
IHomography

x2

x3

x1

elements of P2

(0, 0, 0)

R3 Projective plane P2: Vector space of dimension 3
excluding the zero vector, R3 \ (0, 0, 0)

but including ‘points at infinity’ and the ‘line at infinity’

factorized to linear equivalence classes (‘rays’)

Collineation: Let x1, x2, x3 be collinear points in P2 (coplanar rays in R3). Bijection
h : P2 7→ P2 is a collineation iff h(x1), h(x2), h(x3) are collinear in P2 (coplanar in R3).

bijection = 1:1, onto

• collinear image points are mapped to collinear image points lines are mapped to lines

• concurrent image lines are mapped to concurrent image lines bijection!

concurrent = intersecting at the same point
• point-line incidence is preserved

• mapping h : P2 → P2 is a collineation iff there exists a non-singular 3× 3 matrix H s.t.

h(x) ' Hx for all x ∈ P2

• homogeneous matrix representant: detH = 1
• in this course we will use the term homography but mean collineation
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Some Homographic Tasters

Rectification of camera rotation: Slides 63 (geometry), 120 (homography estimation)

Homographic Mouse for Visual Odometry: Slide TBD

illustrations courtesy of AMSL Racing Team, Meiji University and LIBVISO: Library for VISual Odometry
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IMapping Points and Lines by Homography

H−⊤

H

m′ ' Hm image point

n′ ' H−>n image line H−> = (H−1)> = (H>)−1

• incidence is preserved: (m′)>n′ 'm>H>H−>n= m>n= 0

1. collineation has 8 DOF; it is given by 4 correspondences (points, lines) in a general position

2. extending pixel coordinates to homogeneous coordinates m= (u, v,111)

3. mapping by homography, eg. m′ = Hm

4. conversion of the result m′ = (m′1,m
′
2,m

′
3) to canonical coordinates (pixels):

u′ =
m′1
m′3

111, v′ =
m′2
m′3

111

5. can use the unity for the homogeneous coordinate on one side of the equation only!
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Elementary Decomposition of a Homography

Unique decompositions: H = HS HAHP (= H′P H′AH′S)

HS =

[
sR t

0> 1

]
similarity

HA =

[
K 0

0> 1

]
special affine

HP =

[
I 0

v> w

]
special projective

K – upper triangular matrix with positive diagonal entries
R – orthogonal, R>R = I, detR = 1
s, w ∈ R, s > 0, w 6= 0

H =

[
sRK+ t v> w t

v> w

]
• must use ‘skinny’ QR decomposition, which is unique [Golub & van Loan 1996, Sec. 5.2.6]

• HS , HA, HP are collineation subgroups

(eg. K = K1K2, K−1, I are all upper triangular with unit determinant, associativity holds)
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Homography Subgroups

group DOF matrix invariant properties

projective 8

h11 h12 h13

h21 h22 h23

h31 h32 h33

 incidence, concurrency, colinearity,
cross-ratio, order of contact
(intersection, tangency, inflection),
tangent discontinuities and cusps.

affine 6

a11 a12 tx
a21 a22 ty
0 0 1

 all above plus: parallelism, ratio of
areas, ratio of lengths on parallel lines,
linear combinations of vectors (e.g.
midpoints), line at infinity n∞ (not
pointwise)

similarity 4

 s cosφ s sinφ tx
−s sinφ s cosφ ty

0 0 1

 all above plus: ratio of lengths, angle,
the circular points I = (1, i, 0),
J = (1,−i, 0).

Euclidean 3

 cosφ sinφ tx
− sinφ cosφ ty

0 0 1

 all above plus: length, area

[H&Z, R2, p. 44]
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ICanonical Perspective Camera (Pinhole Camera, Camera Obscura)

C z

(x′, y′, 1)

Ox

π

X = (x, y, z)

xp

y

1. right-handed canonical coordinate system
(x, y, z)

2. origin = center of projection C

3. image plane π at unit distance from C

4. optical axis O is perpendicular to π

5. principal point xp: intersection of O and π

6. in this picture we are looking ‘down the street’

7. perspective camera is given by C and π

Oyy y0�C z � 11 X
projected point in the natural image
coordinate system:

y′

1
= y′ =

y

1 + z − 1
=
y

z
, x′ =

x

z
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INatural and Canonical Image Coordinate Systems

projected point in canonical camera[
x′ y′ 1

]>
=
[
x
z
, y

z
, 1

]>
=

1

z

[
x, y, z

]> '
1 0 0 0
0 1 0 0
0 0 1 0


︸ ︷︷ ︸

P0

·


x
y
z
1

 = P0 X

projected point in scanned image notice the chimney!

xp = (u0; v0) (u; v)
(0; 0) uv

C z

(x′, y′, 1)

Ox

π

X = (x, y, z)

xp

y

u = f
x

z
+ u0

v = f
y

z
+ v0

1

z

f x+ z u0

f y + z v0
z

 '
f 0 u0

0 f v0
0 0 1

·
1 0 0 0
0 1 0 0
0 0 1 0

·

x
y
z
1

 = KP0 X= PX

• ‘calibration’ matrix K transforms canonical camera P0 to standard projective camera P
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IComputing with Perspective Camera Projection Matrix

m=

m1

m2

m3

 =

f 0 u0 0
0 f v0 0
0 0 1 0


︸ ︷︷ ︸

P


x
y
z
1

 '

x+ z
f
u0

y + z
f
v0

z
f



m1

m3
=
f x

z
+ u0 = u,

m2

m3
=
f y

z
+ v0 = v when m3 6= 0

f – ‘focal length’ – converts length ratios to pixels, [f ] = px, f > 0

(u0, v0) – principal point in pixels

Perspective Camera:

1. dimension reduction since P ∈ R3,4

2. nonlinear unit change 111 7→ 111 · z/f since m' (x, y, z/f)

for convenience we use P11 = P22 = f rather than P33 = 1/f and the u0, v0 in relative units

3. m3 = 0 represents points at infinity in image plane π (z = 0)
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IChanging The Outer (World) Reference Frame

A transformation of a point from the world to camera
coordinate system:

Xc = RXw + t

R; tFw F

world

cam

R – camera rotation matrix world orientation in the camera coordinate frame

t – camera translation vector world origin in the camera coordinate frame

PXc= KP0

[
Xc

1

]
= KP0

[
RXw + t

1

]
= KP0

[
R t

0> 1

]
︸ ︷︷ ︸

T

[
Xw

1

]
= K

[
R t

]
Xw

P0 selects the first 3 rows of T and discards the last row

• R is rotation, R>R = I, detR = +1 I ∈ R3,3 identity matrix

• 6 extrinsic parameters: 3 rotation angles (Euler theorem), 3 translation components

• alternative, often used, camera representations

P = K
[
R t

]
= KR

[
I −C

]
C – camera position in the world reference frame t = −RC
r>3 – optical axis in the world reference frame third row of R: r3 = R−1[0, 0, 1]>

• we can save some conversion and computation by noting that KR
[
I −C

]
X= KR(X−C)
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IChanging the Inner (Image) Reference Frame

The general form of calibration matrix K includes
• digitization raster skew angle θ
• pixel aspect ratio a

1av u (u0; v0)� K =

f −f cot θ u0

0 f/(a sin θ) v0
0 0 1


units: [f ] = px, [u0] = px, [v0] = px, [a] = 1

~ H1; 2pt: Verify this K; hints: u′eu′ + v′ev′ = ueu + vev ,
boldface are basis vectors, K maps from an orthogonal system to
a skewed system [w′u′, w′v′, w′]> = K[u, v, 1]>; first skew then
sampling then shift by u0, v0 deadline LD+2 wk

general finite perspective camera has 11 parameters:
• 5 intrinsic parameters: f , u0, v0, a, θ finite camera: detK 6= 0

• 6 extrinsic parameters: t, R(α, β, γ)

m' PX, P =
[
Q q

]
= K

[
R t

]
= KR

[
I −C

]
a recipe for filling P

Representation Theorem: The set of projection matrices P of finite projective cameras is isomorphic
to the set of homogeneous 3× 4 matrices with the left hand 3× 3 submatrix Q non-singular.

random finite camera: Q=rand(3,3); while det(Q)==0, Q=rand(3,3); end, P=[Q, rand(3,1)];3D Computer Vision: II. Perspective Camera (p. 29/208) R. Šára, CMP; rev. 1–Oct–2013



IProjection Matrix Decomposition

P =
[
Q q

]
−→ KR

[
I −C

]
= K

[
R t

]
Q ∈ R3,3 full rank (if finite perspective cam.)
K ∈ R3,3 upper triangular with positive diagonal entries
R ∈ R3,3 rotation: R

>
R = I and detR = +1

1. C = −Q−1 q see next

2. RQ decomposition of Q = KR using three Givens rotations [H&Z, p. 579]

K = Q R32R31R21︸ ︷︷ ︸
R−13. t = −RC

Rij zeroes element ij in Q affecting only columns i and j and the sequence preserves previously
zeroed elements, e.g.

R32 =

1 0 0
0 c s
0 −s c

, c2 + s2 = 1, gives c =
q33√

q232 + q233

s =
q32√

q232 + q233

~ P1; 1pt: Multiply known matrices K, R and then decompose back; discuss numerical errors

• RQ decomposition nonuniqueness: KR = KT−1TR, where T = diag(−1,−1, 1) is also a
rotation, we must correct the result so that the diagonal elements of K are all positive

‘skinny’ RQ decomposition

• care must be taken to avoid overflow, see [Golub & van Loan 1996, sec. 5.2]
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RQ Decomposition Step

Q = Array@q, 83, 3<D;
R32 = 881, 0, 0<, 80, c, s<, 80, −s, c<<;
R32 êê MatrixForm

i

k

jjjjjjj
1 0 0
0 c s
0 −s c

y

{

zzzzzzz

Q1 = Q.R32;
Q1 êê MatrixForm
s1 = Solve@8Q1@@3DD@@2DD m 0, c^2 + s^2 m 1<, 8c, s<D;
s1 = s1@@2DD
Q1 ê. s1 êê Simplify êê MatrixForm

i

k

jjjjjjj
q@1, 1D c q@1, 2D − s q@1, 3D s q@1, 2D + c q@1, 3D
q@2, 1D c q@2, 2D − s q@2, 3D s q@2, 2D + c q@2, 3D
q@3, 1D c q@3, 2D − s q@3, 3D s q@3, 2D + c q@3, 3D

y

{

zzzzzzz

9c →
q@3, 3D

cccccccccccccccccccccccccccccccccccccccccccccccccccccè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
q@3, 2D2 + q@3, 3D2

, s →
q@3, 2D

cccccccccccccccccccccccccccccccccccccccccccccccccccccè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
q@3, 2D2 + q@3, 3D2

=

i

k

jjjjjjjjjjjjj

q@1, 1D −q@1,3D q@3,2D+q@1,2D q@3,3Dcccccccccccccccccccccccccccccccccccccccccccccccccccccccè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
q@3,2D2+q@3,3D2

q@1,2D q@3,2D+q@1,3D q@3,3Dcccccccccccccccccccccccccccccccccccccccccccccccccccccè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
q@3,2D2+q@3,3D2

q@2, 1D −q@2,3D q@3,2D+q@2,2D q@3,3Dcccccccccccccccccccccccccccccccccccccccccccccccccccccccè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
q@3,2D2+q@3,3D2

q@2,2D q@3,2D+q@2,3D q@3,3Dcccccccccccccccccccccccccccccccccccccccccccccccccccccè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
q@3,2D2+q@3,3D2

q@3, 1D 0
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

q@3, 2D2 + q@3, 3D2

y

{

zzzzzzzzzzzzz
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ICenter of Projection

Observation: finite P has a non-trivial right null-space rank 3 but 4 columns

Theorem
Let there be B 6= 0 s.t. PB= 0. Then B is equal to the projection center C (in world
coordinate frame).

Proof.

1. Consider spatial line AB (B is given). We can write

X(λ) ' A+ λB, λ ∈ R B?

B = C?

A X(λ)

2. it images to
PX(λ) ' PA+ λPB= PA

• the whole line images to a single point ⇒ it must pass through the optical center of P

• this holds for all choices of A ⇒ the only common point of the lines is the C, i.e. B' C ut
Hence

0 = PC=
[
Q q

] [C
1

]
= QC+ q ⇒ C = −Q−1q

C= (cj), where cj = (−1)j detP(j), in which P(j) is P with column j dropped

Matlab: C_homo = null(P); or C = -Q\q;
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