Geometry of image formation

Tomáš Svoboda, svoboda@cmp.felk.cvut.cz Czech Technical University in Prague, Center for Machine Perception http://cmp.felk.cvut.cz

Last update: November 10, 2008

Talk Outline

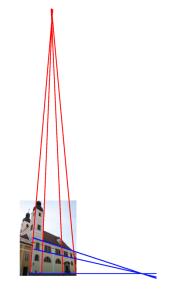
- Pinhole model
- Camera parameters
- Estimation of the parameters—Camera calibration

Motivation

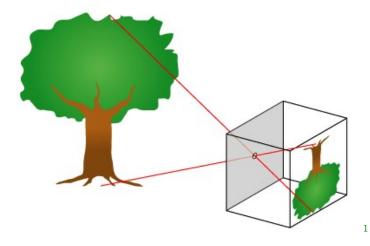
- parallel lines
- window sizes
- image units
- distance from the camera

What will we learn

- how does the 3D world project to 2D image plane?
- how is a camera modeled?
- how can we estimate the camera model?

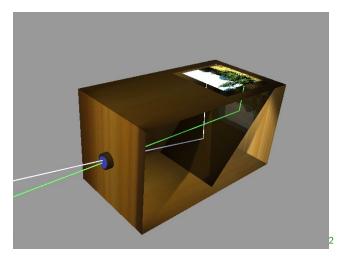


Pinhole camera



 $^{^{1}} http://en.wikipedia.org/wiki/Pinhole_camera$

Camera Obscura

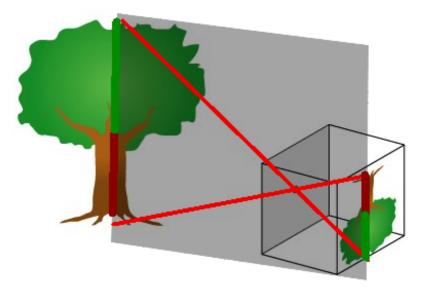


²http://en.wikipedia.org/wiki/Camera_obscura

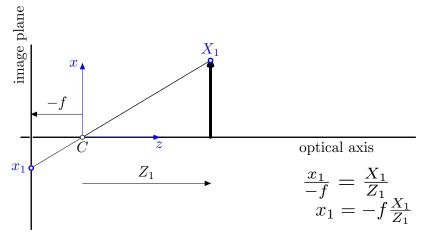
Camera Obscura — room-sized

Used by the art department at the UNC at Chapel Hill

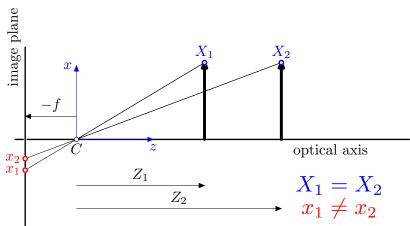
1D Pinhole camera

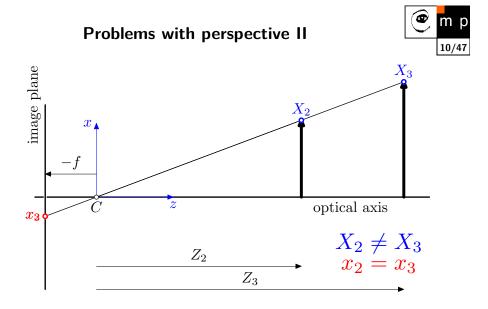


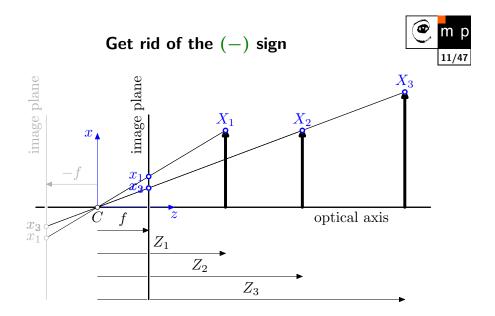
1D Pinhole camera projects 2D to 1D



Problems with perspective I

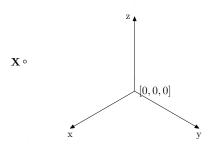




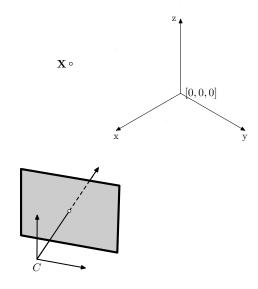


How does the 3D world project to the 2D image plane?

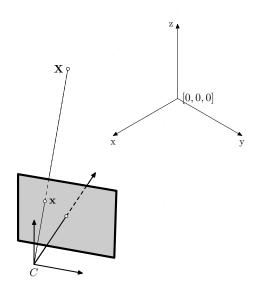
A 3D point $\mathbf X$ in a world coordinate system



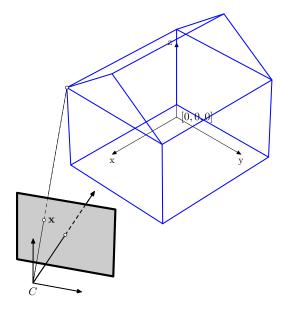
A pinhole camera observes a scene



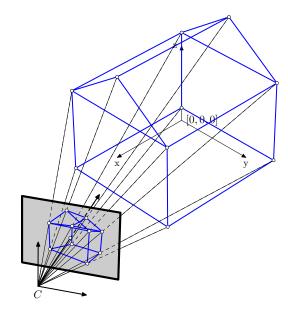
Point $\mathbf X$ projects to the image plane, point $\mathbf x$



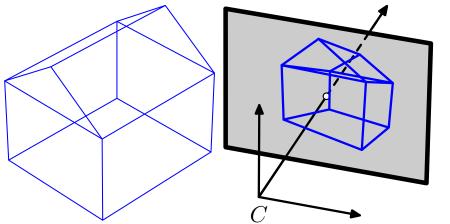
Scene projection



Scene projection



3D Scene projection – observations



- ♦ 3D lines project to 2D lines
- but the angles change, parallel lines are no more parallel.
- ♦ area ratios change, note the front and backside of the house

Put the sketches into equations

3D → 2D Projection

We remember that: $\mathbf{x} = [\frac{fX}{Z}, \frac{fY}{Z}]^{\top}$

$$\left[\begin{array}{c} \mathbf{x} \\ 1 \end{array}\right] \simeq \left[\begin{array}{c} fX \\ fY \\ Z \end{array}\right]$$

$$\begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix} \simeq \begin{bmatrix} f & 0 \\ f & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ 1 \end{bmatrix}$$

Use the homegeneous coordinates⁴

$$\lambda_{[1\times 1]}\mathbf{x}_{[3\times 1]} = \mathtt{K}_{[3\times 3]}\left[\begin{array}{c} \mathtt{I}|\mathbf{0} \end{array} \right] \mathbf{X}_{[4\times 1]}$$

but . . .

\ldots we need the $\mathbf X$ in camera coordinate system

Rotate the vector:

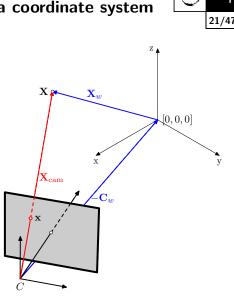
$$\mathbf{X} = R(\mathbf{X}_w - \mathbf{C}_w)$$

R is a 3×3 rotation matrix. The point coordinates ${\bf X}$ are now in the camera frame.

Use homogeneous coordinates to get a matrix equation

$$\left[\begin{array}{c} \mathbf{X} \\ 1 \end{array}\right] = \left[\begin{array}{cc} \mathbf{R} & -\mathbf{R}\mathbf{C}_w \\ \mathbf{0} & 1 \end{array}\right] \left[\begin{array}{c} \mathbf{X}_w \\ 1 \end{array}\right]$$

The camera center \mathbf{C}_w is often replaced by the translation vector



φX

⁴for the notation conventions, see the talk notes

External (extrinsic parameters)

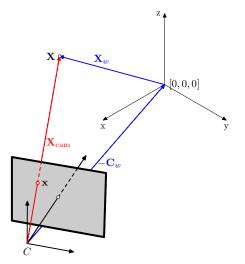
m p

The translation vector $\mathbf t$ and the rotation matrix R are called External parameters of the camera.

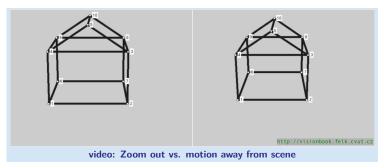
$$\mathbf{x} \ \simeq \ \mathtt{K} \left[\ \mathtt{I} | \mathbf{0} \ \right] \left[\begin{array}{c} \mathbf{X} \\ 1 \end{array} \right]$$

$$\lambda \mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{X}_w \\ 1 \end{bmatrix}$$

Camera parameters (so far): $f, \mathbb{R}, \mathbf{t}$ Is it all? What can we model?

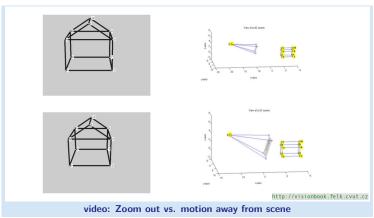


What is the geometry good for?



- ♦ How would you characterize the difference?
- Would you guess the motion type?

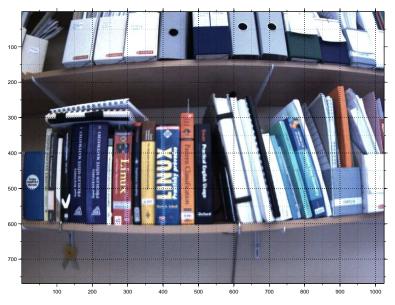
What is the geometry good for?



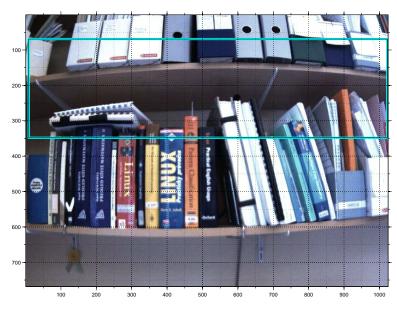
Enough geometry⁵, look at real images

⁵just for a moment

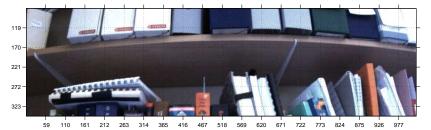
From geometry to pixels and back again



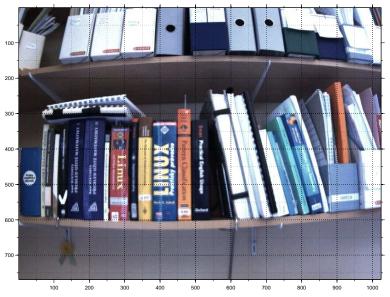
Problems with pixels



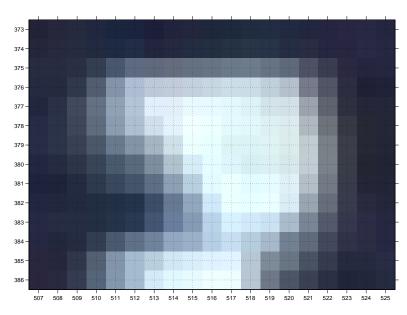
Is this a stright line?



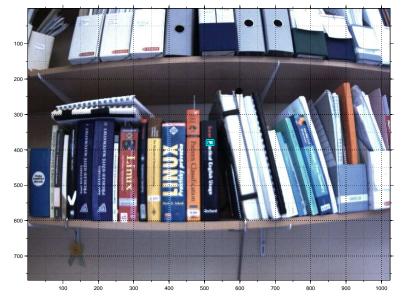
Problems with pixels



What are we looking at?



Did you recognize it?



Pixel images revisited

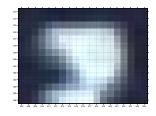
- ♦ There are no negative coordinates. Where is the principal point?
- Lines are not lines any more.
- ♦ Pixels, considered independently, do not carry much information.

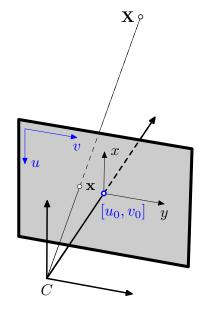
Pixel coordinate system

Assume normalized geometrical coordinates $\mathbf{x} = [x,y,1]^\top$

$$u = m_u(-x) + u_0$$
$$v = m_v y + v_0$$

where m_u, m_v are sizes of the pixels and $[u_0, v_0]^{\top}$ are coordinates of the principal point.





Put pixels and geometry together

From 3D to image coordinates:
$$\left[\begin{array}{c} \lambda x \\ \lambda y \\ \lambda \end{array} \right] = \left[\begin{array}{ccc} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{array} \right] \left[\begin{array}{ccc} \mathbf{R} & \mathbf{t} \end{array} \right] \mathbf{X}_{[4 \times 1]}$$

From normalized coordinates to pixels:
$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} -m_u & 0 & u_0 \\ 0 & m_v & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Put them together:
$$\frac{1}{\lambda}\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} -fm_u & 0 & u_0 \\ 0 & fm_v & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \mathbf{X}$$

Finally: $\mathbf{u} \simeq \mathbb{K} \left[\begin{array}{cc} \mathbb{R} & \mathbf{t} \end{array} \right] \mathbf{X}$

Introducing a 3×4 camera projection matrix P: $\mathbf{u} \simeq P\mathbf{X}$

Non-linear distortion

Several models exist. Less standardized than the linear model. We will consider a simple on-parameter radial distortion. \mathbf{x}_n denote the linear image coordinates, \mathbf{x}_d the distorted ones.

$$\mathbf{x}_d = (1 + \kappa r^2)\mathbf{x}_n$$

where κ is the distortion parameter, and $r^2 = x_n^2 + y_n^2$ is the distance from the principal point.

Observable are the distorted pixel coordinates

$$\mathbf{u}_d = K\mathbf{x}_d$$

Assume that we know κ . How to get the lines back?

Undoing Radial Distortion

From pixels to distorted image coordinates: $\mathbf{x}_d = \mathtt{K}^{-1}\mathbf{u}_d$

From distorted to linear image coordinates: $\mathbf{x}_n = \frac{\mathbf{x_d}}{1+\kappa r^2}$

Where is the problem? $r^2 = x_n^2 + y_n^2$. We have unknowns on both sides of the equation.

Iterative solution:

- 1. initialize $\mathbf{x}_n = \mathbf{x}_d$
- 2. $r^2 = x_n^2 + y_n^2$
- 3. compute $\mathbf{x}_n = \frac{\mathbf{x}_d}{1 + \kappa r^2}$
- 4. go to 2. (and repeat few times)

And back to pixels $\mathbf{u}_n = K\mathbf{x}_n$

Undoing Radial Distortion

Estimation of camera parameters—camera calibration

The goal: estimate the 3×4 camera projection matrix P and possibly the parameters of the non-linear distortion κ from images.

Assume a known projection $[u,v]^{\top}$ of a 3D point $\mathbf X$ with known coordinates

$$\begin{bmatrix} \lambda u \\ \lambda v \\ \lambda \end{bmatrix} = \begin{bmatrix} \mathbf{P}_1^\top \\ \mathbf{P}_2^\top \\ \mathbf{P}_3^\top \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$\frac{\lambda u}{\lambda} = \frac{\mathbf{P}_1^\top \mathbf{X}}{\mathbf{P}_3^\top \mathbf{X}} \ \text{ and } \ \frac{\lambda v}{\lambda} = \frac{\mathbf{P}_2^\top \mathbf{X}}{\mathbf{P}_3^\top \mathbf{X}}$$

Re-arrange and assume $\lambda \neq 0$ to get set of homegeneous equations

$$u\mathbf{X}^{\top}\mathbf{P}_{3} - \mathbf{X}^{\top}\mathbf{P}_{1} = 0$$
$$v\mathbf{X}^{\top}\mathbf{P}_{3} - \mathbf{X}^{\top}\mathbf{P}_{2} = 0$$

Estimation of the P matrix

$$u\mathbf{X}^{\top}\mathbf{P}_{3} - \mathbf{X}^{\top}\mathbf{P}_{1} = 0$$
$$v\mathbf{X}^{\top}\mathbf{P}_{3} - \mathbf{X}^{\top}\mathbf{P}_{2} = 0$$

Re-shuffle into a matrix form:

$$\underbrace{\begin{bmatrix} -\mathbf{X}^\top & \mathbf{0}^\top & u\mathbf{X}^\top \\ \mathbf{0}^\top & -\mathbf{X}^\top & v\mathbf{X}^\top \end{bmatrix}}_{\mathbf{A}_{[2\times12]}} \underbrace{\begin{bmatrix} \mathbf{P}_1 \\ \mathbf{P}_2 \\ \mathbf{P}_3 \end{bmatrix}}_{\mathbf{P}_{[12\times1]}} = \mathbf{0}_{[2\times1]}$$

A correspondece $\mathbf{u}_i \leftrightarrow \mathbf{X}_i$ forms two homogeneous equations. P has 12 parameters but scale does not matter. We need at least 6 2D \leftrightarrow 3D pairs to get a solution. We constitute $\mathbf{A}_{[\geq 12 \times 12]}$ data matrix and solve

$$\mathbf{p}^* = \operatorname{argmin} \|\mathbf{A}\mathbf{p}\| \text{ subject to } \|\mathbf{p}\| = 1$$

⁶see some notes about $\lambda = 0$ in the talk notes

Decomposition of ${\mathbb P}$ into the calibration parameters

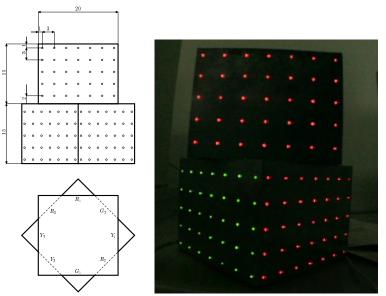
$$\mathbf{P} = [\ \mathbf{KR} \ \ \mathbf{Kt} \] \ \ \mathrm{and} \ \ \mathbf{C} = -\mathbf{R}^{-1}\mathbf{t}$$

We know that R should be 3×3 orthonormal, and K upper triangular.

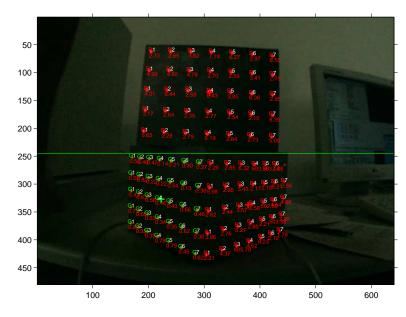
```
P = P./norm(P(3,1:3));
[K,R] = rq(P(:,1:3));
t = inv(K)*P(:,4);
C = -R'*t;
```

See the slide notes for more details.

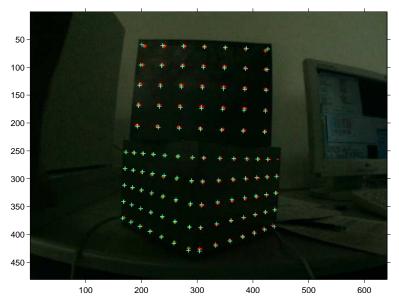
An example of a calibration object



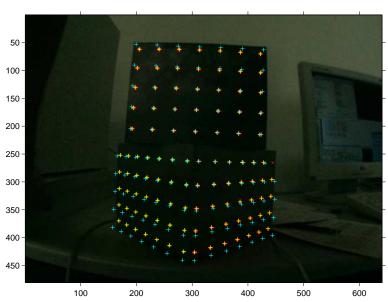
2D projections localized



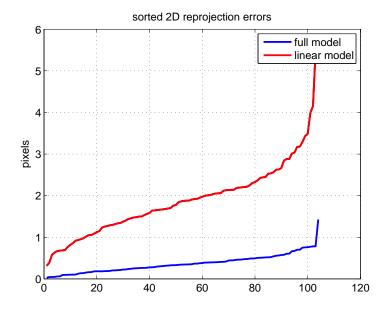
Reprojection for linear model



Reprojection for full model



Reprojection errors—comparison between full and linear model



References

The book [2] is the ultimate reference. It is a must read for anyone wanting use cameras for 3D computing.

Details about matrix decompositions used throughout the lecture can be found at $\left[1\right]$

- [1] Gene H. Golub and Charles F. Van Loan. Matrix Computation. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, USA, 3rd edition, 1996.
- [2] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer vision. Cambridge University, Cambridge, 2nd edition, 2003.

End

