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Importance in Computer Vision

� Firstly published in 1981 as an image registration method [3].

� Improved many times, most importantly by Carlo Tomasi [5, 4]

� Free implementation(s) available1.

� After more than two decades, a project2 at CMU dedicated to this
single algorithm and results published in a premium journal [1].

� Part of plethora computer vision algorithms.

1http://www.ces.clemson.edu/~stb/klt/
2http://www.ri.cmu.edu/projects/project_515.html
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Tracking of dense sequences — camera motion

I J
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Tracking of dense sequences — object motion

I J
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Alignment of an image (patch)

Goal is to align a template image T (x) to an input image I(x). x column
vector containing image coordinates [x, y]>. The I(x) could be also a small
subwindow withing an image.

On-line demo.
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Original Lucas-Kanade algorithm I

Goal is to align a template image T (x) to an input image I(x). x column
vector containing image coordinates [x, y]>. The I(x) could be also a small
subwindow withing an image.

Set of allowable warps W(x; p), where p is a vector of parameters. For
translations

W(x; p) =
[
x+ p1

y + p2

]

W(x; p) can be arbitrarily complex

The best alignment, p∗, minimizes image dissimilarity
∑

x

[I(W(x; p))− T (x)]2
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Original Lucas-Kanade algorithm II

∑

x

[I(W(x; p))− T (x)]2

is a nonlinear optimization! The warp W(x; p) may be linear but the pixels
value are, in general, non-linear. In fact, they are essentially unrelated to x.

It is assumed that some p is known and best increment ∆p is sought. The
the modified problem

∑

x

[I(W(x; p + ∆p))− T (x)]2

is solved with respect to ∆p. When found then p gets updated

p← p + ∆p
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Original Lucas-Kanade algorithm III

∑

x

[I(W(x; p + ∆p))− T (x)]2

linearized by performing first order Taylor expansion3

∑

x

[I(W(x; p)) +∇I ∂W
∂p

∆p− T (x)]2

∇I = [∂I∂x,
∂I
∂y] is the gradient image4 computed at W(x; p). The term ∂W

∂p is
the Jacobian of the warp.

3Detailed explanation on the blackboard.
4As a vector it should have been a column wise oriented. However, for sake of clarity of equations row

vector is exceptionally considered here.
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Original Lucas-Kanade algorithm IV

Derive ∑

x

[I(W(x; p)) +∇I ∂W
∂p

∆p− T (x)]2

with respect to ∆p

2
∑

x

[
∇I ∂W

∂p

]> [
I(W(x; p)) +∇I ∂W

∂p
∆p− T (x)

]

setting equality to zero yields

∆p = H−1
∑

x

[
∇I ∂W

∂p

]>
[T (x)− I(W(x; p))]

where H is product of first derivatives

H =
∑

x

[
∇I ∂W

∂p

]>[
∇I ∂W

∂p

]
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The Lucas-Kanade algorithm—Summary

Iterate:

1. Warp I with W(x; p)

2. Warp the gradient ∇I with W(x; p)

3. Evaluate the Jacobian ∂W∂p at (x; p) and compute the steepest descent
image ∇I ∂W∂p

4. Compute the H =
∑

x

[
∇I ∂W∂p

]>[
∇I ∂W∂p

]

5. Compute ∆p = H−1
∑

x

[
∇I ∂W∂p

]>
[T (x)− I(W(x; p))]

6. Update the parameters p← p + ∆p

until ‖∆p‖ ≤ ε
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Example of convergence

video
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Example of convergence

Convergence video: Initial state is within the basin of attraction
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Example of divergence

Divergence video: Initial state is outside the basin of attraction
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What are good features (windows) to track?

How to select good templates T (x) for image registration, object tracking.

∆p = H−1
∑

x

[
∇I ∂W

∂p

]>
[T (x)− I(W(x; p))]

where H is the matrix

H =
∑

x

[
∇I ∂W

∂p

]>[
∇I ∂W

∂p

]

The stability of the iteration is mainly influenced by the inverse of Hessian.
We can study its eigenvalues. Consequently, the criterion of a good feature
window is min(λ1, λ2) > λmin (texturedness).
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What are good features (windows) to track?

Consider translation W(x; p) =
[
x+ p1

y + p2

]
. The Jacobian is then

∂W
∂p =

[
1 0
0 1

]

H =
∑

x

[
∇I ∂W∂p

]>[
∇I ∂W∂p

]

=
∑

x

[
1 0
0 1

] [ ∂I
∂x
∂I
∂y

]
[∂I∂x,

∂I
∂x]
[

1 0
0 1

]

=
∑

x



(
∂I
∂x

)2 ∂I
∂x
∂I
∂y

∂I
∂x
∂I
∂y

(
∂I
∂y

)2




The image windows with varying derivatives in both directions.
Homeogeneous areas are clearly not suitable. Texture oriented mostly in one
direction only would cause instability for this translation.
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What are the good points for translations?

The matrix

H =
∑

x



(
∂I
∂x

)2 ∂I
∂x
∂I
∂y

∂I
∂x
∂I
∂y

(
∂I
∂y

)2




Should have large eigenvalues. We have seen the matrix already, where?

Harris corner detector [2]! The matrix is sometimes called Harris matrix.
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Experiments - no occlusions

video
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Experiments - occlusions

video
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Experiments - occlusions with dissimilarity

video
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Experiments - object motion

video
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