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Introduction

Video: 3D tracking
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Tracking objectives:

� Fast

� Accurate

� Robust
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State-of-the-art: Tracking by gradient
optimization

� Minimize dissimilarity: t = arg mint
∑(

I(x + t)− J(x)
)2

• [1] S.Baker and I.Matthews, Lucas-Kanade 20 Years On: A
Unifying Framework, International Journal of Computer Vision,
pp.221-255, 2004

Video: example of KLT convergence Video: example of KLT divergence

� Drawbacks:

• Convergence to a local minimum

• Unknown basin of attraction

• Criterial function
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State-of-the-art: Tracking by regression
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� There is an inverse relation approximated by mapping

Φ : intensities around a point→ motion
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State-of-the-art: Tracking by regression

� Linear motion regression: t = H
(
I(x)− J(x)

)

• [2] T.Cootes, G.Edwards, and C.Taylor, Active Appearance Model,
Pattern Analysis and Machine Intelligence, pp.681-685, 2001

• [3] F.Jurie and M.Dhome, Real time robust template matching,
British Machine Vision Conference, pp.123-131, 2002

� Non-linear motion regression: RVM

• [4] O.Williams, A.Blake and R.Cipolla, Sparse Bayesian Learning
for Efficient Visual Tracking, Pattern Analysis and Machine
Intelligence, pp.1292-1304, 2005
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Our approach

� Sequential motion regression: t = ϕh

(
. . . I

(
x + ϕ1(I(x))

))

1 2
Φ=(ϕ,ϕ,ϕ)

3

Ranges

X

o

o
o

2

1

3

New position

t =1 ϕ1

Motion

t =3 ϕ3

t =2 ϕ2

Old position

� We are looking for a sequence of predictors Φ = [ϕ1, ϕ2, . . . ϕh] with
the lowest complexity.
• How many iterations h are required?
• How many pixels are neccesary for each iteration?
• What neighbouring pixels are used?
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Uncertainty region

Range

Complexity

Uncertainty
region

� Range r the set of admissible motions.
� Complexity c cardinality of support set.
� Uncertainty region λ the region within which all the estimations lie.
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Optimal sequence of optimal predictors
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� Predictors φi(c, r, λ) lie in a subspace of the (c, r, λ)-space.
� Optimal sequence of predictors is a sequence Φ = [ϕ1, ϕ2, . . . ϕh]
with the lowest total complexity

∑
ci given:

• range r1 of the first predictor
• uncertainty region λh of the last predictor.
• ri+1 ≥ λi, i = 1, . . . , h− 1.
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An optimal sequence
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� Only those predictors lying on the λ-lower bound of the set of
achievable predictors can create an optimal sequence Θ̂.

� Given (c,r), minimax task is solved to find the predictor with the
smallest uncertainty region.

� Color codes the size of the uncertainty region.
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Searching for an optimal sequence.
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� Dynamic programming searches for an optimal sequence of predictors.
� The algorithm searches for the cheapest path to a sufficiently small
uncertainty region.

� In each state either complexity is increased or the next iteration
initialized.
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Support set selection
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� Greedy LSQ selection (red) of an efficient support set.

� Much better than 1%-quantile (green) achieavable by randomized
sampling
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Online selection of an active predictor set

a) w=0 b) w=0.1 c) w=0.5 d) w=1

Video: occlusions

� Greedy online selection.
� Trade-off between abilities of local predictors and coverage of an object.
� Strong features may not provide good tracking results.
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Ransac iterations × Number of predictors
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� Probability of successful tracking as a function of number of ransac
iterations and predictors.

� We maximize the probability, given a time, we are allowed to spent with
the motion estimation in the actual frame,
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Motion blur, fast motion, views from acute angles
and other image distortions.

Video: 3D tracking Video: fast motion Video: blured motion

Video: acute angles Video: bending Video: illumination

Video: pseudo planar Video: occlusions Video: occlusions
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Experiments: 3D fast blured tracking

a) slow motion b) fast blured motion c) close view
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Experiments: Results on sequences 2000-7000
frames.

object processing loss-of-locks mean-error
mouse pad minmax 18.9fps 13/6935 [1.3%, 1.8%, 1.5%, 1.6%]
mouse pad sift 0.5fps 281/6935 [1.6%, 1.2%, 1.5%, 1.4%]
towel minmax 21.8fps 5/3229 [3.0%, 2.2%, 1.4%, 1.9%]
phone minmax 16.8fps 20/1799 [1.2%, 1.8%, 2.6%, 1.9%]

� Data captured at 22.7fps frame-rate.

� Comparison to SIFT detector.
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Experiments: Comparison with KLT.
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� Much lower complexity and substantionally smaller error rate.

� If the number of iteration is constant than error rate is independent of
the range.

18/19
Experiments: Application to a face detector.
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detector +−4%
predictor+detector +−10% (5 iter)

memory accesses summations multiplications
Alignment 15 30 30
Detector 25 25 0
Align+Det 6.5 9 5
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Conclusion

� Drawbacks:

• Learning required.

• Predictor range is limited by the size of the object.

� Advantages:

• Very fast motion estimation (30µs per predictor).

• Ability to cover arbitrary cases (bluring, change of appearance).

• Automatic setup of tracking procedure.


