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Motivation
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Two projections of a rigid 3D scene

The projections are clearly different.
Can the difference tell something about the

and about the ?
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Two projections of a rigid 3D scene
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The projections are clearly different.
Can the difference tell something about the ?

and about the ?

It can! (to both)
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Can we find a relation between corresponding
projections regardless of the scene structure?
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Back project the ray
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Project the camera center to the second image
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The correponding projection must lie on @
a specific line myee

AV,

e2 — p2C! pt
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We already know: e® = P2C!
Projection to the camera 2: u2 = P2(A\P! "u} + C!)

Line is a cross product of the points lying on it: e® x u = 13
Putting together: €2 x (P2AP! " ul + P2C!) = 12

Clearly e* x PC' = 0, then: e* x )\P2P1+u$ =17

T . . . .
But we also know 15 u3 = 0 since the point uj must lie on the line 13.
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Derivation of the Fundamental matrix, cont.

e® x AP?P! "u} = 12

T . . . .
But we also know 13 u3 = 0 since the point uj must lie on the line.

0 —E€3 €9
Introducing a small matrix trick [e], = | e3 0 —e;
—€E9 €1 0

we may rewrite the cross product as a matrix multiplication
12 = ([e2]x)\P2P1+) ul

L T .
Inserting into 15 uj = 0 yields:

-
-
u; ([e2]x)\P2P1+) u; =0

N

F

2 gl
u; Fug =20



http://cmp.felk.cvut.cz

1 ;42

T .
u? Fu, = 0 holds for any pair u;, u?.

i
F does not depend on the scene structure, only on cameras.

All intersect in
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Epipolar geometry—overview
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http://visionbook. felk.cvut.cz

video: 3D sketch of Epipolar geometry
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Epipolar geometry—what is it good for

BT t

_Li
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Fundamental matrix, so what . ..

16/37

Motion and 3D structure is where?
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Essential matrix

17/37

For the Fundamental matrix we derived

.
u1T([e2]XP2P1+) u? =0

u denote point coordinates in pixels. Let coincide the world system with the
coordinate system of the first camera.

u=K[I 0]X uw'=K[R t]|X

Remind the normalized image coordinates x = K~ 'u. We can define
normalized cameras x = PX and insert the equation above.

A T
x! ([x2,B2PYT) xF =0
E

where E is the Essential matrix
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Essential matrix — cont’d

18/37

E = [x2 P?(PY)" x. = P°C!
= kI [rRt][T 0] - [R t}[(”
= [xZ] R
e =

[Tl
|
G

X
mv)

E comprises the motion between cameras!

. . . T
after simple manipulation, we see E = K* FK!
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Decomposition of the E
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Suppose E = Udiag(1,1,0)V' and

—1 0
0 O and Z= | —1
0 1

-

=

|
O = O
o O =
o O O

-

then, for a given E and P! = [I]0], there are four possible solutions for P?

P2 =[UVW'|+ us] or [UVW'|—us]or [UV'W'|+ us] or [UV'W'|— ug]

More details on the blackboard or in [3]'.

"The relevant chapter 9, is available on the web, http://www.robots.ox.ac.uk/~vgg/hzbook/hzbook2/
HZepipolar.pdf
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Fourfold ambiguity of the E decomposition

7

A

(@) (b)

B
y > B’ A
(c) (d)

*Sketch from [2].

20/37



http://cmp.felk.cvut.cz

© i

3D scene reconstruction—Linear method
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A scene point X is observed by two cameras P! and P%. Assume we know its
projections [u/, v7/] "
p; X T T -
u="PX, u= plT—X, (p3 X) — py X = 0, the same derivation for v and for
3
both cameras: ) .
I L L
U "P3 P1
1,17 1"
U'P3 — P2
T ST | [X]=[0]
u’p;  — Pi
T T
vpP3 —P3

Set of linear homogeneous equations. A standard LSQ solution® may be
used.

Not an optimal solution. It minimizes algebraic not geometric error. More
methods can be found in [3, Chapter 12]

Shttp://cmp.felk.cvut.cz/cmp/courses/Y33R0V/Y33R0OV_ZS20082009/Lectures/Supporting/
constrained_lsq.pdf
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Errors in reconstruction

22/37

¢ the bigger angle between rays the better reconstruction, however . . .

¢ also the more difficult image matching

*Sketch borrowed from [2]
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Problems with image matching

Good for matching, bad for reconstruction
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Problems with image matching

8

Good for recontruction, bad for matching
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Estimation of F or E from corresponding point @ o

pairs 25/37
T
u; Fu; =0

for any pair of matching points. Each matching pair gives one linear
equation
w u' fi1 +uv' fra +ulfiz... =0

which may be rewritten an a vector inner product

[w?ut, u?ot, u?, viut, v*ot v ut vt 1] =0

A set of n pairs forms a set of linear equations

wjui  ujvy ui viul viv; vd ui v 1
Af = : : : : : o+ : 1 | =0
2,1 2.1 .2 2.1 ,2.1 .2 1 .1

Uy, UV, Us VoW, VU, U U, U, ]
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Estimation of F—normalized 8-point algorithm

26/37
Solution of
wiui  ujvy ui viul viv; ve ul v 1
Af = : : : : : o 1 [£=0
2,1 ,2,1 .2 2.1 .21 .2 _1 1
urU, UV, Us USU, VU, V- U, U, 1

is a standard LSQ solution®

Point normalization

Consider a point pair u' = [150,250, 1] ", u? = [250, 350, 1] ". It is clear
that row elements in A are unbalanced.

a' =[10° 10° 103,106, 10%, 103, 10°, 103, 10°]

This influences the numerical stability. Solution: normalization of the point

coordinates before computation.

*http://cmp.felk.cvut.cz/cmp/courses/Y33R0V/Y33ROV_ZS20082009/Lectures/Supporting/
constrained_lsq.pdf



http://cmp.felk.cvut.cz
http://cmp.felk.cvut.cz/cmp/courses/Y33ROV/Y33ROV_ZS20082009/Lectures/Supporting/constrained_lsq.pdf
http://cmp.felk.cvut.cz/cmp/courses/Y33ROV/Y33ROV_ZS20082009/Lectures/Supporting/constrained_lsq.pdf
http://cmp.felk.cvut.cz/cmp/courses/Y33ROV/Y33ROV_ZS20082009/Lectures/Supporting/constrained_lsq.pdf

) |
=k

27/37

Estimation of F—normalized 8-point algorithm

Transform the coordinates of points so that the centroid is at the origin of
coordinates nad RMS distance is equal to /2.

u! = T'u! and 4% = T?u?, where T* are 3 x 3 normalizing matrices
including translation nad scaling.

Compute F by using the standard LSQ method, 0> 'Fa! = 0 . Denormalize
the solution F = T2 FT!

Historical remarks

The linear algorithm for estimation epipolar geometry (calibrated
case—essential matrix) was suggest in [5]. The normalization for the
uncalibrated case (fundamental matrix) was introduced in [4].
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0
Point normalization
28/37
original points normalized points
100 o8 ‘ ‘ ‘ 2 ‘
@ @ @ o on . + * + R by )
@ % ® © 1.5} PRt + +
80¢ ® G + +
® ® © o Fo 1+ " n L F+ ]
S ® @ + 4 + 4+
) % ® ® © @ o % 0.5 + + + + + 4 _‘lF—i—
60} ® + A
® @ & + +
® ® ® O + 4+ + + +
O] ©) ©) 4+ + +
®©9 © ® @ @ -1r ++ + + " +, +
20® ® Ole) ® @@ ® ® i + + ++ 4+ n +
_1.5} +
® ® + L R +
@
0 o o} 9 5@ > + I G+
0 20 40 60 80 100 -2 —1 0 1 2


http://cmp.felk.cvut.cz

Zero motion

X
E = [t|«R /
N

what happens if t = 07 Image 1 X /

29/37

we derived
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Common t = 0 case—Image Panoramas
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What are the differences in images @ s
general motion 31/37

-—-—"""'.'- .
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What are the differences in images @ s
general motion 32/37

¢ objects in different depths make occlusions

¢ the mapping is certainly not 1:1
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What are the differences in images @ :
rotation 33/37
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What are the differences in images @ :
rotation 34/37

Ricl el Hartbey and &ndrew Tisserman

€ no occlusions

¢ the mapping may be 1:1
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Mapping between images
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The book [3] is the ultimate reference. It is a must read for anyone wanting use cameras for 3D computing.
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