
IRepresentation Theorem for Essential Matrices

Theorem

Let E be a 3× 3 matrix with SVD E = UDV>. Then E is essential iff D ' diag(1, 1, 0).

Proof.
Direct:

If E is an essential matrix, then UB(VW)> in (12) must be orthogonal, hence B = λI.

Converse:

E is fundamental with D = λ diag(1, 1, 0) then we do not need B (as if B = λI) and
U(VW)> is orthogonal, as required.

ut
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IEssential Matrix Decomposition

We are decomposing E to E = [−t21]×R21 = R21[−R>21t]× [H&Z, sec. 9.6]

1. compute SVD of E = UDV> and verify D = λdiag(1, 1, 0)
2. if detU < 0 transform it to −U, do the same for V the overall sign is dropped

3. compute

R21 = U

 0 α 0
−α 0 0
0 0 1


︸ ︷︷ ︸

W

V>, t21 = −β u3, |α| = 1, β 6= 0 (13)

Notes

• U(VW)>v3 = · · · = u3

• t21 is recoverable up to scale β and direction signβ

• the result for R21 is unique up to α = ±1 despite non-uniqueness of SVD

• change of sign in W rotates the solution by 180◦ about t

R1 = UWV>, R2 = UW>V> ⇒ T = R2R
>
1 = · · · = U diag(−1,−1, 1)U> which is

a rotation by 180◦ about u3 = t21:

U diag(−1,−1, 1)U>u3 = U

−1 0 0
0 −1 0
0 0 1

00
1

 = u3

• 4 solution sets for 4 sign combinations of α, β see next for geometric interpretation
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IFour Solutions to Essential Matrix Decomposition

Transform the world coordinate system so that the origin is in Camera 2. Then t21 = −b
and W rotates about the baseline b. →73

b C2C1
C1 C2

α, β −α, β (twisted by W)

C1
C2

C1
C2

α, −β (baseline reversal) −α, −β (combination of both)

• chirality constraint: all 3D points are in front of both cameras

• this singles-out the upper left case [H&Z, Sec. 9.6.3]
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I7-Point Algorithm for Estimating Fundamental Matrix

Problem: Given a set {(xi, yi)}ki=1 of k = 7 correspondences, estimate f. m. F.

y>i Fxi = 0, i = 1, . . . , k, known: xi = (u1
i , v

1
i , 1), yi = (u2

i , v
2
i , 1)

terminology: correspondence = truth, later: match = algorithm’s result; hypothesized corresp.

Solution:

D =


u1
1u

2
1 u1

1v
2
1 u1

1 u2
1v

1
1 v11v

2
1 v11 u2

1 v21 1
u1
2u

2
2 u1

2v
2
2 u1

2 u2
2v

1
2 v12v

2
2 v12 u2

2 v22 1
u1
3u

2
3 u1

3v
2
3 u1

3 u2
3v

1
3 v13v

2
3 v13 u2

3 v23 1
...

...
u1
ku

2
k u1

kv
2
k u1

k u2
kv

1
k v1kv

2
k v1k u2

k v2k 1

 D ∈ Rk,9

D vec(F) = 0, vec(F) =
[
f11 f21 f31 . . . f33

]>
, vec(F) ∈ R9,

• for k = 7 we have a rank-deficient system, the null-space of D is 2-dimensional
• but we know that detF = 0, hence

1. find a basis of the null space of D: F1, F2 by SVD or QR factorization

2. get up to 3 real solutions for αi from

det(αF1 + (1− α)F2) = 0 cubic equation in α

3. get up to 3 fundamental matrices F = αiF1 + (1− αi)F2 (check rankF = 2)

• the result may depend on image transformations
• normalization improves conditioning →87
• this gives a good starting point for the full algorithm →106
• dealing with mismatches need not be a part of the 7-point algorithm →107
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IDegenerate Configurations for Fundamental Matrix Estimation

When is F not uniquely determined from any number of correspondences? [H&Z, Sec. 11.9]

1. when images are related by homography
a) camera centers coincide C1 = C2: H = K2R21K−1

1

b) camera moves but all 3D points lie in a plane (n, d): H = K2(R21 − t21n>/d)K−1
1

• in both cases: epipolar geometry is not defined
• we do get an F from the 7-point algorithm but it is of the form of F = [s]×H with s

arbitrary (nonzero) note that [s]×H ' H′[s′]× →72

l

s

y ≃ Hx
• correspondence x↔ y

• y is the image of x: y ' Hx

• a necessary condition: y ∈ l, l' s×Hx arbitrary s

0 = y>(s×Hx) = y>[s]×Hx

2. both camera centers and all 3D points lie on a ruled quadric
hyperboloid of one sheet, cones, cylinders, two planes

• there are 3 solutions for F

notes

• estimation of E can deal with planes: [s]×H = [s]×(R21 − t21n>/d) has equal eigenvalues

iff s = t21, the decomposition works (nonunique, as before) ~ P1; 1pt for a proof

• a complete treatment with additional degenerate configurations in [H&Z, sec. 22.2]

• a stronger epipolar constraint could reject some configurations
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A Note on Oriented Epipolar Constraint

• a tighter epipolar constraint preserves orientations
• requires all points and cameras be on the same side of the plane at infinity"

b �2�1 d2d1
e2e1m1

X
C2l1 m2C1 l2

e2 ×m2 +∼ Fm1

notation: m +∼ n means m = λn, λ > 0

• note that the constraint is not invariant to the change of either sign of mi

• all 7 correspondence in 7-point alg. must have the same sign see later

• this may help reject some wrong matches, see →107 [Chum et al. 2004]

• an even more tight constraint: scene points in front of both cameras expensive

this is called chirality constraint
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I5-Point Algorithm for Relative Camera Orientation

Problem: Given {mi, m
′
i}5i=1 corresponding image points and calibration matrix K,

recover the camera motion R, t.

Obs:
1. E – 8 numbers

2. R – 3DOF, t – we can recover 2DOF only, in total 5 DOF → we need 3 constraints on E

3. E essential iff it has two equal singular values and the third is zero

This gives an equation system:

v>i Ev′i = 0 5 linear constraints (v ' K−1m)

detE = 0 1 cubic constraint

EE>E− 1

2
tr(EE>)E = 0 9 cubic constraints, 2 independent

~ P1; 1pt: verify this equation from E = UDV>, D = λ diag(1, 1, 0)

1. estimate E by SVD from v>i Ev′i = 0 by the null-space method,
2. this gives E = xE1 + yE2 + zE3 + E4

3. at most 10 (complex) solutions for x, y, z from the cubic constraints

• when all 3D points lie on a plane: at most 2 solutions (twisted-pair) can be disambiguated in 3 views

or by chirality constraint (→79) unless all 3D points are closer to one camera

• 6-point problem for unknown f [Kukelova et al. BMVC 2008]

• resources at http://cmp.felk.cvut.cz/minimal/5_pt_relative.php
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IThe Triangulation Problem

Problem: Given cameras P1, P2 and a correspondence x↔ y compute a 3D point X
projecting to x and y

λ1 x = P1X , λ2 y = P2X , x =

u1

v1

1

 , y =

u2

v2

1

 , Pi =

(pi1)>

(pi2)>

(pi3)>


Linear triangulation method

u1 (p1
3)>X = (p1

1)>X, u2 (p2
3)>X = (p2

1)>X,

v1 (p1
3)>X = (p1

2)>X, v2 (p2
3)>X = (p2

2)>X,

Gives

DX = 0, D =


u1 (p1

3)> − (p1
1)>

v1 (p1
3)> − (p1

2)>

u2 (p2
3)> − (p2

1)>

v2 (p2
3)> − (p2

2)>

 , D ∈ R4,4, X ∈ R4 (14)

• back-projected rays will generally not intersect due to image error, see next

• using Jack-knife (→63) not recommended sensitive to small error

• we will use SVD (→85)

• but the result will not be invariant to projective frame
replacing P1 7→ P1H, P2 7→ P2H does not always result in X 7→ H−1X

• note the homogeneous form in (14) can represent points at infinity
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IThe Least-Squares Triangulation by SVD

• if D is full-rank we may minimize the algebraic least-squares error

ε2(X) = ‖DX‖2 s.t. ‖X‖ = 1, X ∈ R4

• let Di be the i-th row of D, then

‖DX‖2 =

4∑
i=1

(DiX)2 =

4∑
i=1

X>D>iDiX = X>QX, where Q =

4∑
i=1

D>iDi = D>D ∈ R4,4

• we write the SVD of Q as Q =

4∑
j=1

σ2
j uju

>
j , in which [Golub & van Loan 2013, Sec. 2.5]

σ2
1 ≥ · · · ≥ σ2

4 ≥ 0 and u>l um =

{
0 if l 6= m

1 otherwise

• then X = arg min
q,‖q‖=1

q>Qq = u4

Proof (by contradiction).

q>Q q =

4∑
j=1

σ2
j q>uj u>j q =

4∑
j=1

σ2
j (u>j q)2 is a sum of non-negative elements 0 ≤ (u>j q)2 ≤ 1

Let q = u4 + q̄ s.t. q̄ ⊥ u4, then

q>Q q = σ2
4 +

3∑
j=1

σ2
j (u>j q̄)2 ≥ σ2

4
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Icont’d

• if σ4 � σ3, there is a unique solution X = u4 with residual error (DX)2 = σ2
4

the quality (conditioning) of the solution may be expressed as q = σ3/σ4 (greater is better)

Matlab code for the least-squares solver:

[U,O,V] = svd(D);

X = V(:,end);

q = O(3,3)/O(4,4);

~ P1; 1pt: Why did we decompose D and not Q = D>D?
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