Harris Corner Detector

Tomáš Werner

Center for Machine Perception
Czech Technical University
Prague

Design a detector that finds points in an image such that:

- There is only a small number of isolated points detected.
- The points are reasonably invariant to
- rotation,
- different sampling and quantization,
- to small changes of scale and small affine transformations.

Usage:

- Matching, finding correspondence
- Tracking

The standard detector satisfying these requirements is Harris corner detector (it was proposed by other people earlier, Harris became most known for some reason).

- How similar is the image function $I(x, y)$ at point (x, y) similar to itself, when shifted by $(\Delta x, \Delta y)$?
- This is given by autocorrelation function

$$
c(x, y ; \Delta x, \Delta y)=\sum_{(u, v) \in W(x, y)} w(u, v)(I(u, v)-I(u+\Delta x, v+\Delta y))^{2}
$$

where

- $W(x, y)$ is a window centered at point (x, y)
- $w(u, v)$ is either constant or (better) Gaussian $\exp \frac{-(u-x)^{2}-(v-y)^{2}}{2 \sigma^{2}}$.
(Further on, we will replace $\sum_{(u, v) \in W(x, y)} w(u, v)$ with \sum_{W} for simplicity)

Quadratic approximation of the autocorrelation function

Approximate the shifted function by the first-order Taylor expansion:

$$
\begin{aligned}
I(u+\Delta x, v+\Delta y) & \approx I(u, v)+I_{x}(u, v) \Delta x+I_{y}(u, v) \Delta y \\
& =I(u, v)+\left[I_{x}(u, v), I_{y}(u, v)\right]\left[\begin{array}{c}
\Delta x \\
\Delta y
\end{array}\right]
\end{aligned}
$$

where I_{x}, I_{y} are partial derivatives of $I(x, y)$.

$$
\begin{aligned}
c(x, y ; \Delta x, \Delta y) & =\sum_{W}(I(u, v)-I(u+\Delta x, v+\Delta y))^{2} \\
& \approx \sum_{W}\left(\left[I_{x}(u, v), I_{y}(u, v)\right]\left[\begin{array}{l}
\Delta x \\
\Delta y
\end{array}\right]\right)^{2} \\
& =[\Delta x, \Delta y] Q(x, y)\left[\begin{array}{c}
\Delta x \\
\Delta y
\end{array}\right] \\
Q(x, y) & =\sum_{W}\left[\begin{array}{cc}
I_{x}(x, y)^{2} & I_{x}(x, y) I_{y}(x, y) \\
I_{x}(x, y) I_{y}(x, y) & I_{y}(x, y)^{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\sum_{W} I_{x}(x, y)^{2} & \sum_{W} I_{x}(x, y) I_{y}(x, y) \\
\sum_{W} I_{x}(x, y) I_{y}(x, y) & \sum_{W} I_{y}(x, y)^{2}
\end{array}\right]
\end{aligned}
$$

- The autocorrelation function has been approximated by quadratic function

$$
c(x, y ; \Delta x, \Delta y) \approx[\Delta x, \Delta y] Q(x, y)\left[\begin{array}{l}
\Delta x \\
\Delta y
\end{array}\right]=[\Delta x, \Delta y]\left[\begin{array}{ll}
A & B \\
B & C
\end{array}\right]\left[\begin{array}{l}
\Delta x \\
\Delta y
\end{array}\right]
$$

- Elongation and size of the ellipse is given by eigenvalues λ_{1}, λ_{2} of $Q(x, y)$
- The rotation angle of the ellipse is given by eigenvectors of $Q(x, y)$. We don't need it.
- Ellipses with equation $[\Delta x, \Delta y] Q(x, y)\left[\begin{array}{l}\Delta x \\ \Delta y\end{array}\right]=1$:

flat region
both eigenvalues small

edge
one small, one large

corner both eigenvalues large
- Characterize 'cornerness' $H(x, y)$ by eigenvalues of $Q(x, y)$:
- $Q(x, y)$ is symmetric and positive definite $\Rightarrow \lambda_{1}, \lambda_{2}>0$
- $\lambda_{1} \lambda_{2}=\operatorname{det} Q(x, y)=A C-B^{2}, \quad \lambda_{1}+\lambda_{2}=\operatorname{trace} Q(x, y)=A+C$
- Harris suggested: Cornerness $H=\lambda_{1} \lambda_{2}-0.04\left(\lambda_{1}+\lambda_{2}\right)^{2}$
- Image $I(x, y)$ and its cornerness $H(x, y)$:

Find corner points as local maxima of the cornerness $H(x, y)$:

- Local maximum in image defined as a point greater than its neighbors (in 3×3 or even 5×5 neighborhood)

Algorithm summary

- Compute partial derivatives $I_{x}(x, y), I_{y}(x, y)$ by finite differences:

$$
I_{x}(x, y) \approx I(x+1, y)-I(x, y), \quad I_{y}(x, y) \approx I(x, y+1)-I(x, y)
$$

Before this, it is good (but not necessary) to smooth image with Gaussian with $\sigma \sim 1$, to eliminate noise.

- Compute images

$$
A(x, y)=\sum_{W} I_{x}(x, y)^{2}, \quad B(x, y)=\sum_{W} I_{x}(x, y) I_{y}(x, y), \quad C(x, y)=\sum_{W} I_{y}(x, y)^{2}
$$

E.g., image $A(x, y)$ is just the convolution of image $I_{x}(x, y)^{2}$ with the Gaussian. Use MATLAB function conv2.

- Compute cornerness $H(x, y)$
- Find local maxima in $H(x, y)$. This can be parallelized in MATLAB by shifting the whole image $H(x, y)$ by one pixel left/right/up/down.

