
Local Invariant Features

This is a compilation of slides by: 

Darya Frolova, Denis Simakov,The Weizmann Institute of Science
Jiri Matas, Martin Urban Center for Machine Percpetion Prague
Matthew Brown,David Lowe, University of British Columbia



Building a Panorama

M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003



How do we build panorama?

• We need to match (align) images



Matching with Features
•Detect feature points in both images



Matching with Features
•Detect feature points in both images

•Find corresponding pairs



Matching with Features
•Detect feature points in both images

•Find corresponding pairs

•Use these pairs to align images



Matching with Features

• Problem 1:
– Detect the same point independently in both 

images

no chance to match!

We need a repeatable detector



Matching with Features

• Problem 2:
– For each point correctly recognize the 

corresponding one

?

We need a reliable and distinctive descriptor



More motivation…  

• Feature points are used also for:
– Image alignment (homography, fundamental matrix)
– 3D reconstruction
– Motion tracking
– Object recognition
– Indexing and database retrieval
– Robot navigation
– … other



Selecting Good Features
• What’s a “good feature”?

– Satisfies brightness constancy
– Has sufficient texture variation
– Does not have too much texture variation
– Corresponds to a “real” surface patch
– Does not deform too much over time



Corner Detection: Introduction

“Corner” (“interest point”) detector detects points with distinguished 
neighbourhood(*) well suited for matching verification.

undistinguished patches:

distinguished patches:



Detectors
• Harris Corner Detector

– Description
– Analysis

• Detectors
– Rotation invariant
– Scale invariant
– Affine invariant

• Descriptors
– Rotation invariant
– Scale invariant
– Affine invariant



Harris Detector: Basic Idea

“flat” region:
no change in 
all directions

“edge”:
no change along 
the edge direction

“corner”:
significant change 
in all directions

• We should easily recognize the point by looking through a small 
window

• Shifting a window in any direction should give a large change in 
intensity



Harris detector
Based on the idea of auto-correlation

Important difference in all directions => interest point
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Harris detection

• Auto-correlation matrix
– captures the structure of the local neighborhood
– measure based on eigenvalues of this matrix

• 2 strong eigenvalues  =>  interest point
• 1 strong eigenvalue    =>  contour
• 0 eigenvalue               =>  uniform region

• Interest point detection
– threshold on the eigenvalues
– local maximum for localization



Harris detector
Auto-correlation function for a point          and a shift

Discrete shifts can be avoided with the auto-correlation matrix 
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Harris detector

Auto-correlation matrix
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Harris Detector: Mathematics
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Window-averaged change of intensity for the shift [u,v]:

IntensityShifted 
intensity

Window 
function

orWindow function w(x,y) =

Gaussian1 in window, 0 outside



Harris Detector: Mathematics
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Intensity change in shifting window: eigenvalue analysis

λ1, λ2 – eigenvalues of M

direction of the 
slowest change

direction of the 
fastest change

(λmax)-1/2

(λmin)-1/2

Ellipse E(u,v) = const



Harris Detector: Mathematics
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Expanding E(u,v) in a 2nd order Taylor series expansion, we 
have,for small shifts [u,v],  a bilinear approximation:
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where M is a 2×2 matrix computed from image derivatives:



Harris Detector: Mathematics

λ1

λ2

“Corner”
λ1 and λ2 are large,
λ1 ~ λ2;
E increases in all 
directions

λ1 and λ2 are small;
E is almost constant 
in all directions

“Edge” 
λ1 >> λ2

“Edge” 
λ2 >> λ1

“Flat” 
region

Classification of 
image points using 
eigenvalues of M:



Harris Detector: Mathematics
Measure of corner response:

( )2det traceR M k M= −

1 2

1 2

det
trace

M
M

λ λ
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=
= +

(k – empirical constant, k = 0.04-0.06)



Harris Detector: Mathematics

λ1

λ2 “Corner”

“Edge” 

“Edge” 

“Flat”

• R depends only on 
eigenvalues of M

• R is large for a corner

• R is negative with large 
magnitude for an edge

• |R| is small for a flat
region

R > 0

R < 0

R < 0|R| small



Corner Detection: Basic principle

undistinguished patches: distinguished patches:

Image gradients ∇I(x,y) of undist. patches are (0,0) or have only one principle 
component. 

Image gradients ∇I(x,y) of dist. patches have two principle components.

⇒ rank ( ∑ ∇I(x,y)* ∇I(x,y) ⊤ ) = 2



Algorithm (R. Harris, 1988)

1. filter the image by gaussian (2x 1D convolution), sigma_d

2. compute the intensity gradients ∇I(x,y), (2x 1D conv.)

3. for each pixel and given neighbourhood, sigma_i:
- compute auto-correlation matrix 

A = ∑ ∇I(x,y)* ∇I(x,y) ⊤

- and evaluate the response function R(A):
R(A) >> 0 for rank(A)=2,  R(A) → 0 for rank(A)<2

4. choose the best candidates (non-max suppression and 
thresholding)



Corner Detection: Algorithm (R. Harris, 1988)

Harris response function R(A):

R(A) = det (A) – k*trace 2(A) ,

[lamda1,lambda2] = eig(A)



Corner Detection: Algorithm (R. Harris, 1988)

Algorithm properties:

+ “invariant” to 2D image shift and rotation
+ invariant to shift in illumination
+ “invariant” to small  view point changes
+ low numerical complexity

- not invariant to larger scale changes
- not completely invariant to high contrast changes
- not invariant to bigger view point changes



Example of detected points

Corner Detection: Introduction



Corner Detection: Algorithm (R. Harris, 1988)

Exp.: Harris points and view point change



Corner Detection: Harris points versus sigma_d and sigma_i 

Sigma_I    →

↑
Sigma_d    



Selecting Good Features

λ1 and  λ2 are large



Selecting Good Features

large λ1, small λ2



Selecting Good Features

small λ1, small λ2



Harris Detector

• The Algorithm:
– Find points with large corner response function  

R (R > threshold)
– Take the points of local maxima of R



Harris Detector: Workflow



Harris Detector: Workflow
Compute corner response R



Harris Detector: Workflow
Find points with large corner response: R>threshold



Harris Detector: Workflow
Take only the points of local maxima of R



Harris Detector: Workflow



Harris Detector: Summary

• Average intensity change in direction [u,v] can be 
expressed as a bilinear form: 

• Describe a point in terms of eigenvalues of M:
measure of corner response

• A good (corner) point should have a large intensity change
in all directions, i.e. R should be large positive
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Corner Detection: Application

Algorithm:

1. Corner detection

2. Tentative correspondences
- by comparing similarity of the corner neighb. in the searching window 
(e.g. cross-correlation)

3. Camera motion geometry estimation (e.g. by RANSAC)
- finds the motion geometry and consistent correspondences

4.   3D reconstruction
- triangulation, bundle adjustment

3D camera motion tracking / 3D reconstruction



Contents
• Harris Corner Detector

– Description
– Analysis

• Detectors
– Rotation invariant
– Scale invariant
– Affine invariant

• Descriptors
– Rotation invariant
– Scale invariant
– Affine invariant



Harris Detector: Some Properties

• Rotation invariance?



Harris Detector: Some Properties

• Rotation invariance

Ellipse rotates but its shape (i.e. eigenvalues) 
remains the same

Corner response R is invariant to image rotation



Harris Detector: Some Properties

• Invariance to image intensity change?



Harris Detector: Some Properties
• Partial invariance to additive and multiplicative 

intensity changes
 Only derivatives are used => invariance 
to intensity shift I → I + b

 Intensity scale: I → a I

R

x (image coordinate)

threshold

R

x (image coordinate)



Harris Detector: Some Properties
• Invariant to image scale?



Harris Detector: Some Properties
• Not invariant to image scale!

All points will be 
classified as edges

Corner !



Harris Detector: Some Properties
• Quality of Harris detector for different scale 

changes

Repeatability rate:
# correspondences

# possible correspondences

C.Schmid et.al. “Evaluation of Interest Point Detectors”. IJCV 2000



Contents
• Harris Corner Detector

– Description
– Analysis

• Detectors
– Rotation invariant
– Scale invariant
– Affine invariant

• Descriptors
– Rotation invariant
– Scale invariant
– Affine invariant



We want to:
detect the same interest points 
regardless of image changes



Models of Image Change
• Geometry

– Rotation
– Similarity (rotation + uniform scale)

– Affine (scale dependent on direction)
valid for: orthographic camera, locally planar 
object

• Photometry
– Affine intensity change (I → a I + b)



Contents
• Harris Corner Detector

– Description
– Analysis

• Detectors
– Rotation invariant
– Scale invariant
– Affine invariant

• Descriptors
– Rotation invariant
– Scale invariant
– Affine invariant



Rotation Invariant Detection

• Harris Corner Detector

C.Schmid et.al. “Evaluation of Interest Point Detectors”. IJCV 2000



Contents
• Harris Corner Detector

– Description
– Analysis

• Detectors
– Rotation invariant
– Scale invariant
– Affine invariant

• Descriptors
– Rotation invariant
– Scale invariant
– Affine invariant



Scale Invariant Detection
• Consider regions (e.g. circles) of different sizes 

around a point
• Regions of corresponding sizes will look the same 

in both images



Scale Invariant Detection
• The problem: how do we choose corresponding 

circles independently in each image?



Scale Invariant Detection
• Solution:

– Design a function on the region (circle), which is “scale 
invariant” (the same for corresponding regions, even if 
they are at different scales)

Example: average intensity. For corresponding regions 
(even of different sizes) it will be the same.

scale = 1/2

– For a point in one image, we can consider it as a 
function of region size (circle radius) 

f

region size

Image 1 f

region size

Image 2



Scale Invariant Detection
• Common approach:

scale = 1/2
f

region size

Image 1 f

region size

Image 2

Take a local maximum of this function

Observation: region size, for which the maximum is 
achieved, should be invariant to image scale.

s1 s2

Important: this scale invariant region size is 
found in each image independently!



Scale Invariant Detection
• A “good” function for scale detection:

has one stable sharp peak

f

region size

bad

f

region size

bad

f

region size

Good !

• For usual images: a good function would be a one 
which responds to contrast (sharp local intensity 
change)



Scale Invariant Detection
• Functions for determining scale

2 2

21 2
2
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Kernel Imagef = ∗
Kernels:

where Gaussian

Note: both kernels are invariant to 
scale and rotation

(Laplacian)

(Difference of Gaussians)



Scale Invariant Detection
• Compare to human vision: eye’s response

Shimon Ullman, Introduction to Computer and Human Vision Course, Fall 2003



Scale Invariant Detectors
• Harris-Laplacian1

Find local maximum of:
– Harris corner detector in 

space (image coordinates)
– Laplacian in scale

1 K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001
2 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. Accepted to IJCV 2004

scale
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• SIFT (Lowe)2

Find local maximum of:
– Difference of Gaussians in 

space and scale

scale

x

y

← DoG →

←
D

oG
 →



Scale Invariant Detectors

K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001

• Experimental evaluation of detectors 
w.r.t. scale change

Repeatability rate:
# correspondences

# possible correspondences



Scale Invariant Detection: 
Summary

• Given: two images of the same scene with a large 
scale difference between them

• Goal: find the same interest points independently
in each image

• Solution: search for maxima of suitable functions 
in scale and in space (over the image)

Methods: 
1. Harris-Laplacian [Mikolajczyk, Schmid]: maximize Laplacian over 

scale, Harris’ measure of corner response over the image

2. SIFT [Lowe]: maximize Difference of Gaussians over scale and space



Contents
• Harris Corner Detector

– Description
– Analysis

• Detectors
– Rotation invariant
– Scale invariant
– Affine invariant

• Descriptors
– Rotation invariant
– Scale invariant
– Affine invariant



Affine Invariant Detection

• Above we considered:
Similarity transform (rotation + uniform scale)

• Now we go on to:
Affine transform (rotation + non-uniform scale)



Affine Invariant Detection

• Take a local intensity extremum as initial point
• Go along every ray starting from this point and stop when 

extremum of function  f is reached

T.Tuytelaars, L.V.Gool. “Wide Baseline Stereo Matching Based on Local, 
Affinely Invariant Regions”. BMVC 2000.
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points along the ray

• We will obtain approximately 
corresponding regions

Remark: we search for scale 
in every direction



Affine Invariant Detection

• The regions found may not exactly correspond, so we 
approximate them with ellipses

• Geometric Moments: 

2

( , )p q
pqm x y f x y dxdy= ∫



Fact: moments mpq uniquely 
determine the function f

Taking  f to be the characteristic function of a region (1 
inside, 0 outside), moments of orders up to 2 allow to 
approximate the region by an ellipse

This ellipse will have the same moments of 
orders up to 2 as the original region



Affine Invariant Detection

q Ap=

2 1
TA AΣ = Σ

1
2 1Tq q−Σ =

2 region 2

TqqΣ =

• Covariance matrix of region points defines an ellipse:

1
1 1Tp p−Σ =

1 region 1

TppΣ =

( p = [x, y]T is relative 
to the center of mass) 

Ellipses, computed for corresponding 
regions, also correspond!



Affine Invariant Detection
• Algorithm summary (detection of affine invariant region):

– Start from a local intensity extremum point
– Go in every direction until the point of extremum of some 

function  f
– Curve connecting the points is the region boundary
– Compute geometric moments of orders up to 2 for this 

region
– Replace the region with ellipse

T.Tuytelaars, L.V.Gool. “Wide Baseline Stereo Matching Based on Local, 
Affinely Invariant Regions”. BMVC 2000.



Affine Invariant Detection
• Maximally Stable Extremal Regions

– Threshold image intensities: I > I0

– Extract connected components
(“Extremal Regions”)

– Find a threshold when an extremal
region is “Maximally Stable”,
i.e. local minimum of the relative
growth of its square

– Approximate a region with 
an ellipse

J.Matas et.al. “Distinguished Regions for Wide-baseline Stereo”. Research Report of CMP, 2001.



Affine Invariant Detection : 
Summary

• Under affine transformation, we do not know in advance 
shapes of the corresponding regions

• Ellipse given by geometric covariance matrix of a region 
robustly approximates this region

• For corresponding regions ellipses also correspond

Methods: 
1. Search for extremum along rays [Tuytelaars, Van Gool]:

2. Maximally Stable Extremal Regions [Matas et.al.]



Contents
• Harris Corner Detector

– Description
– Analysis

• Detectors
– Rotation invariant
– Scale invariant
– Affine invariant

• Descriptors
– Rotation invariant
– Scale invariant
– Affine invariant



Point Descriptors
• We know how to detect points
• Next question:

How to match them?

?
Point descriptor should be:

1. Invariant
2. Distinctive



Contents
• Harris Corner Detector

– Description
– Analysis

• Detectors
– Rotation invariant
– Scale invariant
– Affine invariant

• Descriptors
– Rotation invariant
– Scale invariant
– Affine invariant



Descriptors Invariant to Rotation
• Harris corner response measure:

depends only on the eigenvalues of the matrix M
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C.Harris, M.Stephens. “A Combined Corner and Edge Detector”. 1988



Descriptors Invariant to Rotation
• Image moments in polar coordinates

( , )k i l
klm r e I r drdθ θ θ−= ∫∫

J.Matas et.al. “Rotational Invariants for Wide-baseline Stereo”. Research Report of CMP, 2003

Rotation in polar coordinates is translation of the angle:
θ → θ + θ 0

This transformation changes only the phase of the moments, but 
not its magnitude

klmRotation invariant descriptor consists 
of magnitudes of moments:

Matching is done by comparing vectors [|mkl|]k,l



Descriptors Invariant to Rotation
• Find local orientation

Dominant direction of gradient

• Compute image derivatives relative to this 
orientation

1 K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001
2 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. Accepted to IJCV 2004



Contents
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– Rotation invariant
– Scale invariant
– Affine invariant



Descriptors Invariant to Scale
• Use the scale determined by detector to 

compute descriptor in a normalized frame

For example:
• moments integrated over an adapted window
• derivatives adapted to scale: sIx



Contents
• Harris Corner Detector

– Description
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• Detectors
– Rotation invariant
– Scale invariant
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Affine Invariant Descriptors
• Affine invariant color moments

( , ) ( , ) ( , )abc p q a b c
pq

region

m x y R x y G x y B x y d xd y= ∫

F.Mindru et.al. “Recognizing Color Patterns Irrespective of Viewpoint and Illumination”. CVPR99

Different combinations of these moments 
are fully affine invariant

Also invariant to affine transformation of 
intensity I → a I + b



Affine Invariant Descriptors
• Find affine normalized frame

J.Matas et.al. “Rotational Invariants for Wide-baseline Stereo”. Research Report of CMP, 2003

2
TqqΣ =

1
TppΣ =

A

A1
1

1 1 1
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1
2 2 2

TA A−Σ =

rotation

• Compute rotational invariant descriptor in this 
normalized frame



SIFT – Scale Invariant Feature Transform1

• Empirically found2 to show very good performance, 
invariant to image rotation, scale, intensity change, and to 
moderate affine transformations

1 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. Accepted to IJCV 2004
2 K.Mikolajczyk, C.Schmid. “A Performance Evaluation of Local Descriptors”. CVPR 2003

Scale = 2.5
Rotation = 450
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Invariant Local Features
• Image content is transformed into local feature 

coordinates that are invariant to translation, rotation, 
scale, and other imaging parameters

SIFT Features



Advantages of invariant local features

• Locality: features are local, so robust to 
occlusion and clutter (no prior segmentation)

• Distinctiveness: individual features can be 
matched to a large database of objects

• Quantity: many features can be generated for 
even small objects

• Efficiency: close to real-time performance

• Extensibility: can easily be extended to wide 
range of differing feature types, with each 
adding robustness



Scale invariance
Requires a method to repeatably select points in location 

and scale:
• The only reasonable scale-space kernel is a Gaussian 

(Koenderink, 1984; Lindeberg, 1994)
• An efficient choice is to detect peaks in the difference of 

Gaussian pyramid (Burt & Adelson, 1983; Crowley & 
Parker, 1984 – but examining more scales)

• Difference-of-Gaussian with constant ratio of scales is a 
close approximation to Lindeberg’s scale-normalized 
Laplacian (can be shown from the heat diffusion 
equation)

Blur 

Resample

Subtract

Blur 

Resample

Subtract



Scale space processed one octave at a time



Key point localization
• Detect maxima and minima of 

difference-of-Gaussian in scale 
space

• Fit a quadratic to surrounding 
values for sub-pixel and sub-scale 
interpolation (Brown & Lowe, 
2002)

• Taylor expansion around point:

• Offset of extremum (use finite 
differences for derivatives):

Blur 

Resample

Subtract



Select canonical orientation

• Create histogram of local 
gradient directions computed 
at selected scale

• Assign canonical orientation 
at peak of smoothed 
histogram

• Each key specifies stable 2D 
coordinates (x, y, scale, 
orientation)

0 2π



Example of keypoint detection
Threshold on value at DOG peak and on ratio of principle 
curvatures (Harris approach)

(a) 233x189 image
(b) 832 DOG extrema
(c) 729 left after peak

value threshold
(d) 536 left after testing

ratio of principle
curvatures



SIFT vector formation
• Thresholded image gradients are sampled over 16x16 

array of locations in scale space
• Create array of orientation histograms
• 8 orientations x 4x4 histogram array = 128 dimensions



Feature stability to noise
• Match features after random change in image scale & 

orientation, with differing levels of image noise
• Find nearest neighbor in database of 30,000 features



Feature stability to affine change
• Match features after random change in image scale & 

orientation, with 2% image noise, and affine distortion
• Find nearest neighbor in database of 30,000 features



Distinctiveness of features
• Vary size of database of features, with 30 degree affine 

change, 2% image noise
• Measure % correct for single nearest neighbor match







Talk Resume
• Stable (repeatable) feature points can be detected 

regardless of image changes
– Scale: search for correct scale as maximum of 

appropriate function
– Affine: approximate regions with ellipses (this 

operation is affine invariant)
• Invariant and distinctive descriptors can be 

computed
– Invariant moments
– Normalizing with respect to scale and affine 

transformation



Invariance to Intensity Change

• Detectors
– mostly invariant to affine (linear) change in 

image intensity, because we are searching for 
maxima

• Descriptors
– Some are based on derivatives => invariant to 

intensity shift
– Some are normalized to tolerate intensity scale
– Generic method: pre-normalize intensity of a 

region (eliminate shift and scale)
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