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Talk Outline
¢ Epipolar geometry
¢ Estimation of the Fundamental matrix
¢ Camera motion

@ Reconstruction of scene structure
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Motivation
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Two projections of a rigid 3D scene
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¢ The projections are clearly different.
¢ Can the difference tell something about the camera positions?

@ and about the scene structure?

It can! (to both)
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Can we find a relation between corresponding
projections regardless of the scene structure?

(®

Back project the ray
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The correponding projection must lie on
a specific line

Xg = AP Tul + C1| 25

We already know: e* = P2C!
Projection to the camera 2: u2 = P2(AP! "u} + C)

Line is a cross product of the points lying on it: e x uZ = 12
Putting together: e x (P2AP' " u} + P2C?) = 12

Clearly €2 x P2C! = 0, then: 2 x AP2P1 ul =12

T : : : :
But we also know 12 u? = 0 since the point u3 must lie on the line 13.
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Derivation of the Fundamental matrix, cont.
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e? x )\PQPHu}, =12
T . L : :
But we also know 12 u? = 0 since the point u3 must lie on the line.

0 —€3 €9

Introducing a small matrix trick [e], = | e3 0 —e;

—ey e 0
we may rewrite the cross product as a matrix multiplication
12 = ([eZ}X/\PZPﬁ) ug

. T :
Inserting into 13 u3 = 0 yields:

T/ ‘ T
ug ([ez]x/\PZPﬁ) ug =0

S
F

2To 1
uj Fug =0
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T . .
u? Fu! = 0 holds for any corresponding pair u}, u?.
F does not depend on the scene structure, only on cameras.

All epipolar lines intersect in epipoles.

Epipolar geometry—overview

11/37

http://visionbook. felk.cvut.cz

video: 3D sketch of Epipolar geometry

Epipolar geometry—what is it good for




Epipolar geometry—what is it good for




Fundamental matrix, so what . . .

Motion and 3D structure is where?

Essential matrix

For the Fundamental matrix we derived

-
u1T<[eQ]XPQPl+) u? =0

(3

| —
F

u denote point coordinates in pixels. Let coincide the world system with the
coordinate system of the first camera.

u'=k'[1 0]X w=K*[R t|X

Remind the normalized image coordinates x = K~ 'u. We can define
normalized cameras x = PX and insert the equation above.

where E is the Essential matrix

Essential matrix — cont’d
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E = [x2 P2(BY)" x2 = p2C!
= & [Rt][1 0] ~ [r t]{?]
- [Xz]xR -t

E comprises the motion between cameras!

. . . oT
after simple manipulation, we see E = K? FK!



Decomposition of the E

Suppose E = Udiag(1,1,0) V" and

0 -1 0 0 10
Ww=1]1 0 O and Z=1| -1 0 0
0 1 0 00

then, for a given E and P! = [I]0], there are four possible solutions for P?

P2 = [UVW | 4 us] or [UVW'| — us] or [UVTW'| + us] or [UVTW | — us]

More details on the blackboard or in [3]'.

'The relevant chapter 9, is available on the web, http://www.robots.ox.ac.uk/~vgg/hzbook/hzbook2/
HZepipolar.pdf

Fourfold ambiguity of the E decomposition
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?Sketch from [2].
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3D scene reconstruction—Linear method p
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A scene point X is observed by two cameras P! and P2. Assume we know its
projections [u/, v/] T

.
u="PX, u= g%i u(ps X) — p{ X = 0, the same derivation for v and for
3

both cameras:

o1t 1T

u p3 P1

vipi — p}”

2. o1 ol [ X ] - [ 0 ]
up3 —P1

T T
v’p3 - p3

Set of linear homogeneous equations. A standard LSQ solution® may be

used.

Not an optimal solution. It minimizes algebraic not geometric error. More
methods can be found in [3, Chapter 12]

3file:///home.zam/svoboda/Vyuka/ComputerVision/Lectures.eng/Supporting/constrained_
1sq.pdf



Errors in reconstruction

¢ the bigger angle between rays the better reconstruction, however . . .

@ also the more difficult image matching

“Sketch borrowed from [2]

Problems with image matching

Good for matching, bad for reconstruction

Problems with image matching

Good for recontruction, bad for matching



Estimation of F or E from corresponding point
pairs

oT
u? Fu; =0

7
for any pair of matching points. Each matching pair gives one linear
equation
wul i1 + vl fro +ufiz... =0

which may be rewritten an a vector inner product
[wPut, vt u? vt vt v et vt 1 =0
A set of n pairs forms a set of linear equations

wul vl w? viul odol o ul ol 1

Af = ; ; ; ; ; P o+ | £f=0

2,1 ,2,1 ,2 ,2,1 ,2.1 ,2 ,1 .1
UpUy UnUy U Vply VpUn Vs U, U, 1

Estimation of F—normalized 8-point

Solution of

u%u% ’LL%U]l u% ﬁu{ 1)12@’11 ’U]Q ’LL} Ull 1

Af = : : : : : : : o+ [ =0
2,1 2,1

121 129 u2 2
Uiy USVy Uy VnU

2.1 2 1
n UnUn Uy U, U 1

is a standard LSQ solution®
Point normalization
Consider a point pair u' = [150, 250, 1] ", u? = [250, 350, 1] ". It is clear

that row elements in A are unbalanced.

a' =[10%10% 103 106,10°, 103,103,103, 10

This influences the numerical stability. Solution: normalization of the point
coordinates before computation.

°file:///home.zam/svoboda/Vyuka/ComputerVision/Lectures.eng/Supporting/constrained_
1sq.pdf
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Estimation of F—normalized 8-point algorithm
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Transform the coordinates of points so that the centroid is at the origin of
coordinates nad RMS distance is equal to /2.

! = Thu! and 4? = T?u?, where T* are 3 x 3 normalizing matrices
including translation nad scaling.

Compute F by using the standard LSQ method, t?"Fa! = 0 . Denormalize
the solution F = T2 FT!

Historical remarks

The linear algorithm for estimation epipolar geometry (calibrated
case—essential matrix) was suggest in [5]. The normalization for the
uncalibrated case (fundamental matrix) was introduced in [4].



Point normalization
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Zero motion
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we derived

E = [t]R

what happens if t = 07

Common t = 0 case—Image Panoramas




What are the differences in images @
general motion 31/37

i

What are the differences in images @
general motion 32/37

¢ objects in different depths make occlusions

¢ the mapping is certainly not 1:1

What are the differences in images
rotation

]




What are the differences in images @
rotation 34/37
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Risl ard Hartiey and Andrew Zisserman

@ no occlusions

¢ the mapping may be 1:1

(®

Mapping between images
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References
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The book [3] is the ultimate reference. It is a must read for anyone wanting use cameras for 3D computing.

Details about matrix decompositions used throughout the lecture can be found at [1]
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