Least-squares Solution of Homogeneous Equations

supportive text for teaching purposes

Revision: 1.2, dated: December 15, 2005

Tomáš Svoboda

Czech Technical University, Faculty of Electrical Engineering Center for Machine Perception, Prague, Czech Republic

svoboda@cmp.felk.cvut.cz

http://cmp.felk.cvut.cz/~svoboda

Introduction

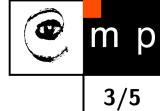
We want to find a $n \times 1$ vector **h** satisfying

$$\mathbf{Ah} = \mathbf{0}$$
,

where A is $m \times n$ matrix, and 0 is $n \times 1$ zero vector. Assume $m \ge n$, and $\operatorname{rank}(A) = n$. We are obviously not interested in the trivial solution $\mathbf{h} = \mathbf{0}$ hence, we add the constraint

$$\|\mathbf{h}\| = 1$$
.

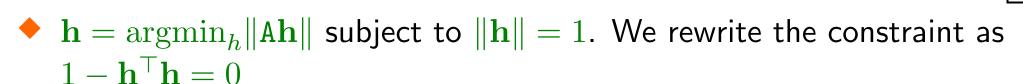
Constrained least–squares minimization: Find ${\bf h}$ that minimizes $\|{\bf A}{\bf h}\|$ subject to $\|{\bf h}\|=1$.



• $\mathbf{h} = \operatorname{argmin}_h \|\mathbf{A}\mathbf{h}\|$ subject to $\|\mathbf{h}\| = 1$. We rewrite the constraint as $1 - \mathbf{h}^{\top}\mathbf{h} = 0$

- $\mathbf{h} = \operatorname{argmin}_h \|\mathbf{A}\mathbf{h}\|$ subject to $\|\mathbf{h}\| = 1$. We rewrite the constraint as $1 \mathbf{h}^{\top}\mathbf{h} = 0$
- To find an extreme (the sought h) we must solve $\frac{\partial}{\partial \mathbf{h}} (\mathbf{h}^{\top} \mathbf{A}^{\top} \mathbf{A} \mathbf{h} + \lambda (1 \mathbf{h}^{\top} \mathbf{h})) = 0$.

- $\mathbf{h} = \operatorname{argmin}_h \|\mathbf{A}\mathbf{h}\|$ subject to $\|\mathbf{h}\| = 1$. We rewrite the constraint as $1 \mathbf{h}^{\top}\mathbf{h} = 0$
- To find an extreme (the sought h) we must solve $\frac{\partial}{\partial \mathbf{h}} \left(\mathbf{h}^{\top} \mathbf{A}^{\top} \mathbf{A} \mathbf{h} + \lambda (1 \mathbf{h}^{\top} \mathbf{h}) \right) = 0$.
- We derive: $2\mathbf{A}^{\top}\mathbf{A}\mathbf{h} 2\lambda\mathbf{h} = 0$.



- To find an extreme (the sought \mathbf{h}) we must solve $\frac{\partial}{\partial \mathbf{h}} \left(\mathbf{h}^{\top} \mathbf{A}^{\top} \mathbf{A} \mathbf{h} + \lambda (1 \mathbf{h}^{\top} \mathbf{h}) \right) = 0$.
- We derive: $2\mathbf{A}^{\top}\mathbf{A}\mathbf{h} 2\lambda\mathbf{h} = 0$.
- After some manipulation we end up with: $(\mathbf{A}^{\top}\mathbf{A} \lambda\mathbf{E})\mathbf{h} = 0$ which is the characteristic equation. Hence, we know that \mathbf{h} is an eigenvector of $(\mathbf{A}^{\top}\mathbf{A})$ and λ is an eigenvalue.

- $\mathbf{h} = \operatorname{argmin}_h \|\mathbf{A}\mathbf{h}\|$ subject to $\|\mathbf{h}\| = 1$. We rewrite the constraint as $1 \mathbf{h}^{\top}\mathbf{h} = 0$
- To find an extreme (the sought \mathbf{h}) we must solve $\frac{\partial}{\partial \mathbf{h}} \left(\mathbf{h}^{\top} \mathbf{A}^{\top} \mathbf{A} \mathbf{h} + \lambda (1 \mathbf{h}^{\top} \mathbf{h}) \right) = 0$.
- We derive: $2\mathbf{A}^{\top}\mathbf{A}\mathbf{h} 2\lambda\mathbf{h} = 0$.
- After some manipulation we end up with: $(\mathbf{A}^{\top}\mathbf{A} \lambda\mathbf{E})\mathbf{h} = 0$ which is the characteristic equation. Hence, we know that \mathbf{h} is an eigenvector of $(\mathbf{A}^{\top}\mathbf{A})$ and λ is an eigenvalue.
- The least-squares error is $e = \mathbf{h}^{\top} \mathbf{A}^{\top} \mathbf{A} \mathbf{h} = \mathbf{h}^{\top} \lambda \mathbf{h}$.

- $\mathbf{h} = \operatorname{argmin}_h \|\mathbf{A}\mathbf{h}\|$ subject to $\|\mathbf{h}\| = 1$. We rewrite the constraint as $1 \mathbf{h}^{\top}\mathbf{h} = 0$
- To find an extreme (the sought \mathbf{h}) we must solve $\frac{\partial}{\partial \mathbf{h}} \left(\mathbf{h}^{\top} \mathbf{A}^{\top} \mathbf{A} \mathbf{h} + \lambda (1 \mathbf{h}^{\top} \mathbf{h}) \right) = 0$.
- We derive: $2\mathbf{A}^{\top}\mathbf{A}\mathbf{h} 2\lambda\mathbf{h} = 0$.
- After some manipulation we end up with: $(\mathbf{A}^{\top}\mathbf{A} \lambda\mathbf{E})\mathbf{h} = 0$ which is the characteristic equation. Hence, we know that \mathbf{h} is an eigenvector of $(\mathbf{A}^{\top}\mathbf{A})$ and λ is an eigenvalue.
- The least-squares error is $e = \mathbf{h}^{\top} \mathbf{A}^{\top} \mathbf{A} \mathbf{h} = \mathbf{h}^{\top} \lambda \mathbf{h}$.
- The error will be minimal for $\lambda = \min_i \lambda_i$ and the sought solution is then the eigenvector of the matrix $(A^T A)$ corresponding to the smallest eigenvalue.

Derivation II — SVD

4/5

• Let $A = USV^{\top}$, where U is $m \times n$ orthonormal, S is $n \times n$ diagonal with descending order, and V^{\top} is $n \times n$ also orthonormal.

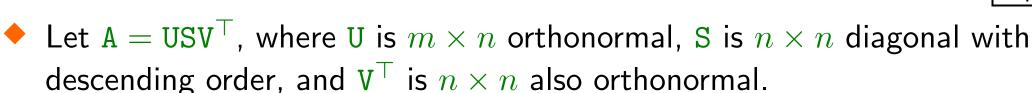
4/5

- Let $A = USV^{\top}$, where U is $m \times n$ orthonormal, S is $n \times n$ diagonal with descending order, and V^{\top} is $n \times n$ also orthonormal.
- From orthonormality of U, V follows that $\|\mathbf{USV}^{\top}\mathbf{h}\| = \|\mathbf{SV}^{\top}\mathbf{h}\|$ and $\|\mathbf{V}^{\top}\mathbf{h}\| = \|\mathbf{h}\|$.

Derivation II — SVD

- Let $A = USV^{\top}$, where U is $m \times n$ orthonormal, S is $n \times n$ diagonal with descending order, and V^{\top} is $n \times n$ also orthonormal.
- From orthonormality of U, V follows that $\|\mathbf{USV}^{\top}\mathbf{h}\| = \|\mathbf{SV}^{\top}\mathbf{h}\|$ and $\|\mathbf{V}^{\top}\mathbf{h}\| = \|\mathbf{h}\|$.
- Substitute $\mathbf{y} = \mathbf{V}^{\top}\mathbf{h}$. Now, we minimize $\|\mathbf{S}\mathbf{y}\|$ subject to $\|\mathbf{y}\| = 1$.

- Let $A = USV^{\top}$, where U is $m \times n$ orthonormal, S is $n \times n$ diagonal with descending order, and V^{\top} is $n \times n$ also orthonormal.
- From orthonormality of U, V follows that $\|\mathbf{USV}^{\top}\mathbf{h}\| = \|\mathbf{SV}^{\top}\mathbf{h}\|$ and $\|\mathbf{V}^{\top}\mathbf{h}\| = \|\mathbf{h}\|$.
- Substitute $\mathbf{y} = \mathbf{V}^{\top}\mathbf{h}$. Now, we minimize $\|\mathbf{S}\mathbf{y}\|$ subject to $\|\mathbf{y}\| = 1$.
- Remember that S is diagonal and the elements are sorted descendently. Than, it is clear that $\mathbf{y} = [0, 0, \dots, 1]^{\top}$.



- From orthonormality of U, V follows that $\|\mathbf{U}\mathbf{S}\mathbf{V}^{\top}\mathbf{h}\| = \|\mathbf{S}\mathbf{V}^{\top}\mathbf{h}\|$ and $\|\mathbf{V}^{\top}\mathbf{h}\| = \|\mathbf{h}\|$.
- Substitute $\mathbf{y} = \mathbf{V}^{\top}\mathbf{h}$. Now, we minimize $\|\mathbf{S}\mathbf{y}\|$ subject to $\|\mathbf{y}\| = 1$.
- Remember that S is diagonal and the elements are sorted descendently. Than, it is clear that $\mathbf{y} = [0, 0, \dots, 1]^{\top}$.
- From substitution we know that h = Vy from which follows that sought h is the last column of the matrix V.

- Richard Hartley and Andrew Zisserman, Multiple View Geometry in computer vision, Cambridge University Press, 2003 (2nd edition), [Appendix A5]
- Gene H. Golub and Charles F. Van Loan, Matrix Computation, John Hopkins University Press, 1996 (3rd edition).
- Eric W. Weisstein. Lagrange Multiplier. From MathWorld–A Wolfram Web Resource.
 - http://mathworld.wolfram.com/LagrangeMultiplier.html
- Eric W. Weisstein. Singular Value Decomposition. From MathWorld–A Wolfram Web Resource.
 - http://mathworld.wolfram.com/SingularValueDecomposition.html