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Importance for Computer Vision

� published in 1981 as a model fitting method [2]

� on of the most cited papers in computer vision and related fields
(around 3900 citations according to Google scholar in 11/2009)

� widely accepted as a method that works even for very difficult problems

� recent advancement presented at the “25-years of RANSAC”
workshop1. Look at the R. Bowless’ presentation.

1http://cmp.felk.cvut.cz/ransac-cvpr2006
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LS does not work for gross errors . . .

2

2sketch borrowed from [3]
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RANSAC motivations

� gross errors (outliers) spoil LS estimation

� detection (localization) algorithms in computer vision and recognition
do have gross error

� in difficult problems the portion of good data may be even less than 1/2

� standard robust estimation techniques [5] hardly applicable to data with
less than 1/2 “good” samples (points, lines, . . . )
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RANSAC inputs and output

In: U = {xi} set of data points, |U | = N

f(S) : S → θ function f computes model parameters θ
given a sample S from U

ρ(θ, x) the cost function for a single data point x

Out: θ∗ θ∗, parameters of the model maximizing (or
minimizing) the cost function

RANSAC principle

1. select randomly few samples needed for model estimation

2. verify the model

3. keep the best so far model estimated

4. if enough trials then quit otherways repeat
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RANSAC algorithm

k := 0

Repeat until P{better solution exists} < η (a function of C∗ and no. of
steps k)

k := k + 1

I. Hypothesis

(1) select randomly set Sk ⊂ U , |Sk| = s

(2) compute parameters θk = f(Sk)

II. Verification

(3) compute cost Ck =
∑
x∈U ρ(θk, x)

(4) if C∗ < Ck then C∗ := Ck, θ∗ := θk

end
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Explanation example: line detection
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• Randomly select two points
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Explanation example: line detection

� Randomly select two points

� The hypothesised model is the
line passing through the two
points

� The error function is a distance
from the line

• Points consistent with the model
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Probability of selecting uncontaminated sample in
K trials

� N - number of data points

� w - fraction of inliers

� s - size of the sample

Prob. of selecting a sample with all inliers3: ≈ ws
Prob. of not selecting a sample with all inliers: 1− ws
Prob. of not selecting a good sample K times: (1− ws)K

Prob. of selecting uncontaminated sample in K trials at least once:
P = 1− (1− ws)K

3Approximation valid for s� N , see the lecture notes
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How many samples are needed, K = ?

How many trials is needed to select an uncontaminated sample with a given
probability P? We derived P = 1− (1− ws)K. Log the both sides to get

K =
log(1− P )
log(1− ws)
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Real problem—w unknown

Often, the proportion of inliers in data cannot be estimated in advance.

Adaptive estimation: start with worst case and and update the estimate as
the computation progress

� set K =∞, #samples = 0, P very conservative, say P = 0.99

� while K > #samples repeat

• choose a random sample, compute the model and count inliers

• w = #inliers
#data points

• K = log(1−P )
log(1−ws)

• increment #samples

� terminate
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Fitting line via RANSAC

video:fitting line
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Epipolar geometry estimation by RANSAC

� U : a set of correspondences, i.e. pairs of 2D points data points

� s = 7 sample size

� f : seven-point algorithm - gives 1 to 3 independent solutions model
parameters

� ρ : thresholded Sampson’s error cost function
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