Licence plate and text detection

Abstract:
Licence plates and traffic signs detection and recognition have a number of different applications relevant for transportation systems, such as traffic monitoring, detection of stolen vehicles, driver navigation support or any statistical research. A number of methods have been proposed, but only for particular cases and working under constraints (e.g. known text direction or high resolution).
Therefore a new class of locally threshold separable detectors based on extremal regions, which can be adapted by machine learning techniques to arbitrary shapes, is proposed. In the test set of licence plate images taken from different viewpoints [-45,45], scales (from seven to hundreds of pixels height) even in bad illumination conditions and partial occlusions, the high detection accuracy is achieved (95%). Finally we present the detector generic abilities by traffic signs detection.
The standard classifier (neural network) within the detector selects a relevant subset of extremal regions, i.e. regions that are connected components of a thresholded image. Properties of extremal regions render the detector very robust to illumination change and partial occlusions. Robustness to a viewpoint change is achieved by using invariant descriptors and/or by modelling shape variations by the classifier.
The time-complexity of the detection is approximately linear in the number of pixel and a non-optimized implementation runs at about 1 frame per second for a 640x480 image on a high-end PC.

Others:
  • snow.avi, angles.avi, zoom_handcover.avi, book_shadow.avi, synth_2LP.avi
  • Poster from SCIA'05
  • Poster (Msc. Diploma thesis + animations) poster.pdf
  • Diploma thesis text download diploma_thesis_zimm_text.pdf
  • Compiled source + matlab demo demo.zip


  • References:
    [1] J. Matas, K.Zimmermann A New Class of Learnable Detectors for Categorisation, Proceedings of the 14th Scandinavian Conference on Image Analysis, pp 541-550, LNCS 3540, isbn 0302-9743, Joensuu, Finland, 2005.
    [2] J. Matas, K.Zimmermann Unconstrained Licence Plate Detection, Proceedings of the 8th International IEEE Conference on Intelligent Transportation Systems, pp 572-577, isbn 07803-9216-7, Wien, Austria, 2005.