Recognition Labs - Nonlinear Perceptron

Vojtv ech Franc, translated by Petr Doubek
Center for Machine Perception, FEE CTU Prague

November 52009

1 Introduction

The goal of this exercise is to extend the perceptron learning algorithm to nonlinear classifer, i.e. classifier with nonlinear discriminative function. We will demonstrate it on learning a quadratic discriminative function in a twodimensional feature space.

2 Lifting the Feature Space

The perceptron algorithm optimizes parameters of a linear classifier, so that the classifier has zero error on given training data $\left\{\left(\vec{x}_{1}, y_{1}\right), \ldots,\left(\vec{x}_{m}, y_{m}\right)\right\}$. The linear classifier decides based on the sign of linear discriminative function

$$
\begin{equation*}
f(\vec{x})=\langle\vec{w}, \vec{x}\rangle+b=\sum_{i=1}^{n} w_{i} x_{i}+b \tag{1}
\end{equation*}
$$

where vector $\vec{w} \in \mathbb{R}^{n}$ and scalar $b \in \mathbb{R}$ are parameters and $\vec{x} \in \mathbb{R}^{n}$ is a feature vector of the object to be classified. Note that the discriminative function (1) is linear in both parameters (\vec{w}, b) as well as in the feature vector \vec{x}. By nonlinear classifier we mean nonlinear with respect to the feature vector \vec{x}. For optimizing the parameters of nonlinear classifier by perceptron, we will use lifting of feature space. The idea of lifting is as follows: (i) project training samples from input feature space $\mathcal{X} \subseteq \mathbb{R}^{n}$ into new (lifted) space $\mathcal{Z} \subseteq \mathbb{R}^{N}$, where nonlinear functions project as linear; (ii) use perceptron algorithm in lifted space \mathcal{Z}. Found parameters determine a linear classifier in the space \mathcal{Z}
and a nonlinear classifier in the input space \mathcal{X}. The function which maps the input feature space to the new lifted space is denoted as $\phi: \mathcal{X} \rightarrow \mathcal{Z}$. Let us focus on one specific case of learning a quadratic discriminative function: the input feature space $\mathcal{X} \subseteq \mathbb{R}^{n}$ is two-dimensional $(n=2)$ and the quadratic discriminative function has form

$$
\begin{equation*}
q(\vec{x})=w_{1} \cdot x_{1}+w_{2} \cdot x_{2}+w_{3} \cdot x_{1} \cdot x_{2}+w_{4} \cdot x_{1}^{2}+w_{5} \cdot x_{2}^{2}+b=\sum_{i=1}^{5} w_{i} \phi_{i}(\vec{x})+b . \tag{2}
\end{equation*}
$$

By comparing the linear (1) and the quadratic discriminative function (2), we can derive mapping function ϕ

$$
\vec{z}=\phi(\vec{x}) \quad \text { as } \quad\left[\begin{array}{c}
z_{1} \tag{3}\\
z_{2} \\
z_{3} \\
z_{4} \\
z_{5}
\end{array}\right]=\left[\begin{array}{c}
\phi_{1}(\vec{x}) \\
\phi_{2}(\vec{x}) \\
\phi_{3}(\vec{x}) \\
\phi_{4}(\vec{x}) \\
\phi_{5}(\vec{x})
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{1}^{2} \\
x_{1} \cdot x_{2} \\
x_{2}^{2}
\end{array}\right] .
$$

The lifted feature space \mathcal{Z} is 5 -dimensional. Entire extension of the linear perceptron algorithm to algorithm searching quadratic discriminative function is done as follows:

1. Transform the training data $\left\{\left(\vec{x}_{1}, y_{1}\right), \ldots,\left(\vec{x}_{m}, y_{m}\right)\right\}$ into lifted feature space as $\left\{\left(\vec{z}_{1}, y_{1}\right), \ldots,\left(\vec{z}_{m}, y_{m}\right)\right\}$ using the mapping function (3).
2. Use perceptron algorithm to learn a linear classifier on the lifted training set $\left\{\left(\vec{z}_{1}, y_{1}\right), \ldots,\left(\vec{z}_{m}, y_{m}\right)\right\}$.
3. Substitute the found parameters (\vec{w}, b) into the quadratic discriminative function (2).
