Two-view geometry

Tomáš Svoboda, svoboda@cmp.felk.cvut.cz

Czech Technical University in Prague, Center for Machine Perception http://cmp.felk.cvut.cz
Last update: December 8, 2008

Talk Outline

- Epipolar geometry
- Estimation of the Fundamental matrix
- Camera motion
- Reconstruction of scene structure

Two projections of a rigid 3D scene

- The projections are clearly different.
- Can the difference tell something about the camera positions?
- and about the scene structure?

It can! (to both)

4/37

Can we find a relation between corresponding projections regardless of the scene structure?

Back project the ray

Project the camera center to the second image

Derivation of the Fundamental matrix

We already know: $\mathrm{e}^{2}=\mathrm{P}^{2} \mathbf{C}^{1}$
Projection to the camera 2: $\mathbf{u}_{9}^{2}=\mathrm{P}^{2}\left(\lambda \mathrm{P}^{1+} \mathbf{u}_{9}^{1}+\mathbf{C}^{1}\right)$
Line is a cross product of the points lying on it: $\mathbf{e}^{2} \times \mathbf{u}_{9}^{2}=\mathbf{l}_{9}^{2}$
Putting together: $\mathrm{e}^{2} \times\left(\mathrm{P}^{2} \lambda \mathrm{P}^{1+} \mathbf{u}_{9}^{1}+\mathrm{P}^{2} \mathbf{C}^{1}\right)=\mathbf{l}_{9}^{2}$
Clearly $\mathbf{e}^{2} \times \mathrm{P}^{2} \mathbf{C}^{1}=0$, then: $\mathbf{e}^{2} \times \lambda \mathrm{P}^{2} \mathrm{P}^{1+} \mathbf{u}_{9}^{1}=\mathbf{l}_{9}^{2}$
But we also know $\mathbf{l}_{9}^{2 \top} \mathbf{u}_{9}^{2}=0$ since the point \mathbf{u}_{9}^{2} must lie on the line \mathbf{l}_{9}^{2}.

Derivation of the Fundamental matrix, cont.
$\mathbf{e}^{2} \times \lambda \mathrm{P}^{2} \mathrm{P}^{1+} \mathbf{u}_{9}^{1}=\mathbf{l}_{9}^{2}$
But we also know $l_{9}^{2 \top} \mathbf{u}_{9}^{2}=0$ since the point \mathbf{u}_{9}^{2} must lie on the line.
Introducing a small matrix trick $[\mathbf{e}]_{\times}=\left[\begin{array}{ccc}0 & -e_{3} & e_{2} \\ e_{3} & 0 & -e_{1} \\ -e_{2} & e_{1} & 0\end{array}\right]$
we may rewrite the cross product as a matrix multiplication $\mathbf{l}_{9}^{2}=\left(\left[\mathbf{e}^{2}\right]_{\times} \lambda \mathrm{P}^{2} \mathrm{P}^{1^{+}}\right) \mathbf{u}_{9}^{1}$
Inserting into $\mathbf{l}_{9}^{2 \top} \mathbf{u}_{9}^{2}=0$ yields:

$$
\mathbf{u}_{9}^{1^{\top}} \underbrace{\left(\left[\mathbf{e}^{2}\right]_{\times} \lambda \mathrm{P}^{2} \mathrm{P}^{1^{+}}\right)^{\top}}_{\mathrm{F}} \mathbf{u}_{9}^{2}=0
$$

$$
\mathbf{u}_{9}^{2^{\top} \mathrm{F} \mathbf{u}_{9}^{1}=0}
$$

$\mathbf{u}_{i}^{2 \top} \mathrm{~F} \mathbf{u}_{i}^{1}=0$ holds for any corresponding pair $\mathbf{u}_{i}^{1}, \mathbf{u}_{i}^{2}$.
F does not depend on the scene structure, only on cameras.
All epipolar lines intersect in epipoles.

video: 3D sketch of Epipolar geometry

Epipolar geometry-what is it good for
12/37

Epipolar geometry-what is it good for

Epipolar geometry-what is it good for

Epipolar geometry-what is it good for

Motion and 3D structure is where?

Essential matrix

For the Fundamental matrix we derived

$$
\mathbf{u}_{i}^{1^{\top}} \underbrace{\left(\left[\mathbf{e}^{2}\right]_{\times} \mathrm{P}^{2} \mathrm{P}^{1^{+}}\right)^{\top}}_{\mathrm{F}} \mathbf{u}_{i}^{2}=0
$$

u denote point coordinates in pixels. Let coincide the world system with the coordinate system of the first camera.

$$
\mathbf{u}^{1}=K^{1}\left[\begin{array}{ll}
\mathrm{I} & \mathbf{0}
\end{array}\right] \mathbf{X} \quad \mathbf{u}^{2}=K^{2}\left[\begin{array}{ll}
\mathrm{R} & \mathbf{t}
\end{array}\right] \mathbf{X}
$$

Remind the normalized image coordinates $\mathbf{x}=\mathrm{K}^{-1} \mathbf{u}$. We can define normalized cameras $\mathrm{x}=\hat{\mathrm{P}} \mathbf{X}$ and insert the equation above.

$$
\mathbf{x}_{i}^{1^{\top}} \underbrace{\left(\left[\mathbf{x}_{\mathrm{e}}^{2}\right]_{\times} \hat{\mathrm{P}}^{2}\left(\hat{\mathrm{P}}^{1}\right)^{+}\right)^{\top}}_{\mathrm{E}} \mathbf{x}_{i}^{2}=0
$$

where E is the Essential matrix

Essential matrix - cont'd

$$
\begin{aligned}
\mathrm{E} & =\left[\mathbf{x}_{\mathbf{e}}^{2}\right]_{\times} \hat{\mathrm{P}}^{2}\left(\hat{\mathrm{P}}^{1}\right)^{+} & \mathbf{x}_{\mathbf{e}}^{2} & =\hat{\mathrm{P}}^{2} \mathbf{C}^{1} \\
& =\left[\mathbf{x}_{\mathbf{e}}^{2}\right]_{\times}\left[\begin{array}{ll}
\mathrm{R} & \mathbf{t}
\end{array}\right]\left[\begin{array}{ll}
\mathrm{I} & \mathbf{0}
\end{array}\right]^{+} & & =\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right]\left[\begin{array}{l}
\mathbf{0} \\
1
\end{array}\right] \\
& =\left[\mathbf{x}_{\mathbf{e}}^{2}\right]_{\times} \mathrm{R} & & =\mathbf{t}
\end{aligned}
$$

$$
E=[t]_{\times R}
$$

E comprises the motion between cameras!

after simple manipulation, we see $E=K^{2 \top} \mathrm{FK}^{1}$

Suppose $\mathrm{E}=\mathrm{U} \operatorname{diag}(1,1,0) \mathrm{V}^{\top}$ and

$$
\mathrm{W}=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \text { and } \mathrm{Z}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

then, for a given E and $\hat{\mathrm{P}}^{1}=[\mathrm{I} \mid 0]$, there are four possible solutions for $\hat{\mathrm{P}}^{2}$

$$
\hat{\mathrm{P}}^{2}=\left[\mathrm{UVW}^{\top} \mid+\mathbf{u}_{3}\right] \text { or }\left[U V W^{\top} \mid-\mathbf{u}_{3}\right] \text { or }\left[\mathrm{UV}^{\top} \mathrm{W}^{\top} \mid+\mathbf{u}_{3}\right] \text { or }\left[\mathrm{UV}^{\top} \mathrm{W}^{\top} \mid-\mathbf{u}_{3}\right]
$$

More details on the blackboard or in $[3]^{1}$.
${ }^{1}$ The relevant chapter 9, is available on the web, http://www.robots.ox.ac.uk/~vgg/hzbook/hzbook2/ HZepipolar.pdf

Fourfold ambiguity of the E decomposition

(a)

(d)
${ }^{2}$ Sketch from [2]

3D scene reconstruction-Linear method

A scene point \mathbf{X} is observed by two cameras P^{1} and P^{2}. Assume we know its projections $\left[u^{j}, v^{j}\right]^{\top}$
$\mathbf{u}=\mathrm{PX}, u=\frac{\mathbf{p}_{1}^{\top} \mathbf{X}}{\mathbf{p}_{3}^{\top} \mathbf{X}}, u\left(\mathbf{p}_{3}^{\top} \mathbf{X}\right)-\mathbf{p}_{1}^{\top} \mathbf{X}=0$, the same derivation for v and for both cameras:

$$
\left[\begin{array}{c}
u^{1} \mathbf{p}_{3}^{1}{ }^{\top}-\mathbf{p}_{1}^{1}{ }^{\top} \\
v^{1} \mathbf{p}_{3}^{1 \top}-\mathbf{p}_{2}^{1}{ }^{\top} \\
u^{2} \mathbf{p}_{3}^{2 \top}-\mathbf{p}_{1}^{2 \top} \\
v^{2} \mathbf{p}_{3}^{2 \top}-\mathbf{p}_{2}^{2 \top}
\end{array}\right][\mathbf{X}]=[\mathbf{0}]
$$

Set of linear homogeneous equations. A standard LSQ solution ${ }^{3}$ may be used.

Not an optimal solution. It minimizes algebraic not geometric error. More methods can be found in [3, Chapter 12]

[^0]

* the bigger angle between rays the better reconstruction, however . . .
- also the more difficult image matching
${ }^{4}$ Sketch borrowed from [2]

Problems with image matching

Good for matching, bad for reconstruction

Problems with image matching

Good for recontruction, bad for matching

Estimation of F or E from corresponding point pairs

$$
\mathbf{u}_{i}^{2^{\top}} \mathrm{F} \mathbf{u}_{i}^{1}=0
$$

for any pair of matching points. Each matching pair gives one linear equation

$$
u^{2} u^{1} f_{11}+u^{2} v^{1} f_{12}+u^{2} f_{13} \ldots=0
$$

which may be rewritten an a vector inner product

$$
\left[u^{2} u^{1}, u^{2} v^{1}, u^{2}, v^{2} u^{1}, v^{2} v^{1}, v^{2}, u^{1}, v^{1}, 1\right] \mathbf{f}=0
$$

A set of n pairs forms a set of linear equations

$$
\mathbf{A} \mathbf{f}=\left[\begin{array}{ccccccccc}
u_{1}^{2} u_{1}^{1} & u_{1}^{2} v_{1}^{1} & u_{1}^{2} & v_{1}^{2} u_{1}^{1} & v_{1}^{2} v_{1}^{1} & v_{1}^{2} & u_{1}^{1} & v_{1}^{1} & 1 \\
\vdots & \vdots \\
u_{n}^{2} u_{n}^{1} & u_{n}^{2} v_{n}^{1} & u_{n}^{2} & v_{n}^{2} u_{n}^{1} & v_{n}^{2} v_{n}^{1} & v_{n}^{2} & u_{n}^{1} & v_{n}^{1} & 1
\end{array}\right] \mathbf{f}=\mathbf{0}
$$

Estimation of F—normalized 8-point algorithm

Solution of

$$
\mathbf{A} \mathbf{f}=\left[\begin{array}{ccccccccc}
u_{1}^{2} u_{1}^{1} & u_{1}^{2} v_{1}^{1} & u_{1}^{2} & v_{1}^{2} u_{1}^{1} & v_{1}^{2} v_{1}^{1} & v_{1}^{2} & u_{1}^{1} & v_{1}^{1} & 1 \\
\vdots & \vdots \\
u_{n}^{2} u_{n}^{1} & u_{n}^{2} v_{n}^{1} & u_{n}^{2} & v_{n}^{2} u_{n}^{1} & v_{n}^{2} v_{n}^{1} & v_{n}^{2} & u_{n}^{1} & v_{n}^{1} & 1
\end{array}\right] \mathbf{f}=\mathbf{0}
$$

is a standard LSQ solution ${ }^{5}$

Point normalization

Consider a point pair $\mathbf{u}^{1}=[150,250,1]^{\top}, \mathbf{u}^{2}=[250,350,1]^{\top}$. It is clear that row elements in A are unbalanced.

$$
\mathbf{a}^{\top}=\left[10^{6}, 10^{6}, 10^{3}, 10^{6}, 10^{6}, 10^{3}, 10^{3}, 10^{3}, 10^{0}\right]
$$

This influences the numerical stability. Solution: normalization of the point coordinates before computation.
${ }^{5}$ file:///home.zam/svoboda/Vyuka/ComputerVision/Lectures.eng/Supporting/constrained_ lsq.pdf

Estimation of F-normalized 8-point algorithm

Transform the coordinates of points so that the centroid is at the origin of coordinates nad RMS distance is equal to $\sqrt{2}$.
$\hat{\mathbf{u}}^{1}=\mathrm{T}^{1} \mathbf{u}^{1}$ and $\hat{\mathbf{u}}^{2}=\mathrm{T}^{2} \mathbf{u}^{2}$, where T^{i} are 3×3 normalizing matrices including translation nad scaling.

Compute \hat{F} by using the standard LSQ method, $\hat{\mathbf{u}}^{2 \top} \hat{F} \hat{\mathbf{u}}^{1}=0$. Denormalize the solution $\mathrm{F}=\mathrm{T}^{2}{ }^{\top} \hat{\mathrm{F}} \mathrm{T}^{1}$

Historical remarks

The linear algorithm for estimation epipolar geometry (calibrated case-essential matrix) was suggest in [5]. The normalization for the uncalibrated case (fundamental matrix) was introduced in [4].

Zero motion

we derived

$$
E=[\mathbf{t}]_{\times} R
$$

what happens if $t=0$?

Common $\mathrm{t}=0$ case-Image Panoramas

What are the differences in images
general motion

What are the differences in images
general motion

- objects in different depths make occlusions
- the mapping is certainly not $1: 1$

What are the differences in images
rotation

rotation
34/37

- no occlusions
- the mapping may be $1: 1$

Mapping between images

References

The book [3] is the ultimate reference. It is a must read for anyone wanting use cameras for 3D computing.
Details about matrix decompositions used throughout the lecture can be found at [1]
[1] Gene H. Golub and Charles F. Van Loan. Matrix Computation. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, USA, 3rd edition, 1996.
[2] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge, UK, 2000. On-line resources at:
http://www.robots.ox.ac.uk/~vgg/hzbook/hzbook1.html.
[3] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer vision. Cambridge University, Cambridge, 2nd edition, 2003.
[4] Richard I. Hartley. In defense of the eight-point algorithm. IEEE Transaction on Pattern Analysis and Machine Intelligence, 19(6):580-593, June 1997.
[5] H.C. Longuett-Higgins. A computer algorithm for reconstruction a scene from two projections. Nature, 293:133-135, 1981.
@mp
37/37

[^0]: ${ }^{3}$ file:///home.zam/svoboda/Vyuka/ComputerVision/Lectures.eng/Supporting/constrained_ lsq.pdf

