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Object tracking Object tracking
» Tracking - iterative estimation of an object pose in a » Tracking - iterative estimation of an object pose in a
sequence (e.g., 2D position of Basil's head). sequence (e.g., 2D position of Basil's head).
» Trade-off among accuracy, speed, robustness is explicitly » Trade-off among accuracy, speed, robustness is explicitly
taken into account. taken into account.
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[Lucas-Kanade1981] - Iterative minimization
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Regression - learn the mapping in advanceo
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> [Jurie-BMVC-2002] - learned motion and optional hard
template update
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> [Cootes-PAMI-2001] - learned regression during AAM iterations
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Learning alignment for one predictor Learning alignment for one predictor
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LS learning

Learning alignment for one predictor
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Minimizes sum of square errors over all training set. Leads to
matrix pseudoinverse computation.

Generating training examples
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LS learning
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Minimizes sum of square errors over all training set. Leads to
matrix pseudoinverse computation.

Example for linear mapping:
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LS learning Min-max learning
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Minimizes sum of square errors over all training set. Leads to
matrix pseudoinverse computation.
" = argmin,, max ||<p(|(t o X)) — t|co-
Example for linear mapping: t
Minimizes the worst case (the biggest estimation error) in the

d training set. Leads to linear programming.
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after some derivation
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Tracking of a single point by a sequence of predictors Tracking of a single point by a sequence of predictors
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Tracking of a single point by a sequence of predictors
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Tracking of a single point by a sequence of predictors
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Tracking of a single point by a sequence of predictors
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Learning of sequential predictor

» Learning - searching for the sequence with predefined range,
accuracy and minimal computational cost.




Learning of sequential predictor

» Learning - searching for the sequence with predefined range,
accuracy and minimal computational cost.

> [Zimmermann-PAMI-2009] - Dynamic programming estimates
the optimal sequence of linear predictors.

[Zimmermann-PAMI-2009] K.Zimmermann, J.Matas, T.Svoboda. Tracking by an
Optimal Sequence of Linear Predictors, in IEEE Transactions on Pattern Analysis and
Machine Intelligence, |IEEE computer society, 2009, vol. 31, No 4, pp 677-692.

Learning of the optimal sequence of linear predictors

» Range: the set of admissible motions, r.
» Complexity: cardinality of support set, c.

, . ion: . - . . _
Uncertainty region: the region within which all predlctlons

lie, A.

Learning of sequential predictor

» Learning - searching for the sequence with predefined range,
accuracy and minimal computational cost.
> [Zimmermann-PAMI-2009] - Dynamic programming estimates
the optimal sequence of linear predictors.
> [Zimmermann-IVC-2009] - Branch & bound search allows for
time constrained learning (demo in MATLAB).

[Zimmermann—PAMI-2009] K.Zimmermann, J.Matas, T.Svoboda. Tracking by an
Optimal Sequence of Linear Predictors, in IEEE Transactions on Pattern Analysis and
Machine Intelligence, |IEEE computer society, 2009, vol. 31, No 4, pp 677-692.

[Zimmermann-IVC—ZOOQ] K.Zimmermann, T.Svoboda, J.Matas. Anytime learning for
the NoSLLiP tracker. Image and Vision Computing, Elsevier, accepted, available

on-line.
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Learning of the optimal sequence of linear predictors
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» Range: the set of admissible motions, r.
» Complexity: cardinality of support set, c.
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Learning of the optimal sequence of linear predictors

¢ — complexity

» Range: the set of admissible motions, r.
» Complexity: cardinality of support set, c.

» Uncertainty region: the region within which all predictions=
m
e

Branch and Bound

0. 0.
0.35 0.35]
0.3] 03]

Prediction error
Prediction error

2 3
Graph depth

Learning of the optimal sequence of linear predictors

complexity

» Range: the set of admissible motions, r.

» Complexity: cardinality of support set, c.

» Uncertainty region: the region within which all predictions m 0
lie, A\. Small red circles show acceptable uncertainty. i

Branch and Bound

0. 0.
0.35] 0.35
0.3] 0.3]

Prediction error
Prediction error

Don't forget to show the live demo!



Tracking with one linear predictor.

Motion blur, fast motion, views from acute angles and
other image distortions.

Modeling motion by number of linear predictors.

Support set selection

> Greedy LS selection (red) of an efficient support set.

» Much better than 1%-quantile (green) achieavable by
randomized sampling




Tracking of objects with variable appearance

Tracking of objects with variable appearance
» Variable appearance - the way how the object looks like in

the camera changes due to illumination, non-rigid
deformation, out-of-plane rotation,

» Variable appearance - the way how the object looks like in
the camera changes due to illumination, non-rigid
deformation, out-of-plane rotation,

Simultaneous learning of motion and appearance
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Simultaneous learning of motion and appearance
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» Introduce feedback which encodes appearance in a low
dimensional space and adjust the predictor.



Simultaneous learning of motion and appearance

alignment t

6 appearance parameters

» Introduce feedback which encodes appearance in a low
dimensional space and adjust the predictor.

» Appearance parameters learned in unsupervised way.

Learning appearance
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Simultaneous learning of motion and appearance

image I

(1.9) alignment ¢

12

6 appearance parameters J — I(t) image

» Introduce feedback which encodes appearance in a low
dimensional space and adjust the predictor.

» Appearance parameters learned in unsupervised way.

» Simultaneous learning of ¢ and « = appearance encoded in
the low dimensional space, which is the most suitable for the

motion estimation.

Learning appearance
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Learning appearance — our approach

Learning appearance — our approach
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Learning the appearance encoder ~

Learning the appearance encoder ~
» Current appearance encoded in low-dim parameters.

» Current appearance encoded in low-dim parameters.




Learning the appearance encoder ~

Learning the tracker o(1; )

» Current appearance encoded in low-dim parameters
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Learning the tracker o(I; 8)
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» Learning = minimization of the least-squares error
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Simultaneous learning of ¢ and ~

» Learning = minimization of the least-squares error
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Linear mapping
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Linear mapping
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Linear mapping

> v(J):0=aJ
> o(1,0) :t = (Ho+ 61H1 + - - + 0,Hp)l
» Criterion is sum of squares of bilinear functions.



Algorithm: iterative minimization of criterion e(y, )

 — motion (geometry mapping), ¥ — appearance mapping

Algorithm: iterative minimization of criterion e(y, )

© — motion (geometry mapping), v — appearance mapping

color encodes criterion value e(p,7)

» lIterative minimization:
> initialization 4° = rand

Algorithm: iterative minimization of criterion e(p, )

¢ — motion (geometry mapping), ¥ — appearance mapping

color encodes criterion value e(¢p, )
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Algorithm: iterative minimization of criterion e(p, )

¢ — motion (geometry mapping), v — appearance mapping

color encodes criterion value e(ip, )

» |terative minimization:
> initialization 4° = rand
> b =argmin_e(v,7°)




Algorithm: iterative minimization of criterion e(y, ) Algorithm: iterative minimization of criterion e(p, )

 — motion (geometry mapping), ¥ — appearance mapping ¢ — motion (geometry mapping), ¥ — appearance mapping
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Algorithm: iterative minimization of criterion e(y, )

 — motion (geometry mapping), ¥ — appearance mapping

» |terative minimization:

> initialization 4° = rand
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Algorithm: iterative minimization of criterion e(y, )

 — motion (geometry mapping), v
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» lIterative minimization:
initialization 7% = rand
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» Global optimality for linear ¢, v experimentally shown.

= arg min
= arg min
= argmin
= argmin
= argmin
= arg min

until convergence reached

e(:2,7°)
e(p',7)
(2,7
e(¢%7)
e(2,7%)
e(*,7)

color encodes criterion value e(p, )
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Algorithm: iterative minimization of criterion e(p, )

¢ — motion (geometry mapping), ¥ — appearance mapping

» lterative minimization:
> initialization 4° = rand
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Algorithm: iterative minimization of criterion e(p, )

¢ — motion (geometry mapping), v — appearance mapping

color encodes criterion value e(¢p, )
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» lterative minimization:
> initialization 4° = rand
> b =argmin_e(v,7°)
> 7l =argmin_e(¢l,")
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» Global optimality for linear ¢, v experimentally shown.




Simultaneous learning of motion and appearance

Experiments - videos |l

Conclusions

> Learnable and very efficient tracking of objects with variable
appearance.
» Accuracy, speed, robustness explicitly taken into account.

» Simultaneous learning motion and appearance.

Conclusions

» Learnable and very efficient tracking of objects with variable
appearance.
» Accuracy, speed, robustness explicitly taken into account.
» Simultaneous learning motion and appearance.
Limitations

» Small, thin objects intractable.

Data, papers, various implemenations freely available at
http://cmp.felk.cvut.cz/demos/Tracking/linTrack/



