Harris Corner Detector

Tomáš Werner

Center for Machine Perception Czech Technical University Prague

Motivation

Design a detector that finds points in an image such that:

- There is only a small number of isolated points detected.
- The points are reasonably invariant to
 - rotation,
 - different sampling and quantization,
 - to small changes of scale and small affine transformations.

Usage:

- Matching, finding correspondence
- Tracking

The standard detector satisfying these requirements is **Harris corner detector** (it was proposed by other people earlier, Harris became most known for some reason).

- How similar is the image function I(x, y) at point (x, y) similar to itself, when shifted by (Δx, Δy)?
- This is given by autocorrelation function

$$c(x,y;\Delta x,\Delta y) = \sum_{(u,v)\in W(x,y)} w(u,v) \left(I(u,v) - I(u+\Delta x,v+\Delta y) \right)^2$$

where

- W(x,y) is a window centered at point (x,y)
- w(u,v) is either constant or (better) Gaussian $\exp \frac{-(u-x)^2 (v-y)^2}{2\sigma^2}$.

(Further on, we will replace
$$\sum_{(u,v)\in W(x,y)} w(u,v)$$
 with \sum_{W} for simplicity)

Approximate the shifted function by the first-order Taylor expansion:

$$I(u + \Delta x, v + \Delta y) \approx I(u, v) + I_x(u, v)\Delta x + I_y(u, v)\Delta y$$

= $I(u, v) + [I_x(u, v), I_y(u, v)] \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}$

where I_x, I_y are partial derivatives of I(x, y).

$$c(x, y; \Delta x, \Delta y) = \sum_{W} \left(I(u, v) - I(u + \Delta x, v + \Delta y) \right)^{2}$$
$$\approx \sum_{W} \left(\left[I_{x}(u, v), I_{y}(u, v) \right] \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} \right)^{2}$$
$$= \left[\Delta x, \Delta y \right] Q(x, y) \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}$$

$$Q(x,y) = \sum_{W} \begin{bmatrix} I_x(x,y)^2 & I_x(x,y)I_y(x,y) \\ I_x(x,y)I_y(x,y) & I_y(x,y)^2 \end{bmatrix}$$
$$= \begin{bmatrix} \sum_{W} I_x(x,y)^2 & \sum_{W} I_x(x,y)I_y(x,y) \\ \sum_{W} I_x(x,y)I_y(x,y) & \sum_{W} I_y(x,y)^2 \end{bmatrix}$$

The autocorrelation function has been approximated by quadratic function

$$c(x,y;\Delta x,\Delta y) \approx \begin{bmatrix} \Delta x, \Delta y \end{bmatrix} Q(x,y) \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} \Delta x, \Delta y \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}$$

• Elongation and size of the ellipse is given by eigenvalues λ_1, λ_2 of Q(x, y)

flat region both eigenvalues small

edge one small, one large

corner both eigenvalues large

• Characterize 'cornerness' H(x,y) by eigenvalues of Q(x,y):

- Q(x,y) is symmetric and positive definite $\Rightarrow \lambda_1, \lambda_2 > 0$
- $\lambda_1 \lambda_2 = \det Q(x, y) = AC B^2$, $\lambda_1 + \lambda_2 = \operatorname{trace} Q(x, y) = A + C$
- Harris suggested: Cornerness $H = \lambda_1 \lambda_2 0.04 (\lambda_1 + \lambda_2)^2$
- Image I(x, y) and its cornerness H(x, y):

• Find corner points as **local maxima** of the cornerness H(x, y):

• Local maximum in image defined as a point greater than its neighbors (in 3×3 or even 5×5 neighborhood)

• Compute partial derivatives $I_x(x, y)$, $I_y(x, y)$ by finite differences:

$$I_x(x,y) \approx I(x+1,y) - I(x,y), \quad I_y(x,y) \approx I(x,y+1) - I(x,y)$$

Before this, it is good (but not necessary) to smooth image with Gaussian with $\sigma \sim 1$, to eliminate noise.

Compute images

$$A(x,y) = \sum_{W} I_x(x,y)^2, \quad B(x,y) = \sum_{W} I_x(x,y)I_y(x,y), \quad C(x,y) = \sum_{W} I_y(x,y)^2$$

E.g., image A(x, y) is just the convolution of image $I_x(x, y)^2$ with the Gaussian. Use MATLAB function conv2.

- Compute cornerness H(x,y)
- Find local maxima in H(x,y). This can be parallelized in MATLAB by shifting the whole image H(x,y) by one pixel left/right/up/down.