» Representation Theorem for Essential Matrices

Theorem

Let E be a 3 x 3 matrix with SVD E = UDV ". Then E is essential iff D g\diag(l, 1,0).
AFO

Proof. f

Direct:

If E is an essential matrix, then UB(VW)T in (12) must be orthogonal, hence B = AL
Converse:

E is fundamental with D = A diag(1,1,0) then we do not need B (as if B = AI) and
U(VW) T is orthogonal, as required.
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»Essential Matrix Decompaosition

We are decomposing E to E = [—t21], Ra1 = Roi[-Rgit], [H&Z, sec. 9.6]

1. compute SVD of E = UDV " and verify D = Adiag(1, 1,0)
2. if det U < 0 transform it to —U, do the same for V the overall sign is dropped
3. compute

0 a O
Ru=U|-a 0 0|V", tu=-8us, la|=1, B#0  (13)
0 0 1
———
Notes w
e UVW) vy =---=uj

® to; is recoverable up to scale 8 and direction sign
® the result for R21 is unique up to o = £1 despite non-uniqueness of SVD

e change of sign in W rotates the solution by 180° about t

R =UWV' Ry =UW'V' = T =RyR, = .- = Udiag(—1,—1,1)U" which is
a rotation by 180° about uz = to;:
r na -1 0 0] o
U= | a7 | M Udiag(—1,-1,1)U us=U | 0 —1 0| |0| =us
— 0 0 1 1
"'3'
® 4 solution sets for 4 sign combinations of «, 3 see next for geometric interpretation
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»Four Solutions to Essential Matrix Decomposition

Transform the world coordinate system so that the origin is in Camera 2. Then t2; = —b
and W rotates about the baseline b. —73
v
o, —f (baseline reversal) —a, —f (combination of both)
o chirality constraint: all 3D points are in front of both cameras
e this singles-out the upper left case [H&Z, Sec. 9.6.3]
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»7-Point Algorithm for Estimating Fundamental Matrix

Problem: Given a set {(x;,:)}*_, of k = 7 correspondences, estimate f. m. F.
T . 101 2 2
X'L' F},(’L = 07 1= 17"'7k7 known: Xi = (uiavi71)7 XZ = (ui7vi71)
terminology: correspondence = truth, later: match = algorithm’s result; hypothesized corresp.
Solution: 12

u%v% u% u%v% v%v% v% u% v% 1

usvs  us  udvd wvivd vl w3 0?1
1,2 1 2,1 1.2 1 2 2
uzv3 Uz U3V3 vsv3 vz u3 vy 1 D c R*®
1,2 1 2.1 1.2 1 2 2
URVE UL URVE  VpUE  Vp  up  Vp 1
T 9
vec(F) = [fur fa far ... fas] , vec(F) € R7,

e for k = 7 we have a rank-deficient system, the null-space of D is 2-dimensional

e but we know that det F' = 0, hence
1. find a basis of the null space of D: Fq, Fa by SVD or QR factorization
2. get up to 3 real solutions for o; from

det(aF1 4+ (1 — a)F2) =0 cubic equation in «

3. get up to 3 fundamental matrices F = o;F1 + (1 — «;)F2 (check rank F = 2)
® the result may depend on image transformations
® normalization improves conditioning —87
e this gives a good starting point for the full algorithm —106
e dealing with mismatches need not be a part of the 7-point algorithm —107
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»Degenerate Configurations for Fundamental Matrix Estimation

When is F not uniquely determined from any number of correspondences? [H&Z, Sec. 11.9]

1. when images are related by homography
a) camera centers coincide 1 = Co: H = K2R21K1_1
b) camera moves but all 3D points lie in a plane (n,d): H = Ks(Ra1 — thl’lT/d)K;1

e in both cases: epipolar geometry is not defined
e we do get an F from the 7-point algorithm but it is of the form of F = [s], H with s

H arbitrary (nonzero) note that [s], H ~ H'[s'] , —72

1 ~ Hx e correspondence <+ y
y=1X e yis the image of z: y ~ Hx

e a necessary condition: y €[, 1~sx Hx arbitrary s

0= XT(S x Hx) = XT[S]XH?S

2. both camera centers and all 3D points lie on a ruled quadric
hyperboloid of one sheet, cones, cylinders, two planes

o there are 3 solutions for F —
n .
otes = ‘”"‘f""f vellrs,
e estimation of E can deal with planes: [s], H = [s], (R21 — t2in ' /d) has equal cigenvalues
iff s = t21, the decomposition works (nonunique, as before) ® P1; 1pt for a proof

® a complete treatment with additional degenerate configurations in [H&Z, sec. 22.2]
® a stronger epipolar constraint could reject some configurations
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A Note on Oriented Epipolar Constraint

e a tighter epipolar constraint preserves orientations
e requires all points and cameras be on the same side of the plane at infinity

e xmy + Fmy

notation: m + n means m = An, A >0

® note that the constraint is not invariant to the change of either sign of m;

e all 7 correspondence in 7-point alg. must have the same sign see later
e this may help reject some wrong matches, see —107 [Chum et al. 2004]
® an even more tight constraint: scene points in front of both cameras expensive

this is called chirality constraint
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»5-Point Algorithm for Relative Camera Orientation

Problem: Given {m;, m}};_; corresponding image points and calibration matrix K,
recover the camera motion R, t.
Obs:
1. E — 8 numbers
2. R - 3DOF, t — we can recover 2DOF only, in total 5 DOF — we need 3 constraints on E
3. E essential iff it has two equal singular values and the third is zero

This gives an equation system:

vi EV,=0 5 linear constraints (v =~ K_lm)
detE=0 1 cubic constraint
1 . . .
EE'E — 3 tr(EE")E =0 9 cubic constraints, 2 independent

® P1; 1pt: verify this equation from E = UDV ', D = A diag(1,1,0)

1. estimate E by SVD from v/ E v} = 0 by the null-space method,
. this gives E =@E; +(JE2 +QEs + By vedo
3. at most 10 (complex) solutions for z, y, z from the cubic constraints

N

® when all 3D points lie on a plane: at most 2 solutions (twisted-pair) can be disambiguated in 3 views
or by chirality constraint (—79) unless all 3D points are closer to one camera
® 6-point problem for unknown f [Kukelova et al. BMVC 2008]

® resources at http://cmp.felk.cvut.cz/minimal/5_pt_relative.php
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» The Triangulation Problem

Problem: Given cameras P, P and a correspondence = <+ y compute a 3D point X
projecting to x and y

lL1 U2 (pzl)T
Mx=PiX,  Joy=P:X, x=|v|, y=|v, Pi=|(p3)’
1 1 (p3) "
Linear triangulation method
u' (p3) X = (p1) " X, u® (p3) X = (p}) ' X,
o' (p3) X = (p2) "X, v* (p3) T X = (p3) " X,
Gives 1 I\T T
u (p3) — (p1)
1 I\T INT
v —
px—o, D= |,PY @) | 5o x g (14)
2 u”(p3) — (p1)
K DX | v (p3)" —(P3)"
® back-projected rays will generally not intersect due to image error, see next
e using Jack-knife (—63) not recommended sensitive to small error
e we will use SVD (—85)
e but the result will not be invariant to projective frame

replacing P1 +— P1H, Py — PyH does not always result in X — H™1X
® note the homogeneous form in (14) can represent points at infinity
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» The Least-Squares Triangulation by SVD

e if D is full-rank we may minimize the algebraic least-squares error

e (X) = |DX|* st [X|=1, XeR

e let D; be the i-th row of D, then
4

4 4
IDX|*=3 (Di X)* =3 X'D/D: X = X'QX, where Q=3 "D/D; =D'D € R’

i=1 t\,T~£L i=1 Wy, i=1
e we write the SVD of Q as Q = Zaf ujujT, in which [Golub & van Loan 2013, Sec. 2.5]
T —
&= UDU =t

0 ifl
07> >05>0 and u/ u, = ' 7“7
1 otherwise

e then X =arg min q Qq—u4
allall=1

Proof (by contradiction)

q4'Qq= Z @ u)u q= 202 (u q)? is a sum of non-negative elements 0< (u qQ)?<1

J=1 ya 2
ngi= T
Letq:m St{qLu4}thenZ "“t ' o (,(nﬂ( ﬂ, + And( 2 r (/4 ) > G\L
9=t Ky MK g Irg =1 qTQq=oi+ZUJ2‘(uj q)? > o3 2 V‘il
o0& x ¢ —1

3D Computer Vision: IV. Computing with a Camera Pair (p. 85/189) A R. Sira, CMP; rev. 10-Nov—2015 [2



»cont'd

e if 04 < 03, there is a unique solution X = uy with residual error (D X)? = o3
the quality (conditioning) of the solution may be expressed as ¢ = 03/04 (greater is better)

Matlab code for the least-squares solver:

[U,0,V] = svd(D);
X = V(:,end);
q = 0(3,3)/0(4,4);

® P1; 1pt: Why did we decompose D and not Q = D' D?
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