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Motivation
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Two projections of a rigid 3D scene

C1

C2

� The projections are clearly different.

� Can the difference tell something about the camera positions?

� and about the scene structure?
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Two projections of a rigid 3D scene

C1

C2

� The projections are clearly different.

� Can the difference tell something about the camera positions?

� and about the scene structure?

It can! (to both)
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Can we find a relation between corresponding
projections regardless of the scene structure?
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Back project the ray
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Project the camera center to the second image

x y

z

[0, 0, 0]
X0

X1

X2

X3

X4

X5

X6

X7

X8

X9

C1

C2

X9

u1
9

X9 = λP1+u1
9 + C1

e2

e2 = P2C1

http://cmp.felk.cvut.cz


7/40

The correponding projection must lie on
a specific line
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Derivation of the Fundamental matrix
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l29

e2

e2 = P2C1

We already know: e2 = P2C1

Projection to the camera 2: u2
9 = P2(λP1+u1

9 + C1)

Line is a cross product of the points lying on it: e2 × u2
9 = l29

Putting together: e2 × (P2λP1+u1
9 + P2C1) = l29

Clearly e2 × P2C1 = 0, then: e2 × λP2P1+u1
9 = l29

But we also know l29
>u2

9 = 0 since the point u2
9 must lie on the line l29.
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Derivation of the Fundamental matrix, cont.

e2 × λP2P1+u1
9 = l29

But we also know l29
>u2

9 = 0 since the point u2
9 must lie on the line.

Introducing a small matrix trick [e]× =

 0 −e3 e2
e3 0 −e1
−e2 e1 0


we may rewrite the cross product as a matrix multiplication
l29 =

(
[e2]×λP

2P1+
)
u1

9

Inserting into l29
>u2

9 = 0 yields:

u1
9
>
(
[e2]×λP

2P1+
)

︸ ︷︷ ︸
F

>
u2

9 = 0

u2
9
>
Fu1

9 = 0
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Epipolar geometry revisited
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i ,u
2
i .

F does not depend on the scene structure, only on cameras.

All epipolar lines intersect in epipoles.
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Epipolar geometry—overview

video: 3D sketch of Epipolar geometry

http://cmp.felk.cvut.cz
http://cmp.felk.cvut.cz/cmp/courses/Y33ROV/Y33ROV_ZS20092010/Lectures/../Videos/epipgeom.avi
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Epipolar geometry—what is it good for
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Epipolar geometry—what is it good for
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Epipolar geometry—what is it good for

http://cmp.felk.cvut.cz


15/40
Epipolar geometry—what is it good for
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Fundamental matrix, so what . . .

Motion and 3D structure is where?
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Essential matrix

For the Fundamental matrix we derived

u1
i
>
(
[e2]×P

2P1+
)

︸ ︷︷ ︸
F

>
u2
i = 0

u denote point coordinates in pixels.

u1 = K1
[
R1 t1

]
X u2 = K2

[
R2 t2

]
X

Remind the normalized image coordinates x = K−1u. We can define
normalized cameras x = P̂X and insert the equation above.

x1
i
>
(
[x2

e]×P̂
2(P̂1)

+
)

︸ ︷︷ ︸
E

>
x2
i = 0

where E is the Essential matrix
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Where to set the origin of the world?
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Where to set the origin of the world?
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What do we gain?

u1 = K1
[
R1 t1

]
X u2 = K2

[
R2 t2

]
X
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What do we gain?

u1 = K1
[
R1 t1

]
X u2 = K2

[
R2 t2

]
X

u1 = K1
[
I 0

]
X u2 = K2

[
R t

]
X

http://cmp.felk.cvut.cz


20/40
What do we gain?

u1 = K1
[
R1 t1

]
X u2 = K2

[
R2 t2

]
X

u1 = K1
[
I 0

]
X u2 = K2

[
R t

]
X

Few variables vanished, R and t now denote motion of the camera. One can
call it camera displacement, or ego-motion.

Estimation of R and t is often called camera tracking.
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Essential matrix — cont’d

E = [x2
e]×P̂

2(P̂1)
+

= [x2
e]×
[
R t

] [
I 0

]+
= [x2

e]×R

x2
e = P̂2C1

=
[
R t

] [ 0
1

]
= t

E = [t]×R

E comprises the motion between cameras!

after simple manipulation, we see E = K2>FK1

http://cmp.felk.cvut.cz
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Decomposition of the E

Suppose E = Udiag(1, 1, 0) V> and

W =

 0 −1 0
1 0 0
0 0 1

 and Z =

 0 1 0
−1 0 0
0 0 0


then, for a given E and P̂1 = [I|0], there are four possible solutions for P̂2

P̂2 = [UVW>|+ u3] or [UVW>| − u3] or [UV>W>|+ u3] or [UV>W>| − u3]

More details in [3]1.

1The relevant chapter 9, is available on the web, http://www.robots.ox.ac.uk/~vgg/hzbook/hzbook2/
HZepipolar.pdf, see pages 20-21

http://cmp.felk.cvut.cz
http://www.robots.ox.ac.uk/~vgg/hzbook/hzbook2/HZepipolar.pdf
http://www.robots.ox.ac.uk/~vgg/hzbook/hzbook2/HZepipolar.pdf
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Fourfold ambiguity of the E decomposition
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Fourfold ambiguity of the E decomposition

AB

AB /A B /

A B

(a) (b)

(c) (d) 2

Which one?
2Sketch from [2].
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3D scene reconstruction—Linear method

A scene point X is observed by two cameras P1 and P2. Assume we know its
projections [uj, vj]>

u = PX, u = p>1 X
p>3 X

, u(p>3 X)− p>1 X = 0, the same derivation for v and for
both cameras: 

u1p1
3
> − p1

1
>

v1p1
3
> − p1

2
>

u2p2
3
> − p2

1
>

v2p2
3
> − p2

2
>

 [ X
]

=
[

0
]

Set of linear homogeneous equations. A standard LSQ solution3 may be
used.

Not an optimal solution. It minimizes algebraic not geometric error. More
methods can be found in [3, Chapter 12]

3http://cmp.felk.cvut.cz/cmp/courses/Y33ROV/Y33ROV_ZS20092010/Lectures/Supporting/
constrained_lsq.pdf

http://cmp.felk.cvut.cz
http://cmp.felk.cvut.cz/cmp/courses/Y33ROV/Y33ROV_ZS20092010/Lectures/Supporting/constrained_lsq.pdf
http://cmp.felk.cvut.cz/cmp/courses/Y33ROV/Y33ROV_ZS20092010/Lectures/Supporting/constrained_lsq.pdf
http://cmp.felk.cvut.cz/cmp/courses/Y33ROV/Y33ROV_ZS20092010/Lectures/Supporting/constrained_lsq.pdf
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Errors in reconstruction

4

� the bigger angle between rays the better reconstruction, however . . .

� also the more difficult image matching

4Sketch borrowed from [2]
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Problems with image matching

Good for matching, bad for reconstruction
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Problems with image matching

Good for recontruction, bad for matching
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Estimation of F or E from corresponding point
pairs

u2
i
>
Fu1
i = 0

for any pair of matching points. Each matching pair gives one linear
equation

u2u1f11 + u2v1f12 + u2f13 . . . = 0

which may be rewritten an a vector inner product

[u2u1, u2v1, u2, v2u1, v2v1, v2, u1, v1, 1]f = 0

A set of n pairs forms a set of linear equations

Af =

 u2
1u

1
1 u2

1v
1
1 u2

1 v2
1u

1
1 v2

1v
1
1 v2

1 u1
1 v1

1 1
... ... ... ... ... ... ... ... ...

u2
nu

1
n u2

nv
1
n u2

n v2
nu

1
n v2

nv
1
n v2

n u1
n v1

n 1

 f = 0
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Estimation of F—normalized 8-point algorithm

Solution of

Af =

 u2
1u

1
1 u2

1v
1
1 u2

1 v2
1u

1
1 v2

1v
1
1 v2

1 u1
1 v1

1 1
... ... ... ... ... ... ... ... ...

u2
nu

1
n u2

nv
1
n u2

n v2
nu

1
n v2

nv
1
n v2

n u1
n v1

n 1

 f = 0

is a standard LSQ solution5

Point normalization

Consider a point pair u1 = [150, 250, 1]>,u2 = [250, 350, 1]>. It is clear
that row elements in A are unbalanced.

a> = [106, 106, 103, 106, 106, 103, 103, 103, 100]

This influences the numerical stability. Solution: normalization of the point
coordinates before computation.

5http://cmp.felk.cvut.cz/cmp/courses/Y33ROV/Y33ROV_ZS20092010/Lectures/Supporting/
constrained_lsq.pdf

http://cmp.felk.cvut.cz
http://cmp.felk.cvut.cz/cmp/courses/Y33ROV/Y33ROV_ZS20092010/Lectures/Supporting/constrained_lsq.pdf
http://cmp.felk.cvut.cz/cmp/courses/Y33ROV/Y33ROV_ZS20092010/Lectures/Supporting/constrained_lsq.pdf
http://cmp.felk.cvut.cz/cmp/courses/Y33ROV/Y33ROV_ZS20092010/Lectures/Supporting/constrained_lsq.pdf
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Estimation of F—normalized 8-point algorithm

Transform the coordinates of points so that the centroid is at the origin of
coordinates nad RMS distance is equal to

√
2.

û1 = T1u1 and û2 = T2u2, where Ti are 3× 3 normalizing matrices
including translation nad scaling.

Compute F̂ by using the standard LSQ method, û2>F̂û1 = 0 . Denormalize
the solution F = T2>F̂T1

Historical remarks

The linear algorithm for estimation epipolar geometry (calibrated
case—essential matrix) was suggest in [5]. The normalization for the
uncalibrated case (fundamental matrix) was introduced in [4].

http://cmp.felk.cvut.cz
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Point normalization
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Zero motion

we derived

E = [t]×R

what happens if t = 0?
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Common t = 0 case—Image Panoramas
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What are the differences in images
general motion

http://cmp.felk.cvut.cz
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What are the differences in images
general motion

� objects in different depths make occlusions

� the mapping is certainly not 1:1

http://cmp.felk.cvut.cz
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What are the differences in images
rotation

http://cmp.felk.cvut.cz
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What are the differences in images
rotation

� no occlusions

� the mapping may be 1:1

http://cmp.felk.cvut.cz


38/40
Mapping between images
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