-Homography

Projective plane \mathbb{P}^{2} : Vector space of dimension 3 excluding the zero vector, $\mathbb{R}^{3} \backslash(0,0,0)$
but including 'points at infinity' and the 'line at infinity'
factorized to linear equivalence classes ('rays')

Collineation: Let x_{1}, x_{2}, x_{3} be collinear points in \mathbb{P}^{2} (coplanar rays in \mathbb{R}^{3}). Bijection $h: \mathbb{P}^{2} \mapsto \mathbb{P}^{2}$ is a collineation iff $h\left(x_{1}\right), h\left(x_{2}\right), h\left(x_{3}\right)$ are collinear in \mathbb{P}^{2} (coplanar in \mathbb{R}^{3}).
bijection $=1: 1$, onto

- collinear image points are mapped to collinear image points
lines are mapped to lines
- concurrent image lines are mapped to concurrent image lines bijection! concurrent $=$ intersecting at the same point
- point-line incidence is preserved
- mapping $h: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ is a collineation iff there exists a non-singular 3×3 matrix \mathbf{H} s.t.

$$
h(x) \simeq \mathbf{H x} \quad \text { for all } \underline{\mathbf{x}} \in \mathbb{P}^{2}
$$

- homogeneous matrix representant: $\operatorname{det} \mathbf{H}=1$
- in this course we will use the term homography but mean collineation

Some Homographic Tasters

Rectification of camera rotation: Slides 63 (geometry), 120 (homography estimation)

Homographic Mouse for Visual Odometry: Slide TBD

illustrations courtesy of AMSL Racing Team, Meiji University and LIBVISO: Library for VISual Odometry

- Mapping Points and Lines by Homography

$$
\begin{aligned}
\underline{\mathbf{m}}^{\prime} & \simeq \mathbf{H} \underline{\mathbf{m}} & & \text { image point } \\
\underline{\mathbf{n}}^{\prime} & \simeq \mathbf{H}^{-\top} \underline{\mathbf{n}} & & \text { image line }
\end{aligned} \quad \mathbf{H}^{-\top}=\left(\mathbf{H}^{-1}\right)^{\top}=\left(\mathbf{H}^{\top}\right)^{-1}
$$

- incidence is preserved: $\left(\underline{\mathbf{m}}^{\prime}\right)^{\top} \underline{\mathbf{n}}^{\prime} \simeq \underline{\mathbf{m}}^{\top} \mathbf{H}^{\top} \mathbf{H}^{-\top} \underline{\mathbf{n}}=\underline{\mathbf{m}}^{\top} \underline{\mathbf{n}}=0$

1. collineation has 8 DOF; it is given by 4 correspondences (points, lines) in a general position
2. extending pixel coordinates to homogeneous coordinates $\underline{\mathbf{m}}=(u, v, \mathbf{1})$
3. mapping by homography, eg. $\underline{\mathbf{m}}^{\prime}=\mathbf{H} \underline{\mathbf{m}}$
4. conversion of the result $\underline{\mathbf{m}}^{\prime}=\left(m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime}\right)$ to canonical coordinates (pixels):

$$
u^{\prime}=\frac{m_{1}^{\prime}}{m_{3}^{\prime}} \mathbf{1}, \quad v^{\prime}=\frac{m_{2}^{\prime}}{m_{3}^{\prime}} \mathbf{1}
$$

5. can use the unity for the homogeneous coordinate on one side of the equation only!

Elementary Decomposition of a Homography

Unique decompositions: $\quad \mathbf{H}=\mathbf{H}_{S} \mathbf{H}_{A} \mathbf{H}_{P} \quad\left(=\mathbf{H}_{P}^{\prime} \mathbf{H}_{A}^{\prime} \mathbf{H}_{S}^{\prime}\right)$

$$
\begin{aligned}
\mathbf{H}_{S} & =\left[\begin{array}{ll}
s \mathbf{R} & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right] \\
\mathbf{H}_{A} & =\left[\begin{array}{ll}
\mathbf{K} & \mathbf{0} \\
\mathbf{0}^{\top} & 1
\end{array}\right] \\
\mathbf{H}_{P} & =\left[\begin{array}{cc}
\mathbf{I} & \mathbf{0} \\
\mathbf{v}^{\top} & w
\end{array}\right]
\end{aligned}
$$

similarity
special affine
special projective
\mathbf{K} - upper triangular matrix with positive diagonal entries
\mathbf{R} - orthogonal, $\mathbf{R}^{\top} \mathbf{R}=\mathbf{I}, \operatorname{det} \mathbf{R}=1$
$s, w \in \mathbb{R}, s>0, w \neq 0$

$$
\mathbf{H}=\left[\begin{array}{cc}
s \mathbf{R K}+\mathbf{t} \mathbf{v}^{\top} & w \mathbf{t} \\
\mathbf{v}^{\top} & w
\end{array}\right]
$$

- must use 'skinny' QR decomposition, which is unique [Golub \& van Loan 1996, Sec. 5.2.6]
- $\mathbf{H}_{S}, \mathbf{H}_{A}, \mathbf{H}_{P}$ are collineation subgroups
(eg. $\mathbf{K}=\mathbf{K}_{1} \mathbf{K}_{2}, \mathbf{K}^{-1}, \mathbf{I}$ are all upper triangular with unit determinant, associativity holds)

Homography Subgroups

group	DOF	matrix	invariant properties
projective	8	$\left[\begin{array}{lll}h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33}\end{array}\right]$	incidence, concurrency, colinearity, cross-ratio, order of contact (intersection, tangency, inflection), tangent discontinuities and cusps.
affine	6	$\left[\begin{array}{ccc}a_{11} & a_{12} & t_{x} \\ a_{21} & a_{22} & t_{y} \\ 0 & 0 & 1\end{array}\right]$	$\frac{\text { all above plus: parallelism, ratio of }}{\text { areas, ratio of lengths on parallel lines, }}$linear combinations of vectors (e.g. midpoints), line at infinity $\underline{\mathbf{n}}_{\infty}($ not pointwise)

invariant properties

similarity \(4 \quad\left[\begin{array}{ccc}s \cos \phi \& s \sin \phi \& t_{x}

-s \sin \phi \& s \cos \phi \& t_{y}

0 \& 0 \& 1\end{array}\right] \quad\)| all above plus: ratio of lengths, angle, |
| :--- |
| the circular points $I=(1, i, 0)$, |
| $J=(1,-i, 0)$. |

Euclidean 3

$$
\left[\begin{array}{ccc}
\cos \phi & \sin \phi & t_{x} \\
-\sin \phi & \cos \phi & t_{y} \\
0 & 0 & 1
\end{array}\right]
$$

all above plus: length, area

Canonical Perspective Camera (Pinhole Camera, Camera Obscura)

4. optical axis O is perpendicular to π
5. principal point x_{p} : intersection of O and π
projected point in the natural image coordinate system:

6 . in this picture we are looking 'down the street'
7. perspective camera is given by C and π

$$
\frac{y^{\prime}}{1}=y^{\prime}=\frac{y}{1+z-1}=\frac{y}{z}, \quad x^{\prime}=\frac{x}{z}
$$

- Natural and Canonical Image Coordinate Systems

projected point in canonical camera

$$
\left[\begin{array}{lll}
x^{\prime} & y^{\prime} & 1
\end{array}\right]^{\top}=\left[\begin{array}{lll}
\frac{x}{z}, & \frac{y}{z}, & 1
\end{array}\right]^{\top}=\frac{1}{z}\left[\begin{array}{lll}
x, & y, & z
\end{array}\right]^{\top} \simeq \underbrace{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]}_{\mathbf{P}_{0}} \cdot\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]=\mathbf{P}_{0} \underline{\mathbf{X}}
$$

projected point in scanned image notice the chimney!

$u=f \frac{x}{z}+u_{0} \quad \frac{1}{z}\left[\begin{array}{c}f x+z u_{0} \\ f y+z v_{0} \\ z\end{array}\right] \simeq\left[\begin{array}{ccc}f & 0 & u_{0} \\ 0 & f & v_{0} \\ 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right] \cdot\left[\begin{array}{c}x \\ y \\ z \\ 1\end{array}\right]=\mathbf{K} \mathbf{P}_{0} \underline{\mathbf{X}}=\mathbf{P} \underline{\mathbf{X}}$

- 'calibration' matrix \mathbf{K} transforms canonical camera \mathbf{P}_{0} to standard projective camera \mathbf{P}

Computing with Perspective Camera Projection Matrix

$$
\begin{gathered}
\underline{\mathbf{m}}=\left[\begin{array}{l}
m_{1} \\
m_{2} \\
m_{3}
\end{array}\right]=\underbrace{\left[\begin{array}{llll}
f & 0 & u_{0} & 0 \\
0 & f & v_{0} & 0 \\
0 & 0 & 1 & 0
\end{array}\right]}_{\mathbf{P}}\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \simeq\left[\begin{array}{c}
x+\frac{z}{f} u_{0} \\
y+\frac{z}{f} v_{0} \\
\frac{z}{f}
\end{array}\right] \\
\frac{m_{1}}{m_{3}}=\frac{f x}{z}+u_{0}=u, \quad \frac{m_{2}}{m_{3}}=\frac{f y}{z}+v_{0}=v \text { when } m_{3} \neq 0
\end{gathered}
$$

f - 'focal length' - converts length ratios to pixels, $[f]=\mathrm{px}, f>0$
$\left(u_{0}, v_{0}\right)$ - principal point in pixels

Perspective Camera:

1. dimension reduction
2. nonlinear unit change $\mathbf{1} \mapsto \mathbf{1} \cdot z / f$ since $\underline{\mathbf{m}} \simeq(x, y, z / f)$ for convenience we use $P_{11}=P_{22}=f$ rather than $P_{33}=1 / f$ and the u_{0}, v_{0} in relative units
3. $m_{3}=0$ represents points at infinity in image plane $\pi \quad(z=0)$

Changing The Outer (World) Reference Frame

A transformation of a point from the world to camera coordinate system:

$$
\mathbf{X}_{c}=\mathbf{R} \mathbf{X}_{w}+\mathbf{t}
$$

\mathbf{R} - camera rotation matrix
t - camera translation vector

world orientation in the camera coordinate frame world origin in the camera coordinate frame

$$
\mathbf{P} \underline{\mathbf{X}}_{c}=\mathbf{K} \mathbf{P}_{0}\left[\begin{array}{c}
\mathbf{X}_{c} \\
1
\end{array}\right]=\mathbf{K} \mathbf{P}_{0}\left[\begin{array}{c}
\mathbf{R} \mathbf{X}_{w}+\mathbf{t} \\
1
\end{array}\right]=\mathbf{K} \mathbf{P}_{0} \underbrace{\left[\begin{array}{cc}
\mathbf{R} & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right]}_{\mathbf{T}}\left[\begin{array}{c}
\mathbf{X}_{w} \\
1
\end{array}\right]=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right] \underline{\mathbf{X}}_{w}
$$

\mathbf{P}_{0} selects the first 3 rows of \mathbf{T} and discards the last row

- \mathbf{R} is rotation, $\mathbf{R}^{\top} \mathbf{R}=\mathbf{I}, \operatorname{det} \mathbf{R}=+1$
$\mathbf{I} \in \mathbb{R}^{3,3}$ identity matrix
- 6 extrinsic parameters: 3 rotation angles (Euler theorem), 3 translation components
- alternative, often used, camera representations

$$
\mathbf{P}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]=\mathbf{K} \mathbf{R}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}
\end{array}\right]
$$

\mathbf{C} - camera position in the world reference frame
\mathbf{r}_{3}^{\top} - optical axis in the world reference frame
third row of $\mathbf{R}: \mathbf{r}_{3}=\mathbf{R}^{-1}[0,0,1]^{\top}$

- we can save some conversion and computation by noting that $\mathbf{K R}\left[\begin{array}{ll}\mathbf{I} & -\mathbf{C}\end{array}\right] \underline{\mathbf{X}}=\mathbf{K R}(\mathbf{X}-\mathbf{C})$

Changing the Inner (Image) Reference Frame

The general form of calibration matrix \mathbf{K} includes

- digitization raster skew angle θ
- pixel aspect ratio a

$$
\mathbf{K}=\left[\begin{array}{ccc}
f & -f \cot \theta & u_{0} \\
0 & f /(a \sin \theta) & v_{0} \\
0 & 0 & 1
\end{array}\right]
$$

$$
\text { units: }[f]=\mathrm{px},\left[u_{0}\right]=\mathrm{px},\left[v_{0}\right]=\mathrm{px},[a]=1
$$

$\circledast \mathrm{H} 1 ; 2$ pt: Verify this \mathbf{K}; hints: $u^{\prime} \mathbf{e}_{u^{\prime}}+v^{\prime} \mathbf{e}_{v^{\prime}}=u \mathbf{e}_{u}+v \mathbf{e}_{v}$, boldface are basis vectors, \mathbf{K} maps from an orthogonal system to a skewed system $\left[w^{\prime} u^{\prime}, w^{\prime} v^{\prime}, w^{\prime}\right]^{\top}=\mathbf{K}[u, v, 1]^{\top}$; first skew then sampling then shift by u_{0}, v_{0} deadline LD +2 wk
general finite perspective camera has 11 parameters:

- 5 intrinsic parameters: $f, u_{0}, v_{0}, a, \theta$
finite camera: $\operatorname{det} \mathbf{K} \neq 0$
- 6 extrinsic parameters: $\mathbf{t}, \mathbf{R}(\alpha, \beta, \gamma)$

$$
\underline{\mathbf{m}} \simeq \mathbf{P} \underline{\mathbf{X}}, \quad \mathbf{P}=\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]=\mathbf{K} \mathbf{R}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}
\end{array}\right]
$$

a recipe for filling \mathbf{P}

Representation Theorem: The set of projection matrices \mathbf{P} of finite projective cameras is isomorphic to the set of homogeneous 3×4 matrices with the left hand 3×3 submatrix \mathbf{Q} non-singular.

-Projection Matrix Decomposition

$$
\mathbf{P}=\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right] \quad \longrightarrow \quad \mathbf{K R}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}
\end{array}\right]=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]
$$

$\mathbf{Q} \in \mathbb{R}^{3,3} \quad$ full rank (if finite perspective cam.)
$\mathbf{K} \in \mathbb{R}^{3,3}$
$\mathbf{R} \in \mathbb{R}^{3,3}$
upper triangular with positive diagonal entries

$$
\text { rotation: } \quad \mathbf{R}^{\top} \mathbf{R}=\mathbf{I} \text { and } \operatorname{det} \mathbf{R}=+1
$$

1. $\mathbf{C}=-\mathbf{Q}^{-1} \mathbf{q}$ see next
2. RQ decomposition of $\mathbf{Q}=\mathbf{K} \mathbf{R}$ using three Givens rotations [H\&Z, p. 579]
3. $\mathbf{t}=-\mathbf{R C}$

$$
\mathbf{K}=\mathbf{Q} \underbrace{\mathbf{R}_{32} \mathbf{R}_{31} \mathbf{R}_{21}}_{\mathbf{R}^{-1}}
$$

$\mathbf{R}_{i j}$ zeroes element $i j$ in \mathbf{Q} affecting only columns i and j and the sequence preserves previously zeroed elements, e.g.

$$
\mathbf{R}_{32}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c & s \\
0 & -s & c
\end{array}\right], \quad c^{2}+s^{2}=1, \quad \text { gives } \quad c=\frac{q_{33}}{\sqrt{q_{32}^{2}+q_{33}^{2}}} \quad s=\frac{q_{32}}{\sqrt{q_{32}^{2}+q_{33}^{2}}}
$$

\circledast P1; 1pt: Multiply known matrices \mathbf{K}, \mathbf{R} and then decompose back; discuss numerical errors

- RQ decomposition nonuniqueness: $\mathbf{K R}=\mathbf{K} \mathbf{T}^{-1} \mathbf{T R}$, where $\mathbf{T}=\operatorname{diag}(-1,-1,1)$ is also a rotation, we must correct the result so that the diagonal elements of \mathbf{K} are all positive
'skinny' RQ decomposition
- care must be taken to avoid overflow, see [Golub \& van Loan 1996, sec. 5.2]

RQ Decomposition Step

```
Q=Array[q, {3, 3}];
R32 = {{1, 0, 0}, {0, c, s}, {0, -s, c}};
R32 // MatrixForm
```

```
( llll
```

Q1 = Q.R32;
Q1 // MatrixForm
s1 = Solve[\{Q1[[3]][[2]] = 0, $\left.\left.\mathrm{c}^{\wedge} 2+\mathrm{s}^{\wedge} 2=1\right\},\{c, s\}\right]$;
s1 = s1[[2]]
Q1 /. s1 // Simplify // MatrixForm

```
(q[1, 1] cq[1, 2]-sq[1,3] sq[1, 2] + cq[1, 3]}
q[2,1] cq[2,2]-sq[2,3] sq[2,2] +cq[2,3]
q[3,1] cq[3,2]-sq[3,3] sq[3,2] +cq[3,3]
```

$$
\left\{c \rightarrow \frac{q[3,3]}{\sqrt{q[3,2]^{2}+q[3,3]^{2}}}, s \rightarrow \frac{q[3,2]}{\sqrt{q[3,2]^{2}+q[3,3]^{2}}}\right\}
$$

```
(q[1, 1] -q[1,3)q[3,2]+q[1,2]q(3,3)
q[2,1] }\frac{-q[2,3]q(3,2)+q[2,2)q[3,3)}{\sqrt{}{q[3,2\mp@subsup{]}{}{2}+q[3,3\mp@subsup{]}{}{2}}
q[3, 1] 0
```

$\frac{q(1,2] q[3,2]+q(1,3) q(3,3)}{\sqrt{q(3,2)^{2}+q(1,3,)^{2}}}$
$\left.\begin{array}{l}\frac{\sqrt{q[3,2)^{2}+q[3,3)^{2}}}{q(2,2] q(3,2)+q[2,3] q(3,3)} \\ \sqrt{q(3,2]^{2}+q[3,3]^{2}} \\ \sqrt{q[3,2]^{2}+q[3,3]^{2}}\end{array}\right)$

-Center of Projection

Observation: finite \mathbf{P} has a non-trivial right null-space

Theorem

Let there be $\underline{\mathbf{B}} \neq \mathbf{0}$ s.t. $\mathbf{P} \underline{\mathbf{B}}=\mathbf{0}$. Then $\underline{\mathbf{B}}$ is equal to the projection center $\underline{\mathbf{C}}$ (in world coordinate frame).

Proof.

1. Consider spatial line $A B$ (B is given). We can write

$$
\underline{\mathbf{X}}(\lambda) \simeq \underline{\mathbf{A}}+\lambda \underline{\mathbf{B}}, \quad \lambda \in \mathbb{R}
$$

2. it images to

$$
\mathbf{P} \underline{\mathbf{X}}(\lambda) \simeq \mathbf{P} \underline{\mathbf{A}}+\lambda \mathbf{P} \underline{\mathbf{B}}=\mathbf{P} \underline{\mathbf{A}}
$$

- the whole line images to a single point \Rightarrow it must pass through the optical center of \mathbf{P}
- this holds for all choices of $A \Rightarrow$ the only common point of the lines is the C, i.e. $\underline{\mathbf{B}} \simeq \underline{\mathbf{C}}$

Hence

$$
\mathbf{0}=\mathbf{P} \underline{\mathbf{C}}=\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]\left[\begin{array}{l}
\mathbf{C} \\
1
\end{array}\right]=\mathbf{Q} \mathbf{C}+\mathbf{q} \Rightarrow \mathbf{C}=-\mathbf{Q}^{-1} \mathbf{q}
$$

$\underline{\mathbf{C}}=\left(c_{j}\right)$, where $c_{j}=(-1)^{j} \operatorname{det} \mathbf{P}^{(j)}$, in which $\mathbf{P}^{(j)}$ is \mathbf{P} with column j dropped Matlab: C_homo = null(P); or C = -Q\q;

