
coordinate, x or y, of the sixth point on the acquired image).
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Figure 6: Structure of 3D mesh provided by the ShapeSnatcher

In matrix notation,


x1 y1 z1 1 0 0 0 0 −x1x

′′
1 −y1x

′′
1 −z1x

′′
1

0 0 0 0 x1 y1 z1 1 −x1y
′′
1 −y1y

′′
1 −z1y

′′
1

x2 y2 z2 1 0 0 0 0 −x2x
′′
2 −y2x

′′
2 −z2x

′′
2

0 0 0 0 x2 y2 z2 1 −x2y
′′
2 −y2y

′′
2 −z2y

′′
2

...
...

...
...

...
...

...
...

...
...

...

 ·



a
b
c
d
e
f
g
h
i
j
k


=

= Q ·



a
b
c
d
e
f
g
h
i
j
k


=


x′′1
y′′1
x′′2
y′′2
...

 (3)
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so the vector of variables 

a
b
c
d
e
f
g
h
i
j
k


= Q−1 ·


x′′1
y′′1
x′′2
y′′2
...

 (4)

To increase the stability of the solution, more than eleven equations could be
used, so the equation set will become overdetermined. The solution sought
is then the one, which is the best approximation of the exact solution in the
least-squares sense.

Figure 7: The original face and an image rendered from the 3D model using a
projection computed from seven feature points

Unfortunately, the set of linear equations tends to be ill-conditioned, even
for more feature points. The reason is that almost all easily specifiable points
on the face lay in a plane, so the matrix Q is close to singular. On figure 7 is
shown a typical 3D model rendered using a projection matrix found from seven
feature points (four for the eye corners, two for the mouth corners and one for
the nose tip). Left image shows the original face, right the rendered image of the
same face. The right image seems to be of a different person. Such a behavior
is definitively not desirable within a system aimed at face processing tasks.

There are two possible ways out of this problem:

• Increase of the number of the feature points.

• Decrease of the number of the independent variables in the projection
matrix.
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In general, it is complicated to define more than seven feature points on a face,
such that they would be easily and precisely detectable. Even in the feature
point set mentioned above, mouth corners are not very suitable as their position
vary with facial expressions, and the tip of the nose cannot be positioned very
precisely.

So it leaves only the possibility to decrease the variability of the projection
matrix. Indeed, all projection matrices possibly encountered in practice would
not span uniformly across the whole eleven-dimensional space, but would group
together in only a less-dimensional subspace.

The subspace can be bound setting some of the matrix elements to a con-
stant, likely to zero, so the matrix might look like

P =


a e 0
b f 0
0 0 k
d h 1

 (5)

where only seven independent variables occur. Such a projection would work
quite well for 3D shapes aligned so that the z-axis is parallel with the camera-
to-screen direction, thus the z-coordinate having role only in the perspective
distortion, while the x- and y-cordinates not affecting it. Unfortunately, there
is no presumption of such an alignment.

On the other hand, each 3D model comes along with a projection matrix used
to map 3D coordinates to the texture coordinates (if not explicitly expressed,
can be deduced, see section 2.3). So as long as the texture for the 3D model
is obtained with similar camera as the images for compensation will be, this
projection matrix can be used as an origin of the less-dimensional subspace of
projections. The desired projection matrix is than computed

P = Pt ·T (6)

where Pt is the projection matrix 4 × 3 mapping 3D homogenous coordinates
of the 3D model to its texture, and T is a 3 × 3 matrix standing for a 2D
(in homogenous coordinate system) transformation between texture and the
acquired image. If the transformation is constrained to be affine, T would be
in form

T =

 a d 0
b e 0
c f 1

 (7)

containing only six variables. Affine transformation comprehends most of the
possible alterations, as long as the camera acquiring the image for compensation
has similar optical properties as the camera which acquired the texture. These
alterations include changes in the face size, face rotations (in tilt sense), different
pixel aspect ratios, and different face locations within the image. Moreover, this
approach requires location of feature points only on 2D images (on the texture,
and on the acquired image), not on the 3D shape, as it was the case of the
previous approach. The problem of extraction of feature points from facial
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images is well described in literature, still, in the current implementation, these
points are identified manually.

The transformation T maps texture coordinates to the image coordinates(
x y 1

)
·T =

(
x′ y′ w′

)
(8)

where each point
(
x y

)
on the texture transforms to the point

(
x′′ y′′

)
=(

x′

w′
y′

w′

)
on the acquired image. So, from the equation 7

x′ = ax+ by + c

y′ = dx+ ey + f

w′ = 1

For each point, two linear equations are set:

x′′ =
x′

w′
= ax+ by + c

y′′ =
y′

w′
= dx+ ey + f

With six variables, six independent equations are necessary, which requires three
feature points which do not lie in one line to be located. Again, for more stable
solution more than three points can be used, and the solution of the resulting
overdetermined equation set is found as the one with the least-square error.

To summarize, the mapping of the 3D shape to the acquired image is repre-
sented by a 4 × 3 projection matrix P in homogenous coordinate system. P is
computed according to equation 6, Pt being the matrix of the known projection
from the 3D shape to its texture, and T being a computed 2D transformation
matrix between the texture and the acquired image.

4 Determination of Illumination Characteristics

With a textured 3D model of a face taken in known environmental conditions,
and another image Ia acquired in unknown environment, the task is to find an
approximation of light sources affecting the image Ia.

The principle is simple. If the 3D model is rendered so that the resulting
image Īa is as similar to Ia as possible, then the configuration of light sources
used for the rendering can be denoted as the best approximation of the unknown
illumination.

4.1 Illumination Model

The appropriate illumination model must be chosen first. For the sake of sim-
plicity, three assumptions were made:
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• Assumption 1. All the light sources are infinitively far away, so the light
rays from one source are mutually parallel.

• Assumption 2. The face surface is Lambertian, ie. the intensity of the
reflected light depends only on the albedo of the surface (the texture), and
cosine of the angle between the light direction and the surface normal. No
specular reflection is considered.

• Assumption 3. There is no self-shadowing on the face shape, ie. all light
sources affect entire face surface.

These assumptions lead to a simplification, that all light sources can be
substituted with only one.

The used lighting model is very simple. Intensity I of each pixel is computed:

I = (A+ Lδcosω) ∗ Λ (9)

where I represents the emitted intensity, A is the ambient energy, δ is 1 if the
vertex is visible from the light source and 0 otherwise, ω is the angle between the
incident light direction and the surface normal vector, Λ is the surface albedo,
and L is the intensity of the directional light. See figure 8 where the situation
is depicted. Would the third assumption be always fulfilled, δ will be always
equal to one.

Figure 8: Scheme of the illumination model

Surface albedo Λ is given by the texture, and surface normals are specified
within the 3D model. δ and ω depend on the light direction and surface normals.
Remaining variables in the model, the ambient and directional light intensities,
are free. Thus the rendering of the face can be parametrized by four scalar val-
ues, two for the intensities of ambient and directional illumination, and two for
the directional light direction. In current implementation, the light direction is
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given in spherical coordinates, parametrized by two angles, ϕ being the rotation
around the y axis, and ψ being the rotation around the z axis (see fig. 9). To be
represented as a three-dimensional vector

(
x y z

)
, individual components

are computed this way:
x = sin(ϕ) ∗ cos(ψ)

y = sin(ψ)

z = cos(ϕ) ∗ cos(ψ)

Setting the light intensity L to zero and the ambient intensity A to one, the
rendered image would be identical to the texture of face model if observed from
front.

Figure 9: Parametrization of the light direction

4.2 Cost Function

To find the best approximation of illumination, the quality of the approximation
must be evaluated.

First, the 3D textured model is rendered into image Īa, rendering parame-
trized by the four variables described above. Having the acquired image Ia
as a reference image, the approximation quality is determined by pixel-wise
differentiation between images Ia and Īa. Only pixels rendered from the 3D
model, ie. these having color other than background on Īa, are considered.

This can be expressed as a scalar function of four variables, representing
the four rendering parameters, function value being the approximation error.
The function is then provided to a minimization algorithm as a cost function.
Finding the minimum of the function will supply the rendering parameters of
the best estimation of the illumination.
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4.3 Optimization Algorithm

The algorithm used is the Nelder-Mead simplex search described in [Simplex]
or [NR92]. It is a direct search method that does not require gradients or
other derivative information. If n is the dimension of the search space, four
in this task, a simplex is characterized by the n + 1 distinct vectors which
are its vertices. In two-space, a simplex is a triangle; in three-space, it is a
pyramid, etc. At each step of the search, a new point in, or near the current
simplex is generated. The function value at the new point is compared with the
function values at the vertices of the simplex and, usually, one of the vertices
is replaced by the new point, giving a new simplex. This step is repeated until
the diameter of the simplex is less than a specified tolerance and the function
values of the simplex vertices differ from the lowest function value by less than
another specified tolerance.

It is not very efficient method in terms of the number of function evaluations
that it requires. That is the effect of lack of information about the function
derivatives. But only about 100 function evaluations are usually required to
reach the minimum.

5 Compensation for the Detected Illumination

Once the best approximation of the illumination is known, the acquired image
can be compensated for it.

The 3D model is rendered twice more, only without texturing, ie. rendered
according to the equation

I = (A+ Lδcosω) (10)

The first of the rendered images, Idetected, is rendered with parameters of
the best approximation, while the second, Idesired, with parameters correspond-
ing to the desired illumination of the face. For example, setting the ambient
intensity to 1 and the directional light intensity to 0 will produce image evenly
illuminated (see fig. 10), or setting the ambient intensity to 0, the directional
light intensity to 1 and the light direction to be along the z axis will generate
image with only a frontal illumination (see fig. 11).

To obtain a compensated image Ic, intensity of each pixel i in the acquired
image Ia is multiplied by the ratio of intensities of corresponding pixels in Idesired
and Idetected.

Ic(i) = Ia(i) ∗ Idesired(i)/Idetected(i)

Samples of compensated images are shown in bottom rows of images in
figures 34 and 35.
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Figure 10: 3D model without texture rendered with A = 1 and L = 0

5.1 Cost Function Revised

While finding the best approximation of the illumination, the impact of the error
on the approximation quality was constant all over the face. During compensa-
tion, increasing the intensity of dark parts of the image Ia will proportionally
increase the intensity errors in these parts. For example, let’s look at the ac-
quired image lighted from the right side (see fig 12). The intensity map along
a horizontal scanline could look like the middle red line in fig. 13a. Let the
surrounding lines depict the error range, where intensities of the approximated
image would lay. After illumination compensation, when the dark areas of the
image were brightened, the error range is expanded (see fig. 13b), yielding more
inaccurate results.

Therefore, dark areas of the acquired image should be approximated more
precisely than bright areas. To address this, the evaluation of the cost function
expressing the approximation error is done this way:

1. image Īa is rendered from the textured 3D model according to the render-
ing parameters (parameters of the cost function)

2. image Idetected is rendered with the same parameters, but without texture

3. image Idesired is rendered with parameters corresponding to the desired
illumination, again without texture

4. The error accumulator is cleared,
error = 0

5. For each non-background pixel i in the rendered image do:
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Figure 11: 3D model without texture rendered with A = 0 and L = 1

(a) compute the difference between the acquired and the approximated
image
diff = abs(Ia(i)− Īa(i))

(b) multiply the difference by the same ratio that would be used later in
the compensation phase
diff =diff ∗Idesired(i)/Idetected(i)

(c) increase the square error,
error = error + diff2

6. The error is normalized,
error = error/number of pixels in the rendered image

7. error represents the approximation quality, and is returned as a value of
the cost function

So the error of individual pixel is weighted proportionally to the amount of
later brightening of the pixel.

6 Rendering

The 3D model is rendered by the Gouraud shading method, triangle by triangle.
Each triangle T is rendered in following steps:

1. 3D coordinates
(
x y z

)
of each of the three triangle’s vertices are

transformed to 2D image coordinates
(
xim yim

)
by a projection matrix

(see section 3 for how it is obtained).
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Figure 12: Sample acquired image

2. Intensity of the light reflected from each vertex is computed according to
equation

I = (A+ Lδcosω) (11)

ie. the equation 9 of the illumination model, with the surface albedo
ignored.

3. For each pixel p of the rendered image, occupied by triangle T , following
values are linearly interpolated from values known only for vertices:

• intensity I computed in equation 11

• texture coordinates xtex and ytex

• 3D coordinates of the point on the model’s surface represented by
pixel p

4. The final color of pixel p is then given as a multiplication of the illumi-
nation intensity I and the texture albedo at pixel’s texture coordinates(
xtex ytex

)
. The z component of the 3D coordinates associated with

the pixel is used as the Z-buffer, ie. if there was, on the image coordinates(
xim yim

)
, previously rendered any pixel with larger z value, pixel p

is not rendered at all. In addition, each pixel has associated an unique
identifier of the triangle from which it was rendered. If the model is ren-
dered with shadows, the remaining components of the 3D coordinates (x
and y) are also exploited (see section 6.2).
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Figure 13: image intensities and error ranges before compensation (a), and after
compensation (b)

6.1 Shadows

The existence of shadows is in contrary to Assumption 3, and their consid-
eration assumes that the acquired image Ia was influenced by only one light
source, ie. not by several lights approximated by the only one.

Shadows can, however, spread over a significant part of the face, especially
shadows from the nose (if illumined from side) or from the brows (if illumined
from top). The effect of not accounting for shadows is twofold. First, the
shadowed parts of the acquired image are not compensated correctly. As the
model predicts an illumined area where there is a shadow on the image, the area
will remain dark after compensation. Second, more grievous consequence, is a
deformation of the cost function, so the best illumination approximation found
is inaccurate, and, depending on the image, the optimization process might
converge to another local minimum.

In figure 14 is an example of an image acquired with a light coming from
right, and there is small, but clearly distinguishable shadow cast by the nose
toward the left eye. On figure 15 the best illumination approximation for this
image is shown, when it is rendered without shadow. Based on this approxima-
tion, the compensation result is shown in figure 16. The only corrected part of
the shadowed area is where the surface normal directs away from the incident
light.

6.2 Rendering Shadows

Because the rendering takes place in every evaluation of the cost function, the
shadows are to be computed as quickly as possible. The implemented method
first renders those triangles, that are either completely in the shadow, or com-
pletely out of the shadow. The remaining triangles, ie. those only partially
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Figure 14: An acquired image with a shadow of the nose

shadowed, are rendered pixel by pixel, all the time checking whether the pixel
lies in the shadow or not. The algorithm runs in following steps:

1. The 3D model is rotated so that the z-axis is aligned with the light
direction, given by two angles, ϕ and ψ (see fig. 9). The coordinates are
transformed with matrix

TL = Roty(ϕ) ·Rotx(ψ) =

=


cos(ϕ) 0 −sin(ϕ) 0

0 1 0 0
sin(ϕ) 0 cos(ϕ) 0

0 0 0 1

 ·


1 0 0 0
0 cos(ψ) sin(ψ) 0
0 −sin(ψ) cos(ψ) 0
0 0 0 1

 (12)

For each vertex the new coordinates are(
xt yt zt

)
=
(

x′

w′
y′

w′
z′

w′

)
where, if the original vertex’s coordinates are

(
x y z

)
,(

x′ y′ z′ w′
)

=
(
x y z 1

)
·TL (13)

2. The rotated model is rendered. Size of the image, into which is the
model rendered, can be chosen arbitrarily. Larger size increases precision,
smaller size increases speed. Currently, the image size is set to be 500×500
pixels. The projection matrix transforming the model’s 3D coordinates to
the 2D image coordinates is calculated so that the face spans over as large
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Figure 15: Approximation of the illumination in fig. 14, ignoring shadows

area of the image as possible. The light is assumed to come in parallel
rays, supposedly from an infinitively distant light source (Assumption
1), so the projection matrix is to represent a parallel projection with an
appropriate scale and translation. First, the bounding box of the rotated
model is computed, in xtyt plane only. The zt coordinate does not affect
the image appearance, and is used for the Z-buffer. Let the xmin, xmax,
ymin, and ymax stand for the minimal resp. the maximal coordinate of
the rotated model on the x, resp. the y axis, and W and H stand for the
size of the rendered image (by choice, both equals to 500). The projection
matrix is then

PL =


W

maxX−minX 0 0
0 H

maxY−minY 0
0 0 0

−minX W
maxX−minX −minY H

maxY−minY 1

 (14)

scaling the model to fit the image in size, with a translation to move the
projection of

(
minX minY

)
to the image coordinates

(
0 0

)
. An

example of an image rendered this way is in fig. 17, for the same light
configuration as in the figures 14, 15, and 16.

3. Each vertex is checked whether it is shadowed. During the ren-
dering, unique identifier of currently rendered triangle is assigned to each
pixel written to the image (see section 6). To determine whether a vertex
V is in the shadow, the triangle identifier is picked up from the just ren-
dered image of the rotated 3D model, from the pixel position where V was
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Figure 16: Compensation of fig. 14, ignoring shadows

projected to. If V is one of the triangle’s vertices, it was not overpainted
by another triangle, so it is visible from the light direction, and thus not
shadowed.

4. Triangle overlap map is generated. A special triangle overlap map
is generated during the rendering from the light direction, which for ev-
ery pair of triangles holds the information whether they both share at
least one pixel of the rendered image. So for every triangle T , it enumer-
ates only such triangles, that might cast shadow over T , or T might cast
shadow over them. The map is implemented as a two-dimensional array of
number of triangles× number of triangles booleans. The indication is
set whenever a pixel of a triangle is to be rendered over a previously ren-
dered pixel (whether it is really written depends on the Z-buffer look-up).
Again, information of the triangle’s identifier associated with a rendered
pixel is exploited.

5. The image from the camera’s view is finally rendered. The image
is rendered in two steps. First, only those triangles that are completely in
shadow (all three of their vertices were marked as shadowed in step 3), or
completely lit (all three of their vertices were marked as lit) are rendered.
See fig. 18, where only these triangles are displayed. The decision based
only on shadowing of the vertices is not exact (see fig. 19), but as on the
face shape do not occur sharp edges, the error can be neglected. In the
second step, the remaining, partially shadowed, triangles are rendered.
The check for the shadow is performed for every individual pixel of the
triangle. While rendering the pixel p, the three dimensional coordinates
of point P of the shape surface represented by p are interpolated (see
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Figure 17: A 3D model rendered from the light direction, dots represent posi-
tions of hidden (shadowed) vertices.

section 6). The triangle overlap map says, which of the triangles might
cast shadow over point P , and only these are checked whether they do so.
To check it, P is rotated to the coordinate system of the light, using the
transformation TL from the equation 12. Then, if the 2D projection of the
point to the xtyt plane lays inside any of the triangles from the triangle
overlap map, these again projected to the xtyt plane, and the triangle is
nearer to the light source (according to the rotated zt coordinate), the
point is shadowed by the triangle. Pixel p is then rendered only using
the ambient component of the light (δ = 0 in the illumination model
equation 9). If there is no triangle placed over the rotated point P , pixel
p is rendered using both ambient and directional component of the light
(δ = 1).

6.3 Shadow Rendering Results

An example of the detected illumination, rendered including shadow, is shown
in figure 20. Compensation based on this approximation is in figure 21. Two
kinds of defect are observable. First, the shape of the shadow predicted from the
3D model shape does not match exactly the real shadow. The consequence is,
on figure 21, the extremely bright part of the left eye on the shadow boundary
(here the 3D model predicted shadow where it was not), and the dark strip
leading from the left corner of the left eye down and toward the nose (here
the 3D model did not predict a shadow, but it was there). The second defect
is caused by sharp edges of the modeled shadow. In real, shadows are soft
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Figure 18: Only wholly lit or wholly shadowed triangles rendered

due to optical properties of the air. Modeling such soft shadows would require
more advanced rendering techniques, which are not affordable for this task for
their computational complexity. The easiest way to simulate the soft shadows
is to blur the rendered image. Simple intensity averaging is used to do so.
On figure 22 is an example of such a blurred illumination approximation, and
on the figure 23 is the result of the sequent compensation. The effect of the
mispredicted shadow shape, either caused by inexactness of the 3D model, or
by inexact approximation of the illumination direction, still remains. The image
in figure 23 shows the result of the whole compensation process of the image in
figure 14.

Figure 19: A situation, where all three triangle vertices are lit, but a shadow
is still cast over the triangle (left). Such a triangle is wrongly rendered as if
completely lit (right).
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Figure 20: Illumination approximation rendered with shadows

7 Eigen-faces for Face Recognition

To evaluate the quality of the illumination compensation, an elemental face
recognition system was implemented. The selected method – eigen-faces – was
described by Turk and Pentland in [TP91]. The scheme is based on an infor-
mation theory approach that decomposes face images into a small set of char-
acteristic feature images called “eigen-faces”, which may be thought of as the
principal components of the initial training set of face images. Recognition is
performed by projecting a new image onto the subspace spanned by the eigen-
faces (“face space”) and then classifying the face by comparing its position in
the face space with the positions of known individuals.

In the language of information theory, the idea is to extract the relevant
information in a face image, encode it as efficiently as possible, and compare one
face encoding with a database of models encoded similarly. A simple approach
to extracting the information contained in an image of face is to capture the
variation in a collection of face images, independent of any judgement of facial
features, and use this information to encode and compare individual face images.

In mathematical terms, the principal components of the distribution of faces,
or the eigenvectors of the covariance matrix of the set of face images are found,
treating the image as a point (or a vector) in a very high dimensional space.
The eigen vectors are ordered, according to their associated eigenvalues, each
one accounting for a different amount of the variation among the face images.
These eigenvectors can be thought of as a set of facial features that together
characterize the variation between face images.

Every individual face from the training set can be represented exactly in
terms of a linear combination of the eigen-faces. Each face can also be ap-
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Figure 21: Compensation based on approximation rendered with shadows

proximated using only the “best” eigen-faces — those that have the largest
eigenvalues, and which therefore account for the biggest variance within the set
of face images.

The system is initialized with following operations:

1. Acquire an initial set of M face images (the training set).

2. Calculate the eigen-faces from the training set, keeping only M ′ eigen-
faces that correspond to the highest eigenvalues. These M ′ images define
the face space.

3. Calculate the corresponding distribution in M ′-dimensional weight space
for each known individual, by projecting its face image(s) onto the face
space.

Having the system initialized, following steps are used to recognize new face
images:

1. Calculate a set of weights based on the input image and the M ′ eigen-faces
by projecting the input image onto each of the eigen-faces.

2. Determine if the image is a face at all by checking to see if the image is
sufficiently close to the face space.

3. If it is a face, classify the weight pattern as either a known person or as a
unknown, according to its distance to the closest weight vector of a known
person.
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Figure 22: Blurred illumination approximation, rendered with shadows

7.1 Calculating Eigen-faces

Let a face image I(x, y) be a two-dimensional X by Y array of intensity values.
An image may also be considered as a vector of dimension X × Y , so that a
typical image of size 256 by 256 pixels become a vector of dimension 65, 536,
or, equivalently, a point in 65, 536-dimensional space. An ensemble of images,
then, maps to a collection of points in this huge space.

Images of faces, being similar in overall configuration, will not be randomly
distributed in this huge image space, and thus can be described by a relatively
low-dimensional subspace. The main idea of the principal component analysis
(or Karhunen-Loeve expansion) is to find the vectors that best account for the
distribution of face images within the entire image space. These vectors define
the subspace of face images, called face space. Each vector is of length X × Y ,
and is a linear combination of the original face images.

Let the training set of images be Γ1,Γ2, . . . ,ΓM . The average face of the
set is defined by

Ψ =
1
M

M∑
n=1

Γn

Each face differs from the average by vector

Φi = Γi −Ψ

This set of large vectors is then subject to principal component analysis,
which seeks a set of M orthonormal vectors u1 . . .uM , which best describes
the distribution of the data. Vectors u1 . . .uM and scalars λ1 . . . λM are the
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Figure 23: Compensation based on blurred approximation. The noise in the
brightened areas was present in the original image as well, only with a small
magnitude. In this image, the noise is magnified by the illumination compensa-
tion

eigenvectors and eigenvalues, respectively, of the covariance matrix

C =
1
M

M∑
n=1

Φn ·ΦT
n = A ·AT

where the matrix A = [Φ1,Φ2, . . . ,ΦM ].
For description of the training set see section 8. The average face Ψ of

this training set is shown in figure 24. Sixteen most significant eigen-faces (with
highest eigenvalues) of the training set, and four least significant ones, are shown
in figure 31.

To obtain a weight vector Ω of contributions of individual eigen-faces to a
facial image Γ, the face image is transformed into its eigen-face components
(projected onto the face space) by a simple operation

ωk = uTk (Γ−Ψ)

for k = 1, . . . ,M ′, where M ′ ≤ M is the number of eigen-faces used for the
recognition.

The weights form vector Ω = [ω1, ω1, . . . , ωM ′ ] that describes the contribu-
tion of each eigen-face in representing the face image Γ, treating the eigen-faces
as a basis set for face images.

The original image might be reconstructed

Γ̄ = Ψ +
M ′∑
k=1

ωkuk
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Figure 24: Average face Ψ of the training set, corresponds to the origin of the
face-space.

where M ′ ≤M is the number of eigen-faces used. If M ′ < M , the reconstructed
image is only approximation of the original face, if M ′ = M , the reconstruction
is exact.

The impact of the number of eigen-faces on the reconstructed face appear-
ance is demonstrated in figure 25. In the upper left corner, an original image
from the face database is shown. Then, approximations of the face using dif-
ferent number of eigen-faces with highest eigenvalues are depicted. Using all
eigen-faces (bottom right corner), the face reconstruction is identical to the
original image, except for round-off errors.

7.2 Face Recognition

Provided an unknown facial image, the recognition process first involves trans-
formation of the facial image to the position common for all faces from the
training set. This transformation is based on a facial feature detection, and is
described in section 8. Then, the image is projected onto the face space in the
same way as the images from the training set (see section 7.1), resulting into a
weight vector Ω.

Finally, the face most similar to the unknown one is sought in the training set.
The simplest method for determining which face provides the best description
of an unknown input facial image is to find the image k that minimizes the
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Figure 25: Reconstruction of a face image from the eigenfaces. From left to
right, top to bottom: the original image, approximation using first 10, 20, 30,
40, 50, 75 eigen-faces, reconstruction using all the eigen-faces.

euclidean distance
εk = ||(Ω−Ωk)||2

where Ωk is a weight vector describing the kth face from the training set. A
face is classified as belonging to person k when the minimum εk is below some
chosen treshold Θε, otherwise, the face is classified as unknown.

Usually, implementations of this method use more than one image of each
individual in the training set. Different images are taken under varying il-
lumination conditions and under varying pose. The recognition becomes less
dependent on these variations, since the acquired image is allowed to match any
of the images of the person.

For use in this work, however, only one image of each individual, frontal
view with frontal illumination, is present in the training set. The reason is that
variations in face pose are not addressed at all, and variations in the illumination
are what is to be compensated in this work. The eigen-faces method stands
for evaluation of the compensation quality, so any improvements regarding the
illumination variability are not desired.

8 Face Database

One hundred of facial images, originated from different sources, were used to
initialize the eigen-face recognition system. All the images were first converted
to grayscale images. To eliminate the effect of different background, from ev-
ery image was the background manually removed, so that only the facial part
remained. See fig. 26 for an example.
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Figure 26: An original image from the face database, after background removal,
and converted to grayscale

Being of different origin, the images vary in face size, position, orientation
and intensity levels. For the eigen-face identification algorithm functionality, it
is essential to have all the faces equally aligned in the image space. So all the
images were transformed to a common eigen-face image space:

1. Dimension of the eigen-face images Ief was chosen, currently to 256 by
256 pixels.

2. Seven feature points p1 . . . p7 were defined to be used for the face position
alignment, four for the eye corners, two for the mouth corners and one for
the nose tip.

3. On each of the 100 facial images, coordinates of all of the seven feature
points po1 . . . po7 were identified (currently, the identification is manual).

4. A desired position pef1 . . . pef7 of these feature points was defined within
the eigen-face image space.

5. An affine transformation in form

T =

 a d 0
b e 0
c f 1
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was found for each image such that the overdetermined equation set

pef1 · T = po1
...

...
...

pef7 · T = po7

was satisfied with the least square error.

6. Transformation T was then used to resample the original image. Intensity
of every pixel pef in the eigen-face image Ief was set to the intensity of
pixel po = pef · T in the original image, or, in the case when the po was
outside the original image, to the intensity of the background.

The result was a facial image resampled to the eigen-face image space, geo-
metrically aligned to the position given by feature points pef1 . . . pef7. One of
the final images, as were used to compute the eigen-face subspace, is shown in
figure 27. The whole face database is in fig. 32.

Figure 27: The face image after transformation. Images in this form are used
to compute the eigen-faces.

9 Measurements

The quality of the compensation was evaluated using the eigen-face recognition
system, as was described in section 7. 36 images of five different persons were
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used for the measurements. The face database consisted of one hundred different
faces (see section 8) to make the recognition task not so trivial as it would be
with only five persons.

The compensation process assumed that the appropriate person’s identity
was known prior to the compensation, so his/hers 3D model could be used. This
corresponds to tasks like face verification or evaluation of facial expressions,
where the person’s identity can be assumed. For the recognition, however, it
would be necessary to compensate the illumination individually, according to
the 3D model of every person in the database, before the recognition is applied.

The set of 36 images, which were to be recognized, was strongly influenced
by illumination. All the images were taken under one directional light, varying
in position and direction. On most of the images, only part of the face was
perceptible. See figures 1, 12, 14, 34, and 35 for examples of such input images.

When these original images, ie. the images before the compensation, were
provided as an input to the eigen-face recognition algorithm, the recognition
rate was 33%; only 12 out of the 36 images were recognized correctly. After the
illumination compensation, however, the recognition rate increased to 94%, ie.
34 out of the 36 images were recognized as of the correct person.

9.1 Using a Generic Face Model

The possibility to use only one generic 3D face model was investigated. The
motivation was to allow tasks where the person’s identity can’t be assumed
before the compensation takes place, as it is for example in the face recognition
task. This way, the necessity of multiple compensations of one input image, each
time for every individual possible face, would be eliminated. Moreover, there
would be no need to have the 3D models of individual persons in the database.
It would even allow the compensation of images of unknown, never-seen-before
persons, so the compensation could be connected to another set of computer
vision tasks, such as human gender or age detection.

The 3D model used as the generic one was the average head shape of US
NAVY guy. As the texture for the face model, the average face of the face
database from section 8 was used (see figure 24). The projection matrix used to
render the 3D model was obtained as described in section 3, so the rendered im-
age was allowed to scale and skew differently in each axis to match the acquired
image. The generic 3D model is shown in figure 28.

The recognition rate of images compensated using this average face model
was however bad. Only 47% (17 out of 36) of the compensated images were
recognized correctly. For the not-recognized images, the illumination approxi-
mation was misjudged, ie. the optimization process converged to wrong spot.
Yet, it is still an increase in the recognition rate, as the original, not compen-
sated images, yielded recognition rate of 33%.

The recognition rate of images compensated using the generic model depends
on the person in the image, probably in relation to the similarity between the
person’s face and the average face. For individual persons, the recognition rate
ranged from 12.5% to 87.5%.
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Figure 28: Rendered generic 3D model with the average face from the face
database as the texture.

9.2 Dependency on the 3D Model Precision

The same set of 36 images was used to investigate dependency of the recognition
rate on the 3D model precision. A white noise was added to the original facial
models, ie. their vertices were randomly moved in each axis’s direction. The
noise deviation was gradually increased in units of percents of the face size. If
the size of the modeled face was, for example, 15 cm, the deviation of 1% of the
face size corresponded to 1.5 mm. Normal vectors of the face surface were then
recalculated to reflect the changes in the shape, so the illumination of every
surface triangle changed.

In figure 29 are shown changes in the recognition rate with increasing noise
deviation. How the noise deforms the 3D face model is depicted in figure 33,
where different rows represent increasing noise deviation. In the left column, de-
formed textured 3D models are shown, in the right column, images compensated
using these models are depicted.

The result is, that the recognition rate remains good up to noise deviation
about 1% if the face size. Over 2%, the compensation results are not satisfactory.

9.3 Measurements of the 3D Model Precision

To contemplate dependency on the 3D model quality, the precision of the model
provided by the 3D reconstruction system should be first estimated. The esti-
mation was done only for the ShapeSnatcher system. A rigid model of a head
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Figure 29: Recognition rate (in percents) in dependency on the 3D model noise
deviation (in percents of the face size)

with 44 markers put on the surface was reconstructed for this purpose. The
ShapeSnatcher was used to acquire 24 3D patches of the head model, each from
a different angle. The all-around 3D model of the head was then generated by
the ShapeMatcher tool, combining all the 24 patches into one large 3D model,
consisting of more than 180,000 triangles. See figure 30, where the head model
is shown.

The real 3D coordinates of the markers on the head’s surface were obtained
using a high precision 3D scanner.

To get the 3D coordinates of the markers on the reconstructed model’s sur-
face, their 2D coordinates were first identified in the texture image. The trans-
formation from the texture coordinates to the 3D space is done in two steps:

1. The mesh triangle which contains the marker is found. Each vertex has
associated its texture coordinates, ie. 2D coordinates in the texture image.
This way every triangle of the mesh forms a triangle in the texture. All
triangles are successively traversed to see if the marker’s 2D position lies
inside the triangle’s projection to the texture. Only one such a triangle
should be found, more only for markers laying on edges of triangles – it
does not matter then, which one is used.

2. The exact 3D coordinates of the marker are calculated with a bilinear
interpolation of the 3D coordinates of the three vertices of the triangle
found in step 1.
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Figure 30: The head model. Left: a photo of the head with markers, right: the
complete 3D model combined from 24 different patches

10 Conclusion

A method for recovery of a canonical illumination of a facial image, where the
effects of the unknown illumination conditions are minimized, were developed
and implemented, assuming that a 3D model of the face was available.

First, the global scene illumination characteristics were estimated so that the
3D model rendered to an image as similar to the to-be-compensated image as
possible. Then, the image was compensated in conformance to the illumination
estimation found. If the estimation was wrong, so was the compensation.

The quality of the compensation was evaluated using the eigen-face recog-
nition system, where the compensation caused the recognition rate to increase
from 33% to 94%. The evaluation was made on a set of 36 images of 5 different
persons; the faces were sought in a face-database of 100 individual faces. Only
17 out of the 36 original facial images were recognized correctly, while 34 of
them were recognized if the illumination compensation was applied beforehand.

The person’s identity was to be known prior to the compensation, in order
to use the right 3D model. Experiments with an universal 3D model shown that
it is not a sufficient substitution for individual face models.

Images of four compensation processes are shown in figures 34 and 35. In-
dividual columns stand for different acquired images. In the first row, the ac-
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quired images Ia are shown. In the second row are images Īa rendered as the
best approximations of Ias. Third row contains images Idetected, ie. images of
intensities of the detected lights. These are obtained as the Īas rendered without
the texture. Finally, the fourth row holds compensated images Ic.

The overbrightened areas on the images are where the direction of the inci-
dent light is nearly parallel to the surface. In contrary to the assumption 2,
the face surface is not Lambertian. The intensity of the light reflected from the
surface at grazing angles of the incident light direction is higher. See [Cornell]
for description of the human skin reflectance properties. The model predicts
lower light intensity in these areas. They are brightened accordingly to the
model, thus too much for the real image.

The noise perceptible in brightened areas of the reconstructed faces was
present in the original images too, but the image intensities were too low there
for the noise to be noticeable. During the illumiantion compensation, the noise
was magnified along with the image intensity increase.

11 Future Work

The problem of the illumination compensation is far from thoroughly examined.
Here, a list of suggestions for further investigation is stated:

• To extend the method to work with colored models and with lights of arbi-
trary colors. The simplest solution is to split the task to three independent
subtasks, each handling a separate RGB channel.

• To study the impact of multiple light sources on the compensation quality,
for until now all the test images were taken under only one dominant
directional light source.

• To examine the possibility of parametrization, of some kind, of the generic
3D model, so to increase the compensation quality for persons for which
the compensation using the generic 3D model yields bad results. Signif-
icant dependency of the results on the person’s identity suggests, that
would the generic 3D model be adjusted to the person who is on the
to-be-compensated image, likely according to some feature detection, the
results may improve. Other possibility is to use more than one generic 3D
model, and to choose one, hopefully the one most similar to the person’s
face shape, again according to some kind of feature detection in the image
before compensation.

• To try out other algorithms for the cost function minimization. The ad-
vantages of the simplex downhill method, which is used now, is its ro-
bustness, and that it makes no special assumptions about the minimized
function. The disadvantage, on the other hand, is the number of the
function evaluations required to reach the minimum. Recalling that one
function evaluation means complete rendering of the 3D model, followed
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by pixel-by-pixel difference calculation between the rendered and the ac-
quired image, decreasing the number of evaluations will cause significant
gain in the overall speed of the compensation process.

• To try to use some more advanced rendering technique, such as raytracing
or radiosity rendering, even exploiting information about the human skin
BRDF (the bidirectional reflectance distribution function). See [Cornell]
for description of human skin BRDF measurement. Such an advanced
rendering method is expected to slow down the compensation process.

• To use hardware accelerated rendering, which is widely available now, to
speed up the compensation process.

• To implement automation for tasks which are done manually now. These
are the face location in the acquired image, and the facial feature point
detection. Computer vision literature is full of methods addressing these
problems.

• To do further testing and evaluation of the achievements of the compensa-
tion. More input data should be used, some reproducibility tests be done,
and also achievements in cooperation with tasks other than the eigen-face
recognition should be investigated.
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Appendices

A File Formats

In this appendix, description of file formats created for use within this work is
given. They are all ASCII text files of identical structure, which is essentially
a set of different sections. Section could be either a single-line, consisting of a
keyword followed by a list of values, or a multi-line section, where a keyword is
followed by an opening brace, then by a list of values, and finally by a closing
brace.

A.1 The 3D Model File

The 3D model file contains all information related to a 3D model of the face. All
sections are used only as an input, ie. they are not created or modified during
calculations.

vertices Multi-line section, first value is the number of vertices, then for each
vertex eight numbers follow: x, y, and z coordinate of the vertex, x, y,
and z component of the normal vector of the surface at the vertex, and
finally x and y texture coordinates. The texture coordinates are given in
image space, ranging from zero to width resp. height of the texture image
in pixels.

triangles Multi-line section, first value is the number of triangles, then, each
triangle is described with three zero-based indices of the vertices forming
the triangle.

texturesize Single-line section with two values – width and height of the tex-
ture in pixels.

texture Single-line section with a single value – the file name of the texture
image in JPEG format. No spaces are allowed in the file name.

projection Multi-line section, three times four values forming the projection
matrix projecting the 3D coordinates of the vertices onto their texture
coordinates. Used together with feature points to compute a projection
from the 3D model to an acquired image (see section 3).

features Multi-line section, seven times two values representing x and y texture
coordinates of seven feature points identified on the face. Currently, these
feature points are: left corner of the left eye, right corner of the left eye,
left corner of the right eye, right corner of the right eye, left corner of the
mouth, right corner of the mouth, and the tip of the nose.
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An example of the 3D model file:

vertices
{
2706
109.82 -13.3613 -104.103 0.5782 -0.05584 0.8139 586.008 547.074

. . . . . . . .

. . . . . . . .

. . . . . . . .
63.801 -41.0729 211.935 0.655 0.01442 0.7554 530.641 441.93

}
triangles
{
4267
1136 1137 1149
. . .
. . .
. . .

2631 2632 2649
}
texture texture.jpg
texturesize 760 484
projection
{
2.003829 -0.08618332 0.6314119 367.1147

-0.02423601 -1.781183 -0.03714525 462.8707
-0.00013448 -0.00014599 0.00091631 1
}
features
{
307 284
365 278
444 282
502 291
333 379
446 388
391 318

}

A.2 The Compensation Infomartion File

This file contains all information related to the illumination approximation and
compensation. The first three sections are inputs only, the last two are both
results of computations and inputs for other tasks.
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model Single-line section, single value: a name of the 3D model file, as de-
scribed in section A.1.

image Single-line section, single value. File name of the acquired image, ie.
the image which is to be compensated for the illumination effect, in JPEG
format. No spaces are allowed within the file name.

features Multi-line section, seven times two values, x and y image coordinates
of seven feature points identified on the face. The order of feature points
must match feature points within the 3D model, ie. currently these feature
points are: left corner of the left eye, right corner of the left eye, left corner
of the right eye, right corner of the right eye, left corner of the mouth,
right corner of the mouth, and the tip of the nose.

projection Multi-line section, three times four values forming the projection
matrix projecting the 3D model onto the image image. Calculated from
the projection matrix of the 3D model and from feature point locations
on both the 3D model’s texture and the acquired image (see section 3).

light Single-line section, four values of the illumination approximation. Com-
puted during iterative search for the best illumination approximation (see
section 4.3), used during illumination compensation (see section 5). The
values stand for the ambient light intensity, the directional light intensity,
and ϕ and ψ angles defining the directional light direction (see section 4.1).

An example of the file:

model face2
image face2im4.jpg
light 0.0536281 1.194 -0.917901 -0.273749
projection
{
1.97515 -0.00641959 0.641879 359.921

-0.0314425 -1.83432 -0.0466655 469.044
-0.00013448 -0.00014599 0.00091631 1
}
features
{
282 263
340 258
398 260
460 261
309 380
423 376
348 330
}
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A.3 The Face Image Information File

This file format describes an image of a face which is to be used within the
eigen-faces recognition algorithm. So this file is created for every image from
the learning set, and also for every image which is to be recognized. The first
two sections are inputs only, the other two are both results of computations and
inputs for other tasks.

image Single-line section, single value – a file name of the face image in JPEG
format. No spaces are allowed in the file name.

features Multi-line section, seven times two values, x and y image coordinates
of seven feature points identified in the face image. These are used to
calculate an affine transformation of the image to a common eigen-image
space, where all faces are aligned in a fixed image position (see section 8).

transformation Multi-line section, three times three values forming a 2D
transformation matrix, which, computed from feature point locations,
transforms the image into a common eigen-image space (see section 8).

coefficients Multi-line section, represents the weight vector Ω of the image’s
projection into the eigen-space (see section 7.1). The first value is the
length of the vector (ie. M ′), then, ω1, . . . , ωM ′ follows.

An example of the file:

image face2im4.jpg
transformation
{

354.468 -5.12437 0
-17.0473 322.624 0
206.839 142.949 1

}
features
{

282 263
340 258
398 260
460 261
309 380
423 376
348 330

}
coeficients
{
39

-0.0919629
.
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.

.
-0.0854766

}

A.4 The Eigen-face File

Eigen-faces are vectors of floating point values, with size equal to number of
pixels in face images, which is currently set to 256× 256 = 65536 pixels. These
vectors are stored in raw binary format, every element in IEEE standard 8-byte
floating point format. So the length of the eigen-face file is 256×256×8 = 524288
bytes. These files are generated during initialization of the eigen-face recognition
system (see section 7.1), and then used during recognition, when an unknown
image is projected onto the eigen-space (see section 7.2).

A.5 The Eigen-face Set File

This file format describes both the learning set of the eigen-face recognition
system and the computed eigen-space.

imageset Multi-line section, represents a list of images of the learning set used
to build the eigen-space. First value is the number of face images (M in
section 7). Then follows a list of file names of the Face Image Information
files, which are in format described in section A.3.

averageimage Single-line section, value is the file name of the average image
of the learning set. The format of the file is described in section A.4.

eigenimages Multi-line section, represents a list of the base vectors of the
eigen-space, ie. a list of individual eigen-faces. First value is the number
of eigen-faces (M ′ in section 7). Then follows a list of M ′ pairs, where the
first value is the file name of the eigen-face file (described in section A.4),
and the other value is the eigenvalue corresponding to the eigenvector
represented by the eigen-face.

directory Optional single-line section, the only value identifies the directory
where the files from sections imageset, averageimage, and eigenim-
ages are located.

An example of the file:

directory s:\eigenfaces\
imageSet
{
100

learningset1.FI
.
.
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.
learningset100.FI

}
eigenImages
{
39

Set1_00.dbl 85704.4
. .
. .
. .
Set1_38.dbl 773.061

}
averageImage set1_avg.dbl

A.6 The Measurement Info File

This file format is used for conversion from texture coordinates to 3D coordinates
of corresponding points on the 3D shape surface (see section 9.3).

meshtype Single-line section, value specifies the 3D mesh type. Allowed val-
ues are “SS3D” for decompressed meshes generated by the ShapeSnatcher
tool, and “TOP” for decompressed topology files generated by the Shape-
Matcher tool.

mesh Single-line section, value is the file name of the 3D mesh file in format
specified by the meshtype section.

texsize Single-line section, two values stand for the texture width and height.

2D Multi-line section, represents a list of 2D points in texture image space.
First value is the number of points, then list of coordinate pairs fol-
lows. Coordinates are in range [0 . . . texture width]×[0 . . . texture height],
where texture width and texture height are values of the texsize section.

3D Multi-line section, represents a list of points in the 3D model space. First
value is the number of points, then list of coordinate triplets follows. This
section is an output of the texture to 3D mapping process, where points
from the 2D sections are the input. So the amount and ordering of the
3D points correspond to the amount and ordering of the points in the 2D
section.

An example of the file:

meshtype SS3D
mesh ph702.ss3d
texsize 640 480
2D
{
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7
151 165
232 169
300 171
382 172
198 371
350 370
257 277

}
3D
{
7

12.263 25.3016 271.646
15.4597 25.3289 270.336
18.1515 25.3434 269.724
21.4577 25.4063 269.948
14.1481 33.1198 270.347
20.1946 32.9795 269.531
16.2736 29.1068 266.696

}

B Used Symbols

• Ia - an image acquired for compensation

• Ic - a compensated image

• Īa - an approximation of Ia rendered from a textured 3D model

• Idetected - an approximation of Ia rendered without texture, showing only
the incident light intensity

• Idesired - a rendered 3D model without texture, showing only the intensity
of the desired illumination

• A - an intensity of the ambient light

• L - an intensity of the directional light

• ω - an angle between the light direction and a surface normal vector

• Λ - the surface albedo (texture)

• ϕ,ψ - the light direction parametrization

• P - a matrix of a projection mapping a 3D model to a 2D acquired image
Ia

• Pt - a matrix of a projection from a 3D model to its texture
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• T - a matrix of a 2D affine transformation

• TL - a matrix of a 3D transformation rotating the 3D model into the light
direction, used during rendering of shadows

• PL - a projection matrix of the 3D model rotated to the light direction,
used during rendering of shadows

• M - number of images in the eigen-face recognition system’s training set

• M ′ - dimensionality of the eigen-space, ie. number of eigenvectors used
for the face recognition

• Γn - an image from the eigen-face recognition system’s training set

• Ψ - the average face image

• Φn - the difference between a face image Γn and the average face image
Ψ.

• C - the covariance matrix of the face images from the training set

• λ1 . . . λM−1 - nonzero eigenvalues of C

• u1 . . .uM−1 - eigenvectors of C corresponding to nonzero eigenvalues

• Ω = [ω1 . . . ωM ′ ] - the weight vector of a face image, ie. a projection of
the image onto the eigen-face space

• Γ̄ - an approximation of a face image reconstructed from the eigen-faces
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Figure 31: Sixteen eigen-faces with the highest eigenvalues (upper four rows),
and four eigen-faces with the smallest eigenvalues (bottom row).
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Figure 32: The face database used to compute eigen-faces.
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Figure 33: A 3D model with an additional noise. Left column – rendered 3D
model, right column – a compensated image based on the model. Upper row –
no noise, lower row – a white noise with the deviation of 2% of the face size.
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Figure 34: Examples of compensation
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Figure 35: Another examples of compensation
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