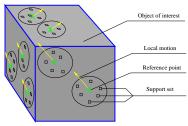
An Optimal Sequence of Learned Motion Estimators

Karel Zimmermann¹, Jiří Matas¹, Tomáš Svoboda^{1,2}

- 1: Center for Machine Perception
- ²: Center for Applied Cybernetics Czech Technical University Prague, Czech Republic

Introduction

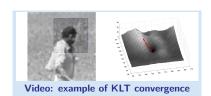


Tracking objectives:

- Fast
- Accurate
- Robust

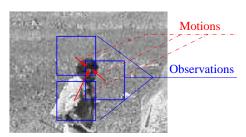
State-of-the-art: Tracking by gradient optimization

- Minimize dissimilarity: $\mathbf{t} = \arg\min_{\mathbf{t}} \sum \left(I(\mathbf{x} + \mathbf{t}) J(\mathbf{x}) \right)^2$
 - [1] S.Baker and I.Matthews, Lucas-Kanade 20 Years On: A Unifying Framework, International Journal of Computer Vision, pp.221-255, 2004



- Drawbacks:
 - Convergence to a local minimum
 - Unknown basin of attraction
 - Criterial function

State-of-the-art: Tracking by regression



$$\Phi(\text{\tiny $(0,0)$})=\text{\tiny $(0,0)$}^\text{\tiny $(0,0)$} \quad \Phi(\text{\tiny $(0,0)$})=\text{\tiny $(-14,2)$}^\text{\tiny $(0,0)$} \quad \Phi(\text{\tiny $(0,0)$})=\text{\tiny $(-14,-14)$}^\text{\tiny $(0,0)$}$$

$$\Phi^{\left(\bullet\bullet\bullet\right)=\ (12,7)^T}\ \Phi^{\left(\bullet\bullet\bullet\right)=\ (-9,18)^T}\ \Phi^{\left(\bullet\bullet\bullet\right)=\ (-16,-12)^T}$$

There is an inverse relation approximated by mapping

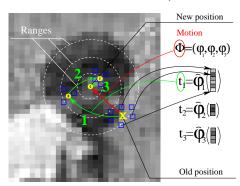
 Φ : intensities around a point \rightarrow motion

State-of-the-art: Tracking by regression

- Linear motion regression: $\mathbf{t} = \mathbb{H}(I(\mathbf{x}) J(\mathbf{x}))$
 - [2] T.Cootes, G.Edwards, and C.Taylor, Active Appearance Model, Pattern Analysis and Machine Intelligence, pp.681-685, 2001
 - [3] F.Jurie and M.Dhome, Real time robust template matching, British Machine Vision Conference, pp.123-131, 2002
- ◆ Non-linear motion regression: RVM
 - [4] O.Williams, A.Blake and R.Cipolla, Sparse Bayesian Learning for Efficient Visual Tracking, Pattern Analysis and Machine Intelligence, pp.1292-1304, 2005

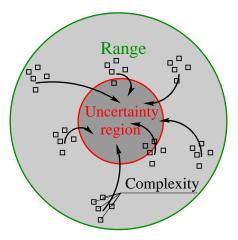
Our approach

• Sequential motion regression: $\mathbf{t} = \varphi_h \Big(\dots I \Big(\mathbf{x} + \varphi_1(I(\mathbf{x})) \Big) \Big)$



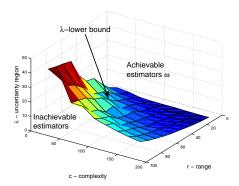
- We are looking for a sequence of predictors $\Phi = [\varphi_1, \varphi_2, \dots \varphi_h]$ with the lowest complexity.
 - How many iterations h are required?
 - How many pixels are neccesary for each iteration?
 - What neighbouring pixels are used?

Uncertainty region



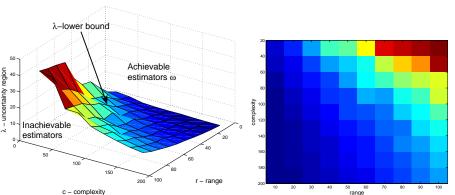
- lacktriangledown Range r the set of admissible motions.
- ◆ **Complexity** *c* cardinality of support set.
- Uncertainty region λ the region within which all the estimations lie.

Optimal sequence of optimal predictors



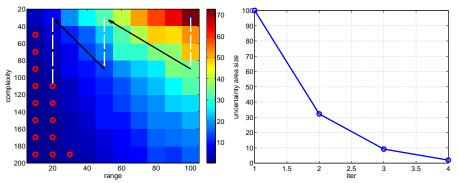
- **Predictors** $\phi_i(c, r, \lambda)$ lie in a subspace of the (c, r, λ) -space.
- Optimal sequence of predictors is a sequence $\Phi = [\varphi_1, \varphi_2, \dots \varphi_h]$ with the lowest total complexity $\sum c_i$ given:
 - range r_1 of the first predictor
 - uncertainty region λ_h of the last predictor.
 - $r_{i+1} \ge \lambda_i, i = 1, \dots, h-1.$

An optimal sequence



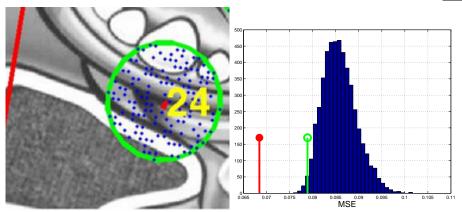
- Only those predictors lying on the λ -lower bound of the set of achievable predictors can create an optimal sequence $\hat{\Theta}$.
- Given (c,r), minimax task is solved to find the predictor with the smallest uncertainty region.
- Color codes the size of the uncertainty region.

Searching for an optimal sequence.



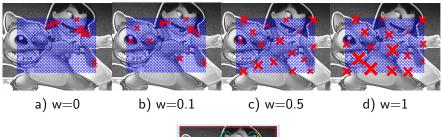
- ◆ Dynamic programming searches for an optimal sequence of predictors.
- ◆ The algorithm searches for the cheapest path to a sufficiently small uncertainty region.
- In each state either complexity is increased or the next iteration initialized.

Support set selection



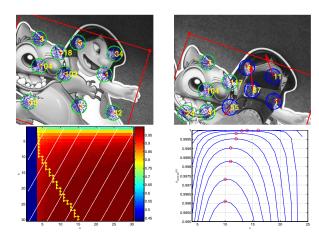
- Greedy LSQ selection (red) of an efficient support set.
- \bullet Much better than $1\%\mbox{-quantile (green)}$ achieavable by randomized sampling

Online selection of an active predictor set



- Greedy online selection.
- Trade-off between abilities of local predictors and coverage of an object.
- Strong features may not provide good tracking results.

${\rm Ransac}$ iterations \times Number of predictors



- Probability of successful tracking as a function of number of ransac iterations and predictors.
- We maximize the probability, given a time, we are allowed to spent with the motion estimation in the actual frame,

Motion blur, fast motion, views from acute angles and other image distortions.

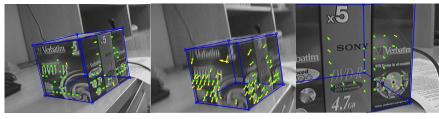
Video: fast motion

Video: acute angles

Video: bending

Video: illumination

Experiments: 3D fast blured tracking



a) slow motion

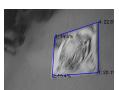
b) fast blured motion

c) close view

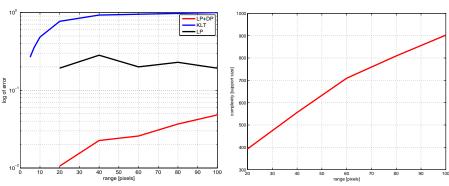
Experiments: Results on sequences 2000-7000 frames.

object	processing	loss-of-locks	mean-error
mouse pad minmax	18.9 fps	13/6935	[1.3%, 1.8%, 1.5%, 1.6%]
mouse pad sift	0.5 fps	281/6935	[1.6%, 1.2%, 1.5%, 1.4%]
towel minmax	21.8 fps	5/3229	[3.0%, 2.2%, 1.4%, 1.9%]
phone minmax	$16.8 \mathrm{fps}$	20/1799	[1.2%, 1.8%, 2.6%, 1.9%]

- ◆ Data captured at 22.7fps frame-rate.
- Comparison to SIFT detector.

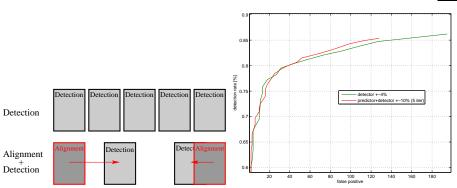


Experiments: Comparison with KLT.



- ◆ Much lower complexity and substantionally smaller error rate.
- If the number of iteration is constant than error rate is independent of the range.

Experiments: Application to a face detector.



	memory accesses	summations	multiplications
Alignment	15	30	30
Detector	25	25	0
Align+Det	6.5	9	5

Conclusion

- Drawbacks:
 - Learning required.
 - Predictor range is limited by the size of the object.
- Advantages:
 - Very fast motion estimation ($30\mu s$ per predictor).
 - Ability to cover arbitrary cases (bluring, change of appearance).
 - Automatic setup of tracking procedure.