» Homography

elements of P*  Projective plane P?: Vector space of dimension 3
excluding the zero vector, R®\ (0,0,0)
but including ‘points at infinity’ and the ‘line at infinity’

factorized to linear equivalence classes (‘rays’)

Collineation: Let x1, x2, x3 be collinear points in P? (coplanar rays in R3). Bijection

h: P? — P? is a collineation iff h(x1), h(x2), h(z3) are collinear in P? (coplanar in R?).
bijection = 1:1, onto

e collinear image points are mapped to collinear image points lines are mapped to lines

® concurrent image lines are mapped to concurrent image lines bijection!
concurrent = intersecting at the same point

e point-line incidence is preserved

e mapping h : P> — P? is a collineation iff there exists a non-singular 3 x 3 matrix H s.t.
h(z) ~Hx forall x € P?

e homogeneous matrix representant: det H =1
e in this course we will use the term homography but mean collineation
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Some Homographic Tasters

Rectification of camera rotation: Slides 63 (geometry), 120 (homography estimation)

Homographic Mouse for Visual Odometry: Slide TBD

illustrations courtesy of AMSL Racing Team, Meiji University and LIBVISO: Library for VISual Odometry
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»Mapping Points and Lines by Homography

H
H
—
'~Hm image point
'~H "n image line H' ' =HHT=@E=")!
T

e incidence is preserved: (m’) 0’ ~*m ' H' H 'n=m'n=0

collineation has 8 DOF; it is given by 4 correspondences (points, lines) in a general position

1.
2. extending pixel coordinates to homogeneous coordinates m = (u,v,1)
3. mapping by homography, eg. m’ = Hm
4. conversion of the result m’ = (m/, m}, m}) to canonical coordinates (pixels):
/
m/ m
r= 11, =2
mj m3

5. can use the unity for the homogeneous coordinate on one side of the equation only!
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Elementary Decomposition of a Homography

Unique decompositions: H=HsH.Hp (=H),H/, HY)

[sR t L
Hs = _OT J similarity

K o0 . .
Ha = _OT 1] special affine

(I o0 . N
Hp = _VT w} special projective

K — upper triangular matrix with positive diagonal entries
R - orthogonal, RTR =1, detR =1
s,weER, s>0,w#0

-
H:{SRK—i—rtv u:ut

e must use ‘skinny’ QR decomposition, which is unique [Golub & van Loan 1996, Sec. 5.2.6]

e Hg, Hy, Hp are collineation subgroups
(eg. K =K K2, K~1, I are all upper triangular with unit determinant, associativity holds)
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Homography Subgroups

group DOF matrix invariant properties
hii  hiz  his incidence, concurrency, colinearity,
rolective 3 h h h cross-ratio, order of contact
proj 21 22 23 (intersection, tangency, inflection),
hsi hsa  hss tangent discontinuities and cusps.
all above plus: parallelism, ratio of
a1 a1z tg areas, ratio of lengths on parallel lines,
affine 6 a1 a2 iy linear combinations of vectors (e.g.
0 0 1 midpoints), line at infinity no (not
pointwise)
scos¢p ssing iy all above plus: ratio of lengths, angle,
similarity 4 —ssing scos¢ ty the circular points I = (1,4,0),
0 0 1 J =(1,—1,0).
cos¢p sing ity
Euclidean 3 —sing cos¢ iy all above plus: length, area

0 0 1

fi1o.7 DA - aal
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»Canonical Perspective Camera (Pinhole Camera, Camera Obscura)

right-handed canonical coordinate system
(z,y,2)
. origin = center of projection C

2
3. image plane 7 at unit distance from C'

4. optical axis O is perpendicular to 7

5. principal point xp: intersection of O and 7

6. in this picture we are looking ‘down the street’
7

. perspective camera is given by C' and

i 1 |
T 0
T Y
v T
" =~ X

projected point in the natural image
coordinate system:

v _ o _ Yy Y ;_®

— =Yy = =) r = —

1 1+4z-—1 z
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»Natural and Canonical Image Coordinate Systems

projected point in canonical camera
. . o oroooo o] |7
[ o 1 =[2 % 1)"==[z, v, 2] ~|0 1 0 of-|Y| =PyX
z
0 0 1 0
N——— 1
Py

projected point in scanned image notice the chimney!

(0,0) u
v T .
@p = (uo,v0) | . ; (’~~~;\jit I
(u,v) , R e
_ ¢ T
u—f;—&—uo 1 fr+zuo f 0 wo 1 0 0 O
o Yy Sl fy+zul~]0 F wl|-l0 1 0 0 Z —KPyX=PX
ST 2 2 00 1] [0 0 1 0f ]

e ‘calibration’ matrix K transforms canonical camera Py to standard projective camera P
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» Computing with Perspective Camera Projection Matrix

my f 0 w O * z+ Fuo
m= [mz2| =10 f v O Z ~ y—&-?vo
ms 0o 0 1 0 1 ?
—_———
P
M ST M2V Ly when ma #£0
ms z ms z

| — 'focal length’ — converts length ratios to pixels, [f] =px, f >0

(uo,v0) — principal point in pixels
Perspective Camera:

1. dimension reduction since P € R34

2. nonlinear unit change1—1-z/f since m ~ (x,y, 2/ f)
for convenience we use P11 = Pas = f rather than P33 = 1/f and the ug, vg in relative units

3. m3 = 0 represents points at infinity in image plane 7 (2 = 0)
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»Changing The Outer (World) Reference Frame

A transformation of a point from the world to camera R.t cam\%
coordinate system:
Fe
X, =RX, +t world
Fuw
R - camera rotation matrix world orientation in the camera coordinate frame
t — camera translation vector world origin in the camera coordinate frame
X RX t R t|[X
PX.=KP,| | =KPo | v T —Kkpy | T I ZK[Rt] X
1 1 0 1] 1
N——
T

Py selects the first 3 rows of T and discards the last row

e R is rotation, RTR =1, det R = +1 I € R**3 identity matrix
e 6 extrinsic parameters: 3 rotation angles (Euler theorem), 3 translation components
® alternative, often used, camera representations

P=K[R t]=KR[I -C]

C - camera position in the world reference frame t =—-RC
r; — optical axis in the world reference frame third row of R: r3 = R~} [0,0, 1]T

® we can save some conversion and computation by noting that KR[I fC} X=KR(X-C)
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»Changing the Inner (Image) Reference Frame

The general form of calibration matrix K includes
o digitization raster skew angle 6
o pixel aspect ratio a
f —=fcotd wo

(67 " K= |0 f/(asinf) wo
v»’ 0 0 1

« 1 units: [f] = px, [uo] = px, [vo] = px, [a] =1
(0, v0) ® H1; 2pt: Verify this K; hints: u'e,s + v'e, = uey + vey,

0,70 boldface are basis vectors, K maps from an orthogonal system to
a skewed system [w’u’, w'v’,w']T = K[u,v,1]T; first skew then
sampling then shift by ug, vg deadline LD+2 wk

general finite perspective camera has 11 parameters:
e 5 intrinsic parameters: f, uo, vo, a, 0 finite camera: det K # 0
e 6 extrinsic parameters: t, R(«, 8,7)

m~ PX, P = [Q q] =K [R t] = KR[I —C] a recipe for filling P

Representation Theorem: The set of projection matrices P of finite projective cameras is isomorphic
to the set of homogeneous 3 X 4 matrices with the left hand 3 x 3 submatrix Q non-singular.
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»Projection Matrix Decomposition

P-[Q aq] — KR[I -C]=K[R ¢t

Qe R33 full rank (if finite perspective cam.)
K e R?3 upper triangular with positive diagonal entries
R € R®® rotation: R'R=TanddetR = +1

1.C=-Q'q see next
2. RQ decomposition of Q = KR using three Givens rotations [H&Z, p. 579]

K =Q R32R3:1R2;
—————
3. t=—-RC R-1

R,;; zeroes element 7j in affecting only columns i and j and the sequence preserves previousl|
J
zeroed elements, e.g.

1
Rso2 = |0 c s, A +s?= 1, gives c= 453 s = 452
0

-8 ¢ \ 435 + 43 \/ @3 + 43
® P1; 1pt: Multiply known matrices K, R and then decompose back; discuss numerical errors
e RQ decomposition nonuniqueness: KR = KT !TR, where T = diag(—1,—1,1) is also a
rotation, we must correct the result so that the diagonal elements of K are all positive
‘skinny’ RQ decomposition
® care must be taken to avoid overflow, see [Golub & van Loan 1996, sec. 5.2]
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I RQ Decomposition Step
Q= Array[q, {3, 3}];
R32 // MatrixForm

10 O
0 c s
0 -s ¢

Q1 =Q.R32;
Q1 // MatrixForm

sl=s1[[2]]

q[1, 1] cq[1, 2] -sq[l, 3]

q[2, 1] cq[2, 2] -sq[2, 3]
q[3, 1] cq[3, 2] -sq(3, 3]

als. 3] s

R32 = {{1, 0, 0}, {O, c, s}, {0, -s, C}};

sl =Solve[{QLl[[3]]1[[2]] =0, c"2+s”2 =1}, {C, S}];

Q1 /.sl // Simplify // MatrixForm

sq[1, 2] +cq[1, 3]
sq[2, 2] +cq(2, 3]
sq[3, 2] +cq[3, 3]

q[3, 212+q[3, 3]2

q(3, 2] }
q[3, 2)2+q[3, 3]2

q[1.2149(3.2]+9[1,3] 9(3,3]

Vq13,212+q(3,3]
9[2.2] 4(3,2]+9(2,3] q[3,3]

1,1 q[1.31q[3.2]1+q(1,2]g(3

at ! Va3,212+q[3,3)]

q[2, 1] -9[2,3]9[3,2]+9[2,2] q[3
’ Va(3.212+q(3.3]

q[3,1] 0

Vq13.212+q(3.3]

Vq[3, 2]2+q(3, 3]°
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»Center of Projection

Observation: finite P has a non-trivial right null-space rank 3 but 4 columns

Theorem
Let there be B# 0 s.t. PB = 0. Then B is equal to the projection center C (in world
coordinate frame).

Proof.
1. Consider spatial line A B (B is given). We can write

X(A\) ~A+AB, AeR

2. it images to
PX(A\)~PA+APB=PA
® the whole line images to a single point = it must pass through the optical center of P

® this holds for all choices of A = the only common point of the lines is the C, i.e. B ~ C

Hence

0=PC=[Q (] {ﬂ =QC+q => C=-Q'q

C = (cj), where ¢; = (—1)7 det P(4), in which P() is P with column j dropped
Matlab: C_homo = null(P); or C = -Q\g;
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