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Talk Outline
¢ Pinhole model
¢ Camera parameters

¢ Estimation of the parameters—Camera calibration

Motivation
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parallel lines

window sizes
image units

distance from the camera

What will we learn

¢ how does the 3D world project to 2D
image plane?

@ how is a camera modeled?

@ how can we estimate the camera model?




Pinhole camera
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'http:/ /en.wikipedia.org/wiki/Pinhole_camera

Camera Obscura

*http://en.wikipedia.org/wiki/Camera_obscura

Camera Obscura — room-sized

.......

Used by the art department at the UNC at Chapel Hill

®http://en.wikipedia.org/wiki/Camera_obscura



1D Pinhole camera
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1D Pinhole camera projects 2D to 1D EE
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Problems with perspective |
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Problems with perspective Il
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How does the 3D world
project to the 2D image plane?



(@
A 3D point X in a world coordinate system ~
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A pinhole camera observes a scene ~
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Point X projects to the image plane, point x ~
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Scene projection
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(®
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3D Scene projection — observations

C

¢ 3D lines project to 2D lines
¢ but the angles change, parallel lines are no more parallel.

¢ area ratios change, note the front and backside of the house



Put the sketches into equations

3D — 2D Projection

We remember that: x = [%{, %]T
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Use the homegeneous coordinates”

Aix1X3x1] = Kzxa) [ 110 ] X

but . ..

“for the notation conventions, see the talk notes

. . we need the X in camera coordinate system

Rotate the vector:
X = R(Xw - Cu!)

Ris a 3 x 3 rotation matrix. The point
coordinates X are now in the camera
frame.

Use homogeneous coordinates to get
a matrix equation

X| |R —RC, X

1] |o0 1 1
The camera center C, is often
replaced by the translation vector

t = —-RC,,



External (extrinsic parameters)

The translation vector t and the
rotation matrix R are called External
parameters of the camera.

K[IO]{?]
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Ax = K[R t}{

Camera parameters (so far): f,R,t
Is it all? What can we model?

http://visionbook.felk.cvut.cz

video: Zoom out vs. motion away from scene

¢ How would you characterize the difference?

¢ Would you guess the motion type?

What is the geometry good for?

»

http://visionbook.felk.cvut.cz

video: Zoom out vs. motion away from scene
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Enough geometry®, look at real images

®just for a moment

From geometry to pixels and back again




Is this a stright line?

110 161 212 263 314 365 416 467 518 569 620 722 773 824 875 926 977

(®

Problems with pixels
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What are we looking at?

T T T T T T T
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525



Did you recognize it?

Pixel images revisited
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¢ There are no negative coordinates. Where is the principal point?

¢ Lines are not lines any more.

¢ Pixels, considered independently, do not carry much information.

Pixel coordinate system

Assume  normalized  geometrical
coordinates x = [x,7,1]"

u = my(—2)+ up
v myY + Vo

where m,,, m, are sizes of the pixels
and [ug,v]" are coordinates of the
principal point.




Put pixels and geometry together ~
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Az f 00
From 3D to image coordinates: | Ay | = | 0 f O [ R t ] Xax1]
A 0 01
*mu Uo T
From normalized coordinates to pixels: | v m7 Vo Y
1 1
U —fmy U
Put them together: { | v | = 0 jmv v | [R t]X
1 0 0 1

Finally: u:K[R t]X

Introducing a 3 x 4 camera projection matrix P: j u ~ PX

Non-linear distortion

Several models exist. Less standardized than the linear model. We will
consider a simple on-parameter radial distortion. x,, denote the linear image
coordinates, x; the distorted ones.

xq= (14 /{7’2)xn

where r is the distortion parameter, and 7% = 22 + y?2 is the distance from
the principal point.

Observable are the distorted pixel coordinates

uy = Kxy

Assume that we know . How to get the lines back?

Undoing Radial Distortion
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From pixels to distorted image coordinates: x; = K~ 'uy

Xd
14rr2

From distorted to linear image coordinates: x,, =
Where is the problem? 7% = 22 + 32. We have unknowns on both sides of

the equation.
Iterative solution:
1. initialize x,, = x4

2 _ .2 2

compute x, = —9d,
p n 'H_mﬂz

> W

go to 2. (and repeat few times)

And back to pixels u,, = Kx,,



®
Undoing Radial Distortion C
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video
Estimation of camera parameters—camera @
calibration 38/47

The goal: estimate the 3 x 4 camera projection matrix P and possibly the
parameters of the non-linear distortion x from images.

Assume a known projection [u,v] " of a 3D point X with known coordinates

AU P/ ))f
M | = | Pg 7
2
A P :
A PIX Mo PJX
= and =
A PJX A PJX

Re-arrange and assume® \ # 0 to get set of homegeneous equations

UXTP:;*XTPl =0

UXTP3 - XTP2 0
bsee some notes about A = 0 in the talk notes
@
Estimation of the P matrix
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UXTPfg - XTP1 =0
Q}XTP3 — XTP2 = 0

Re-shuffle into a matrix form:

~XT o7 uXT Pi
0T _XT X7 P, | = Op2x1]
P3

Al2x12)
Pl12x1]

A correspondece u; < X; forms two homogeneous equations. P has 12
parameters but scale does not matter. We need at least 6 2D < 3D pairs to
get a solution. We constitute A~ 5,12 data matrix and solve

p* = argmin||Ap| subject to ||p|| =1

which is a constrained LSQ problem. p* minimizes algebraic error



Decomposition of P into the calibration
parameters

P=[KR Kt | and C=-R't

We know that R should be 3 x 3 orthonormal, and K upper triangular.

P = P./norm(P(3,1:3));

[K,R] = rq(P(:,1:3));
t = inv(X)*P(:,4);
C = -R’*t;

See the slide notes for more details.

An example of a calibration object

20
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Reprojection for linear model

100 200 300 400 500 600

Reprojection for full model

100 200 300 400 500 600

Reprojection errors—comparison between full and
linear model

sorted 2D reprojection errors
6 T T T T T
full model
linear model

pixels

120
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