

## Pseudoinverse

## Moore-Penrose Generalized Matrix

Inverse
Given an $m \times n$ matrix $B$, the Moore-Penrose generalized matrix inverse (sometimes called the pseudoinverse) is a unique $n \times m$ matrix $\mathrm{B}^{+}$which satisfies

$$
\begin{align*}
\mathrm{BB}^{+} \mathrm{B} & =\mathrm{B}  \tag{1}\\
\mathrm{~B}^{+} \mathrm{BB}^{+} & =\mathrm{B}^{+}  \tag{2}\\
\left(\mathrm{BB}^{+}\right)^{\mathrm{T}} & =\mathrm{BB}^{+}  \tag{3}\\
\left(\mathrm{B}^{+} \mathrm{B}\right)^{\mathrm{T}} & =\mathrm{B}^{+} \mathrm{B} . \tag{4}
\end{align*}
$$

It is also true that

$$
\begin{equation*}
\mathbf{z}=\mathrm{B}^{+} \mathbf{c} \tag{5}
\end{equation*}
$$

is the shortest length least squares solution to the problem

$$
\begin{equation*}
\mathrm{B}=\mathbf{c} \tag{6}
\end{equation*}
$$

If the inverse of $\left(B^{T} B\right)$ exists, then

$$
\begin{equation*}
\mathrm{B}^{+}=\left(\mathrm{B}^{\mathrm{T}} \mathrm{~B}\right)^{-1} \mathrm{~B}^{\mathrm{T}} \tag{7}
\end{equation*}
$$

where $B^{T}$ is the matrix transpose, as can be seen by premultiplying both sides of (7) by $\mathrm{B}^{\mathrm{T}}$ to create a SQUARE MATRIX which can then be inverted,

$$
\begin{equation*}
\mathrm{B}^{\mathrm{T}} \mathrm{~B}_{\mathbf{z}}=\mathrm{B}^{\mathrm{T}} \mathbf{c} \tag{8}
\end{equation*}
$$

giving

$$
\begin{equation*}
\mathbf{z}=\left(\mathrm{B}^{\mathrm{T}} \mathrm{~B}\right)^{-1} \mathrm{~B}^{\mathrm{T}} \mathbf{c} \equiv \mathrm{~B}^{+} \mathbf{c} \tag{9}
\end{equation*}
$$

[^0]

## 1 Homework:

Assume that a Fundamental matrix F is known. Derive the epipoles $\mathbf{e}^{1}$ and $\mathbf{e}^{2}$. Shortly comment your derivations. Hint: All epipolar lines intersect in epipoles. Hence, $\mathbf{e}^{2 \top} \mathrm{Fu}_{i}^{1}$ holds for any $i$.

## Essential matrix

For the Fundamental matrix we derived

$$
\mathbf{u}_{i}^{1^{\top}} \underbrace{\left(\left[\mathbf{e}^{2}\right]_{\times} \mathrm{P}^{2} \mathrm{P}^{1^{+}}\right)^{\top}}_{\mathrm{F}} \mathbf{u}_{i}^{2}=0
$$

u denote point coordinates in pixels. Let coincide the world system with the coordinate system of the first camera.

$$
\mathbf{u}^{1}=K^{1}\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right] \mathbf{X} \quad \mathbf{u}^{2}=K^{2}\left[\begin{array}{ll}
\mathrm{R} & \mathbf{t}
\end{array}\right] \mathbf{X}
$$

Remind the normalized image coordinates $x=K^{-1} \mathbf{u}$. We can define normalized cameras $\mathrm{x}=\hat{\mathrm{P} X}$ and insert the equation above.

$$
\mathbf{x}_{i}^{1^{\top}} \underbrace{\left(\left[\mathbf{x}_{\mathrm{e}}^{2}\right]_{\times} \hat{\mathrm{P}}^{2}\left(\hat{\mathrm{P}}^{1}\right)^{+}\right)^{\top}}_{\mathrm{E}} \mathbf{x}_{i}^{2}=0
$$

where E is the Essential matrix

Historically, the Essential matrix was introduced before the Fundamental matrix by Longuet-Higgins in his very seminal paper [5].
$\square$

## References

[1] H.C. Longuett-Higgins. A computer algorithm for reconstruction a scene from two projections. Nature, 293:133-135, 1981.


[^0]:    Just cropped from the CRC Encyclopedia of Mathematics (temporary solution).

