

12/18

- N number of data points
- w fraction of inliers
- s size of the sample

Prob. of selecting a sample with all inliers 3 : $\approx w^s$

Prob. of not selecting a sample with all inliers: $1-w^s$

Prob. of not selecting a good sample K times: $(1-w^s)^K$

Prob. of selecting uncontaminated sample in K trials at least once:

$$P = 1 - (1 - w^s)^K$$

Derivation of the probability

Drawing samples from a pool of data without replacement is not an independent process, it is not like tossing a coin. Assume N data points, I of them inliers. Probability of selecting one inlier in a random trial is clearly I/N. Probability of selecting another inlier from the remaining data set is (I-1)/(N-1). The probability of selecting s uncontaminated (= all inliers) samples is then

$$P_s(I) = \prod_{i=0}^{s-1} \frac{I-i}{N-i}$$

which for small sample size and large number of points $s \ll N$ may be well approximated as w^s .

Slide 21, Page 1

³Approximation valid for $s \ll N$, see the lecture notes

References

Slide 27, Page 2