

- ideal lenses assumed
- coordinate system centered at C
- no y-axis
- similarity of projection triangles.

3D \rightarrow 2D Projection

We remember that: $\mathbf{x}=\left[\frac{f X}{Z}, \frac{f Y}{Z}\right]^{\top}$

$$
\begin{aligned}
& {\left[\begin{array}{l}
\mathbf{x} \\
1
\end{array}\right] \simeq\left[\begin{array}{l}
f X \\
f Y \\
Z
\end{array}\right]} \\
& {\left[\begin{array}{c}
\mathbf{x} \\
1
\end{array}\right] \simeq\left[\begin{array}{llll}
f & & & 0 \\
& f & & 0 \\
& & 1 & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{X} \\
1
\end{array}\right]}
\end{aligned}
$$

Use the homegeneous coordinates ${ }^{4}$

$$
\lambda_{[1 \times 1]} \mathbf{x}_{[3 \times 1]}=\mathrm{K}_{[3 \times 3]}[\mathrm{I} \mid \mathbf{0}] \mathbf{X}_{[4 \times 1]}
$$

but . . .

${ }^{4}$ for the notation conventions, see the talk notes

Notation

scalars standard math italics, $f, \lambda \ldots$
vectors bold font $\mathbf{u}, \mathbf{x}, \mathbf{X}, \ldots$ are understood as column vectors. Row vectors are denoted by a symbol for transpose \mathbf{x}^{\top}. matrices non-proportional font, K, R...
\simeq means equality upto a scale

Estimation of camera parameters-camera

 calibrationThe goal: estimate the 3×4 camera projection matrix P and possibly the parameters of the non-linear distortion κ from images.
Assume a known projection $[u, v]^{\top}$ of a 3D point \mathbf{X} with known coordinates

$$
\begin{gathered}
{\left[\begin{array}{c}
\lambda u \\
\lambda v \\
\lambda
\end{array}\right]=\left[\begin{array}{c}
\mathbf{P}_{1}^{\top} \\
\mathbf{P}_{2}^{\top} \\
\mathbf{P}_{3}^{\top}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]} \\
\frac{\lambda u}{\lambda}=\frac{\mathbf{P}_{1}^{\top} \mathbf{X}}{\mathbf{P}_{3}^{\top} \mathbf{X}} \text { and } \frac{\lambda v}{\lambda}=\frac{\mathbf{P}_{2}^{\top} \mathbf{X}}{\mathbf{P}_{3}^{\top} \mathbf{X}}
\end{gathered}
$$

Re-arrange and assume ${ }^{6} \lambda \neq 0$ to get set of homegeneous equations

$$
\begin{aligned}
u \mathbf{X}^{\top} \mathbf{P}_{3}-\mathbf{X}^{\top} \mathbf{P}_{1} & =0 \\
v \mathbf{X}^{\top} \mathbf{P}_{3}-\mathbf{X}^{\top} \mathbf{P}_{2} & =0
\end{aligned}
$$

${ }^{6}$ see some notes about $\lambda=0$ in the talk notes

What does $\lambda=0$ mean?

Point in the infinity hence, certainly out of the real image. $\lambda=0$ makes pixel coordinates $u, v \rightarrow \infty$.

Decomposition of P into the calibration parameters

$$
\mathrm{P}=\left[\begin{array}{ll}
\mathrm{KR} & \mathrm{Kt}
\end{array}\right] \text { and } \mathbf{C}=-\mathrm{R}^{-1} \mathbf{t}
$$

We know that R should be 3×3 orthonormal, and K upper triangular.
P = P./norm(P(3,1:3));
$[\mathrm{K}, \mathrm{R}]=\mathrm{rq}(\mathrm{P}(:, 1: 3))$;
$\mathrm{t}=\operatorname{inv}(\mathrm{K}) * \mathrm{P}(:, 4)$;
C = -R'*t;
See the slide notes for more details.
$P=P . / n o r m(P(3,1: 3)) ;$
The third row of the first $3 \times 3 \mathrm{P}$ submatrix should be actually equal to the third row of the rotation matrix R which is supposed to be orthornomal.

$$
\mathrm{P}_{(:, 1: 3)}=\left[\begin{array}{ccc}
\alpha_{u} & s & u_{0} \\
0 & \alpha_{v} & v_{0} \\
0 & 0 & 1
\end{array}\right] \mathrm{R}
$$

$[K, R]=\operatorname{rq}(P(:, 1: 3))$;
The RQ decomposition decomposes a matrix into a product of upper triangular and unitary matrix. It is less frequent than the more known $Q R$ decomposition. Implementatition of $R Q$ decomposition may be found at numerous packages. Explanation may be read in [2, Appendix 4.1.1 (page 579)]
$\mathrm{t}=\operatorname{inv}(\mathrm{K}) * \mathrm{P}(:, 4)$;
C = -R'*t;
Recover the translation vector from the fourth column of P and compute the position of the camera center in the world coordinate system.
\square

References

[1] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer vision. Cambridge University, Cambridge, 2nd edition, 2003.

