RANSAC
 RANdom SAmple Consensus

Tomáš Svoboda, svoboda@cmp.felk.cvut.cz
courtesy of Ondřej Chum, Jiří Matas
Czech Technical University in Prague, Center for Machine Perception
http://cmp.felk.cvut.cz

Talk Outline

Last update: November 4, 2008;

- importance for computer vision
- principle
- line fitting
- epipolar geometry

Importance for Computer Vision

- published in 1981 as a model fitting method [2]
- on of the most cited papers in computer vision and related fields
- widely accepted as a method that works even for difficult computer vision problems
- recent advancement presented at the "25-years of RANSAC" workshop ${ }^{1}$. Look at the R. Bowless' presentation.
${ }^{1}$ http://cmp.felk.cvut.cz/ransac-cvpr2006
LSQ does not work for gross errors . . .

- gross errors (outliers) spoil LSQ estimation
- detection (localization) algorithms in computer vision and recognition do have gross error
- in difficult problems the portion of good data may be even less than $1 / 2$
- standard robust estimation techniques hardly applicable to data with less than $1 / 2$ good

RANSAC inputs and output

In: $\quad U=\left\{x_{i}\right\}$
set of data points, $|U|=N$
$f(S): S \rightarrow \theta$
function f computes model parameters θ given a sample S from U
$\rho(\theta, x)$ the cost function for a single data point x

Out: θ^{*}
θ^{*}, parameters of the model maximizing the cost function

RANSAC algorithm

$k:=0$
Repeat until $\mathrm{P}\{$ better solution exists $\}<\eta$ (a function of C^{*} and no. of steps k)
$k:=k+1$
I. Hypothesis
(1) select randomly set $S_{k} \subset U,\left|S_{k}\right|=s$
(2) compute parameters $\theta_{k}=f\left(S_{k}\right)$
II. Verification
(3) compute cost $C_{k}=\sum_{x \in U} \rho\left(\theta_{k}, x\right)$
(4) if $C^{*}<C_{k}$ then $C^{*}:=C_{k}, \theta^{*}:=\theta_{k}$

Explanation example: line detection

- Randomly select two points
- The hypothesised model is the line passing through the two points
- The error function is a distance from the line

Explanation example: line detection

- Randomly select two points
- The hypothesised model is the line passing through the two points
- The error function is a distance from the line
- Points consistent with the model

Probability of selecting uncontaminated sample in

 K trials

Uncontaminated sample

- N - number of data points
- w - fraction of inliers
- s - size of the sample

Prob. of selecting a sample with all inliers ${ }^{3}: \approx w^{s}$ Prob. of not selecting a sample with all inliers: $1-w^{s}$
:. Prob. of not selecting a good sample K times: $\left(1-w^{s}\right)^{K}$
The sought probability of selecting uncontaminated sample in K trials at least once: $P=1-\left(1-w^{s}\right)^{K}$

[^0]How many trials is needed to select an uncontaminated sample with a given probability P ? We derived $P=1-\left(1-w^{s}\right)^{K}$. Log the both sides to get

$$
K=\frac{\log (1-P)}{\log \left(1-w^{s}\right)}
$$

Real problem-w unknown

Often, the proportion of inliers in data cannot be estimated in advance.
Adaptive estimation: start with worst case and and update the estimate as the computation progress

- set $K=\infty$, \#samples $=0, P$ very conservative, say $P=0.99$
- while $K>$ \#samples repeat
- choose a random sample, compute the model and count inliers
- $w=\frac{\text { \#inliers }}{\text { \#data points }}$
- $K=\frac{\log (1-P)}{\log \left(1-w^{s}\right)}$
- increment \#samples
- terminate

Fitting line via RANSAC

- U : a set of correspondences, i.e. pairs of 2D points
data points
- $s=7$
sample size
- f : seven-point algorithm - gives 1 to 3 independent solutions model parameters

- ρ : thresholded Sampson's error

cost function

References

Besides the main reference [2] the Huber's book [5] about robust estimation is also widely recognized. The RANSAC algorithm recieved several essential improvements in recent years $[1,6,7]$

For the seven-point algorithm and Sampson's error, see [4]
[1] Ondřej Chum and Jiří Matas. Matching with PROSAC - progressive sample consensus. In Cordelia Schmid, Stefano Soatto, and Carlo Tomasi, editors, Proc. of Conference on Computer Vision and Pattern Recognition (CVPR), volume 1, pages 220-226, Los Alamitos, USA, June 2005. IEEE Computer Society.
[2] M.A. Fischler and R.C. Bolles. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6):381-395, June 1981.
[3] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge, UK, 2000. On-line resources at:
http://www.robots.ox.ac.uk/~vgg/hzbook/hzbook1.html.
[4] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer vision. Cambridge University, Cambridge, 2nd edition, 2003.
[5] Peter J. Huber. Robust Statistics. Willey series in probability and mathematical statistics. John Willey and Sons, 1981.
[6] Jirí Matas and Ondřej Chum. Randomized RANSAC with $T_{d, d}$ test. Image and Vision Computing, 22(10):837-842, September 2004
[7] Jiří Matas and Ondřej Chum. Randomized ransac with sequential probability ratio test. In Songde Ma and Heung-Yeung Shum, editors, Proc. IEEE International Conference on Computer Vision (ICCV), volume II, pages 1727-1732, New York, USA, October 2005. IEEE Computer Society Press.

End

[^0]: ${ }^{3}$ Approximation valid for $s \ll N$, see the lecture notes

