Least-squares Solution of Homogeneous Equations
 supportive text for teaching purposes

Revision: 1.2, dated: December 15, 2005

Tomáš Svoboda

Czech Technical University, Faculty of Electrical Engineering
Center for Machine Perception, Prague, Czech Republic
svoboda@cmp.felk.cvut.cz
http://cmp.felk.cvut.cz/~svoboda

Introduction

We want to find a $n \times 1$ vector h satisfying

$$
\mathrm{A} \mathbf{h}=\mathbf{0}
$$

where A is $m \times n$ matrix, and 0 is $n \times 1$ zero vector. Assume $m \geq n$, and $\operatorname{rank}(\mathrm{A})=n$. We are obviously not interested in the trivial solution $\mathbf{h}=\mathbf{0}$ hence, we add the constraint

$$
\|\mathbf{h}\|=1
$$

Constrained least-squares minimization: Find h that minimizes $\|A h\|$ subject to $\|\mathbf{h}\|=1$.

Derivation I - Lagrange multipliers

$\mathbf{h}=\operatorname{argmin}_{h}\|\mathbf{A h}\|$ subject to $\|\mathbf{h}\|=1$. We rewrite the constraint as $1-\mathbf{h}^{\top} \mathbf{h}=0$

- To find an extreme (the sought \mathbf{h}) we must solve $\frac{\partial}{\partial \mathbf{h}}\left(\mathbf{h}^{\top} \mathbf{A}^{\top} \mathbf{A} \mathbf{h}+\lambda\left(1-\mathbf{h}^{\top} \mathbf{h}\right)\right)=0$.
- We derive: $2 A^{\top} \mathbf{A h}-2 \lambda \mathbf{h}=0$.
- After some manipulation we end up with: $\left(A^{\top} A-\lambda E\right) \mathbf{h}=0$ which is the characteristic equation. Hence, we know that h is an eigenvector of ($A^{\top} A$) and λ is an eigenvalue.
- The least-squares error is $e=\mathbf{h}^{\top} \mathbf{A}^{\top} \mathbf{A h}=\mathbf{h}^{\top} \lambda \mathbf{h}$.
- The error will be minimal for $\lambda=\min _{i} \lambda_{i}$ and the sought solution is then the eigenvector of the matrix $\left(\mathrm{A}^{\top} \mathrm{A}\right)$ corresponding to the smallest eigenvalue.
- Let $\mathrm{A}=\mathrm{USV}^{\top}$, where U is $m \times n$ orthonormal, S is $n \times n$ diagonal with descending order, and V^{\top} is $n \times n$ also orthonormal.
- From orthonormality of U, V follows that $\left\|\mathrm{USV}^{\top} \mathbf{h}\right\|=\left\|\mathrm{SV}^{\top} \mathbf{h}\right\|$ and $\left\|\mathrm{V}^{\top} \mathbf{h}\right\|=\|\mathbf{h}\|$.
- Substitute $\mathbf{y}=\mathrm{V}^{\top} \mathbf{h}$. Now, we minimize $\|\mathrm{Sy}\|$ subject to $\|\mathbf{y}\|=1$.
- Remember that S is diagonal and the elements are sorted descendently. Than, it is clear that $\mathbf{y}=[0,0, \ldots, 1]^{\top}$.
- From substitution we know that $\mathrm{h}=\mathrm{Vy}$ from which follows that sought h is the last column of the matrix V.

Further reading

- Richard Hartley and Andrew Zisserman, Multiple View Geometry in computer vision, Cambridge University Press, 2003 (2nd edition), [Appendix A5]
- Gene H. Golub and Charles F. Van Loan, Matrix Computation, John Hopkins University Press, 1996 (3rd edition).
- Eric W. Weisstein. Lagrange Multiplier. From MathWorld-A Wolfram Web Resource.
http://mathworld.wolfram.com/LagrangeMultiplier.html
- Eric W. Weisstein. Singular Value Decomposition. From MathWorld-A Wolfram Web Resource.
http://mathworld.wolfram.com/SingularValueDecomposition.html

