RANSAC RANdom SAmple Consensus Tomáš Svoboda, svoboda@cmp.felk.cvut.cz courtesy of Ondřej Chum, Jiří Matas Czech Technical University in Prague, Center for Machine Perception http://cmp.felk.cvut.cz #### Talk Outline Last update: November 4, 2008; - importance for computer vision - principle - line fitting - epipolar geometry #### Importance for Computer Vision - published in 1981 as a model fitting method [2] - on of the most cited papers in computer vision and related fields - widely accepted as a method that works even for difficult computer vision problems - recent advancement presented at the "25-years of RANSAC" workshop¹. Look at the R. Bowless' presentation. ### LSQ does not work for gross errors . . . http://cmp.felk.cvut.cz/ransac-cvpr2006 #### **RANSAC** motivations for computer vision - gross errors (outliers) spoil LSQ estimation - detection (localization) algorithms in computer vision and recognition do have gross error - lacktriangle in difficult problems the portion of good data may be even less than 1/2 - ◆ standard robust estimation techniques hardly applicable to data with less than 1/2 good ### **RANSAC** inputs and output In: $U = \{x_i\}$ set of data points, |U| = N $f(S): S \to \theta$ function f computes model parameters $\boldsymbol{\theta}$ given a sample ${\cal S}$ from ${\cal U}$ $\rho(\theta,x)$ the $\cos t$ function for a single data point x Out: θ^* θ^* , parameters of the model maximizing the cost function ### RANSAC algorithm k := 0 Repeat until P{better solution exists} $< \eta$ (a function of C^* and no. of steps k) $$k := k + 1$$ #### I. Hypothesis - (1) select randomly set $S_k \subset U$, $|S_k| = s$ - (2) compute parameters $\theta_k = f(S_k)$ #### II. Verification - (3) compute cost $C_k = \sum_{x \in U} \rho(\theta_k, x)$ - (4) if $C^* < C_k$ then $C^* := C_k$, $\theta^* := \theta_k$ ### Explanation example: line detection ### Explanation example: line detection • Randomly select two points ### Explanation example: line detection - Randomly select two points - The hypothesised model is the line passing through the two points #### Explanation example: line detection - Randomly select two points - The hypothesised model is the line passing through the two points - The error function is a distance from the line #### Explanation example: line detection - Randomly select two points - The hypothesised model is the line passing through the two points - The error function is a distance from the line - Points consistent with the model ## Probability of selecting uncontaminated sample in K trials - lacktriangle N number of data points - lacktriangle w fraction of inliers - \bullet s size of the sample Prob. of selecting a sample with all inliers 3 : $\approx w^s$ Prob. of not selecting a sample with all inliers: $1 - w^s$ Prob. of not selecting a good sample K times: $(1-w^s)^K$ The sought probability of selecting uncontaminated sample in K trials at least once: $P=1-(1-w^s)^K$ $^{^3}$ Approximation valid for $s \ll N$, see the lecture notes ### How many samples are needed, K = ? How many trials is needed to select an uncontaminated sample with a given probability P? We derived $P = 1 - (1 - w^s)^K$. Log the both sides to get $$K = \frac{\log(1 - P)}{\log(1 - w^s)}$$ #### Real problem—w unknown Often, the proportion of inliers in data cannot be estimated in advance. **Adaptive estimation:** start with worst case and and update the estimate as the computation progress - set $K = \infty$, #samples = 0, P very conservative, say P = 0.99 - while K > #samples repeat - choose a random sample, compute the model and count inliers - $w = \frac{\text{\#inliers}}{\text{\#data points}}$ - $\bullet \ K = \frac{\log(1-P)}{\log(1-w^s)}$ - increment #samples - terminate ### Fitting line via RANSAC #### **Epipolar geometry estimation by RANSAC** data points \bullet s=7 sample size f: seven-point algorithm - gives 1 to 3 independent solutions model parameters \bullet ρ : thresholded Sampson's error cost function #### References Besides the main reference [2] the Huber's book [5] about robust estimation is also widely recognized. The RANSAC algorithm recieved several essential improvements in recent years [1, 6, 7] For the seven-point algorithm and Sampson's error, see [4] - [1] Ondřej Chum and Jiří Matas. Matching with PROSAC progressive sample consensus. In Cordelia Schmid, Stefano Soatto, and Carlo Tomasi, editors, Proc. of Conference on Computer Vision and Pattern Recognition (CVPR), volume 1, pages 220–226, Los Alamitos, USA, June 2005. IEEE Computer Society. - [2] M.A. Fischler and R.C. Bolles. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6):381–395, June 1981. - [3] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge, UK, 2000. On-line resources at: http://www.robots.ox.ac.uk/~vgg/hzbook/hzbook1.html. - [4] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer vision. Cambridge University, Cambridge, 2nd edition, 2003. - [5] Peter J. Huber. Robust Statistics. Willey series in probability and mathematical statistics. John Willey and Sons, 1981. - [6] Jiří Matas and Ondřej Chum. Randomized RANSAC with $T_{d,d}$ test. Image and Vision Computing, 22(10):837–842, September 2004. - [7] Jiří Matas and Ondřej Chum. Randomized ransac with sequential probability ratio test. In Songde Ma and Heung-Yeung Shum, editors, Proc. IEEE International Conference on Computer Vision (ICCV), volume II, pages 1727–1732, New York, USA, October 2005. IEEE Computer Society Press. End