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Introduction

We want to find a n× 1 vector h satisfying

Ah = 0 ,

where A is m× n matrix, and 0 is n× 1 zero vector. Assume m ≥ n, and

rank(A) = n. We are obviously not interested in the trivial solution h = 0
hence, we add the constraint

‖h‖ = 1 .

Constrained least–squares minimization: Find h that minimizes ‖Ah‖
subject to ‖h‖ = 1.
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Derivation I — Lagrange multipliers

� h = argminh‖Ah‖ subject to ‖h‖ = 1. We rewrite the constraint as

1− h>h = 0
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Derivation I — Lagrange multipliers

� h = argminh‖Ah‖ subject to ‖h‖ = 1. We rewrite the constraint as

1− h>h = 0

� To find an extreme (the sought h) we must solve
∂
∂h

(
h>A>Ah + λ(1− h>h)

)
= 0 .
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� To find an extreme (the sought h) we must solve
∂
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� We derive: 2A>Ah− 2λh = 0.
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� To find an extreme (the sought h) we must solve
∂
∂h

(
h>A>Ah + λ(1− h>h)

)
= 0 .

� We derive: 2A>Ah− 2λh = 0.

� After some manipulation we end up with: (A>A− λE)h = 0 which is

the characteristic equation. Hence, we know that h is an eigenvector of

(A>A) and λ is an eigenvalue.
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Derivation I — Lagrange multipliers

� h = argminh‖Ah‖ subject to ‖h‖ = 1. We rewrite the constraint as

1− h>h = 0

� To find an extreme (the sought h) we must solve
∂
∂h

(
h>A>Ah + λ(1− h>h)

)
= 0 .

� We derive: 2A>Ah− 2λh = 0.

� After some manipulation we end up with: (A>A− λE)h = 0 which is

the characteristic equation. Hence, we know that h is an eigenvector of

(A>A) and λ is an eigenvalue.

� The least-squares error is e = h>A>Ah = h>λh.

� The error will be minimal for λ = mini λi and the sought solution is

then the eigenvector of the matrix (A>A) corresponding to the smallest

eigenvalue.
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Derivation II — SVD

� Let A = USV>, where U is m× n orthonormal, S is n× n diagonal with

descending order, and V> is n× n also orthonormal.
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Derivation II — SVD

� Let A = USV>, where U is m× n orthonormal, S is n× n diagonal with

descending order, and V> is n× n also orthonormal.

� From orthonormality of U, V follows that ‖USV>h‖ = ‖SV>h‖ and

‖V>h‖ = ‖h‖.
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Derivation II — SVD

� Let A = USV>, where U is m× n orthonormal, S is n× n diagonal with

descending order, and V> is n× n also orthonormal.

� From orthonormality of U, V follows that ‖USV>h‖ = ‖SV>h‖ and

‖V>h‖ = ‖h‖.

� Substitute y = V>h. Now, we minimize ‖Sy‖ subject to ‖y‖ = 1.

� Remember that S is diagonal and the elements are sorted descendently.

Than, it is clear that y = [0, 0, . . . , 1]>.
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Derivation II — SVD

� Let A = USV>, where U is m× n orthonormal, S is n× n diagonal with

descending order, and V> is n× n also orthonormal.

� From orthonormality of U, V follows that ‖USV>h‖ = ‖SV>h‖ and

‖V>h‖ = ‖h‖.

� Substitute y = V>h. Now, we minimize ‖Sy‖ subject to ‖y‖ = 1.

� Remember that S is diagonal and the elements are sorted descendently.

Than, it is clear that y = [0, 0, . . . , 1]>.

� From substitution we know that h = Vy from which follows that

sought h is the last column of the matrix V.
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Further reading

� Richard Hartley and Andrew Zisserman, Multiple View Geometry in

computer vision, Cambridge University Press, 2003 (2nd edition),

[Appendix A5]

� Gene H. Golub and Charles F. Van Loan, Matrix Computation, John

Hopkins University Press, 1996 (3rd edition).

� Eric W. Weisstein. Lagrange Multiplier. From MathWorld–A Wolfram

Web Resource.

http://mathworld.wolfram.com/LagrangeMultiplier.html

� Eric W. Weisstein. Singular Value Decomposition. From MathWorld–A

Wolfram Web Resource.

http://mathworld.wolfram.com/SingularValueDecomposition.html
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