Oriane Siméoni @ 46th Pattern Recognition and Computer Vision Colloquium

Object localization (almost) for free harnessing self-supervised features

Oriane Siméoni valeo.ai

Object localization

Classic benchmarks Closed vocabulary setup

COCO [Lin et al. ECCV'14]

Object detection

Instance segmentation

But, require

- the definition of a finite set of classes
 > limited when we consider our world
- train a model in fully-supervised fashion
 → a lot of **annotation**

Object localization

Classic benchmarks Closed vocabulary setup

COCO [Lin et al. ECCV'14]

Object detection

Instance segmentation

How to find **objects** without knowing anything about them ?

But, require

- the definition of a finite set of classes
 > limited when we consider our world
- train a model in fully-supervised fashion
 → a lot of **annotation**

Object localization

Classic benchmarks Closed vocabulary setup

COCO [Lin et al. ECCV'14]

Object detection

Instance segmentation

But, require

- the definition of a finite set of classes
 > limited when we consider our world
- train a model in fully-supervised fashion
 → a lot of **annotation**

How to find **objects** without knowing anything about them ?

Without human-made supervision?

Segment anything [Kirillov et al., ICCV'23]

Unsupervised object localization

Goal

- Discovering objects in a 2d image
- No information/supervision about objects available

french pastries wooden table plate

Unsupervised object discovery

Foreground/background segmentation

Zero-shot open-vocabulary semantic segmentation

Object localization (almost) for free harnessing self-supervised features

Object localization (almost) for free harnessing self-supervised features

Why self-supervised features ?

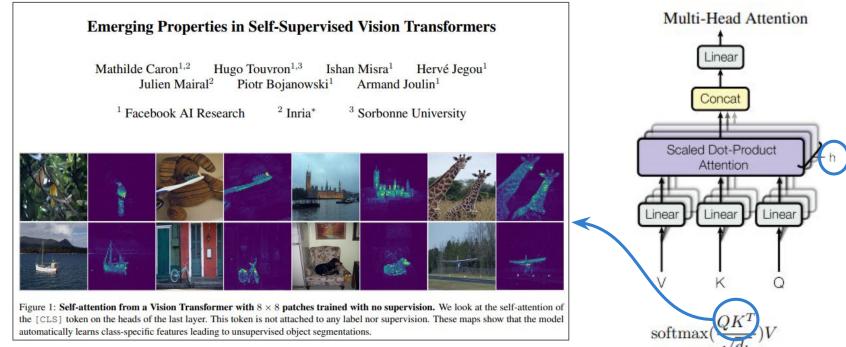
Figure 1: Self-attention from a Vision Transformer with 8×8 patches trained with no supervision. We look at the self-attention of the [CLS] token on the heads of the last layer. This token is not attached to any label nor supervision. These maps show that the model automatically learns class-specific features leading to unsupervised object segmentations.

DINO [Caron et al. ICCV'21]

- ViT models pre-trained in a self-supervised manner have good localization properties
- Trained on unlabelled data with a proxy task

Are we done ?

Why self-supervised features ?



DINO [Caron et al. ICCV'21]

Attention is all you need [Vaswani et al. NeurIPS'17]

Several

heads

Self-attention maps

- The 6 heads attend to different parts of an image
- Without supervision hard to distinguish what is important and is an object

[CLS] self-attention maps



Head 1

Head 2

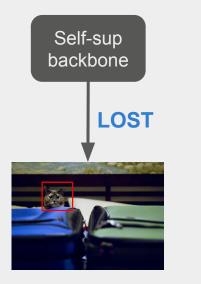
Head 3

Head 4

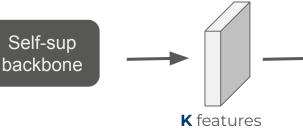
Head 5

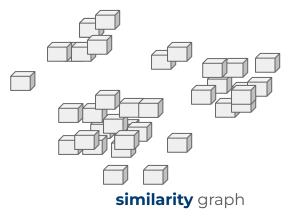
Head 6

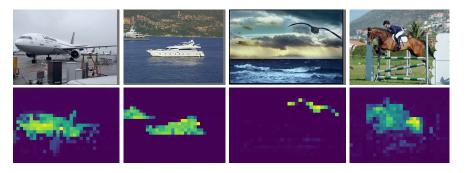
Unsupervised object localization



Single object localization





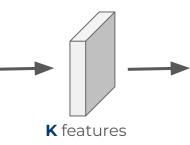


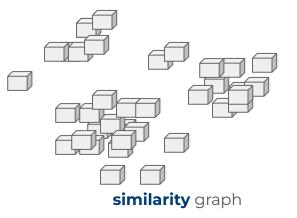
Patch **degrees** Low to **high** LOST [Siméoni et al. BMVC'21]

 Patches of **foreground** are less correlated than those of background

Siméoni et al., Localizing Objects with Self-Supervised Transformers and no Labels, BMVC'21

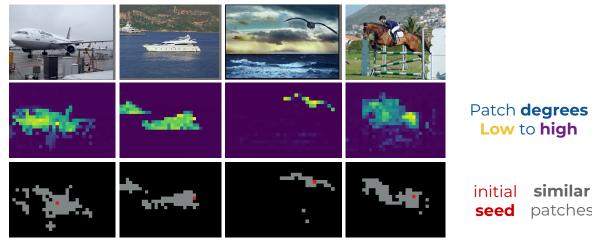
Single object localization





similar

patches

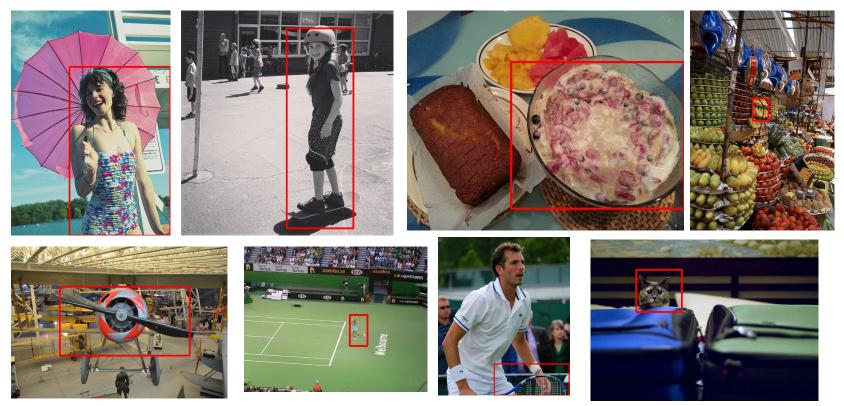


LOST [Siméoni et al. BMVC'21]

- Patches of **foreground** are less correlated than those of background
- **Object =** patch with the • lowest degree & connected correlated patches
- Additional expansion step

Siméoni et al., Localizing Objects with Self-Supervised Transformers and no Labels, BMVC'21

Qualitative results



Siméoni et al., Localizing Objects with Self-Supervised Transformers and no Labels, BMVC'21

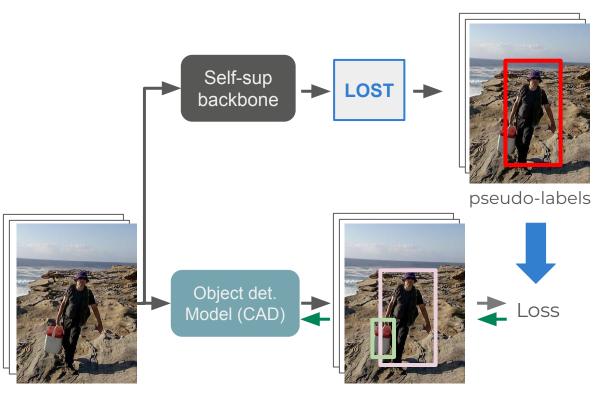
Qualitative results

Method	VOC07_trainval	VOC12_trainval	COCO_20k	
Selective Search [65]	18.8	20.9	16.0	
EdgeBoxes [84]	31.1	31.6	28.8	
Kim et al. [38]	43.9	46.4	35.1	
Zhang <i>et al</i> . [80]	46.2	50.5	34.8	
DDT+ [72]	50.2	53.1	38.2	
rOSD [68]	54.5	55.3	48.5	
LOD [69]	53.6	55.1	48.5	
DINO-seg (w. ViT-S/16)	45.8	46.2	42.1	
LOST (ours)	61.9	64.0	50.7	
	+ 7.4	+ 8.7	+ 2.2	

Corloc metric = % of correct boxes → a predicted box is correct if has IoU > 0.5 with one of gt

boxes

Improving results through learning



LOST+CAD [Siméoni et al. BMVC'21]

- Train a class-agnostic object detector (eg Faster R-CNN)
- Use LOST predictions as pseudo ground-truth

 Regularization & predicts several boxes

- +7pts corloc
- more than one prediction per image

More powerful algorithms

TokenCut [Wang et al. CVPR'22], Deep Spectral Methods

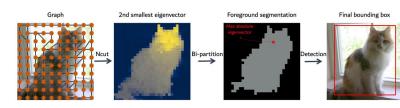
[Melas-Kyriazi et al. CVPR'22], **SelfMask** [Shi et al. CVPRW'22]

- Same features, *similar graph*
- Solve a normalized graph-cut problem with spectral clustering → improved localization

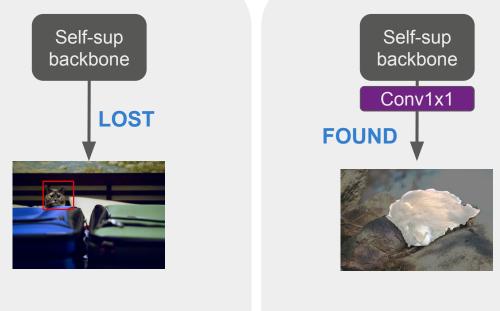
CutLer [Wang et al. CVPR'23]

- Detect several objects
- Remove **already** discovered nodes from the graph and **repeat** the operation
- Also propose an **improved training** scheme (propose to repeat **3x** a training → increase number of detected boxes)

More details/discussion in our recent **survey**: Unsupervised Object Localization in the Era of Self-Supervised ViTs: A Survey, Siméoni et al., arxiv'23



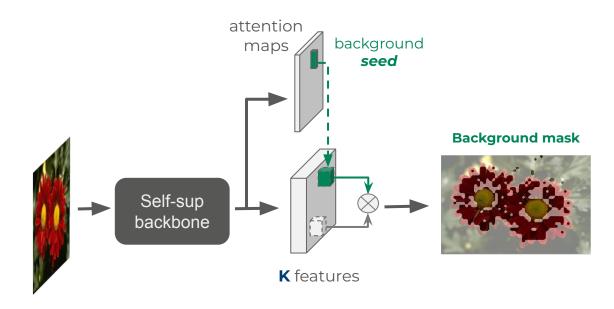
Unsupervised object localization



Single object localization

Foreground/background segmentation

Discovering the background to highlight objects



Siméoni et al., Unsupervised Object Localization: Observing the Background to Discover Objects, CVPR'23

FOUND [Siméoni et al. CVPR'23]

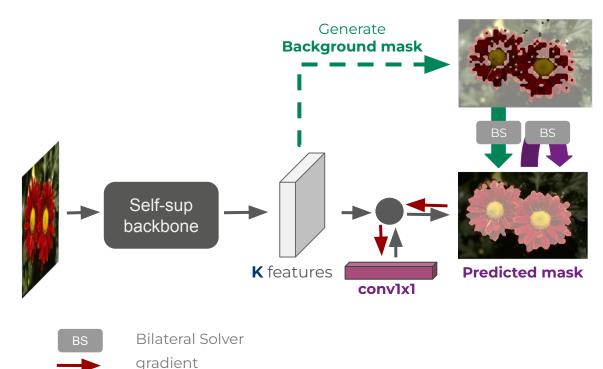
- Look for the **background** instead of objects
- No hypotheses about objects

Background mask

- Seed = patch receiving **least** attention
- Mask = correlated patches to seed

Self-supervised refinement

binary-cross entropy



FOUND [Siméoni et al. CVPR'23]

- Look for the **background** instead of objects
- No hypotheses about objects

FOUND = a single conv 1x1

- Trained using background masks as **pseudo-labels**
- **Bilateral Solver** used to refine masks along pixel edges

Out-of-domain predictions (no post-processing)

FOUND [Siméoni et al. CVPR'23]

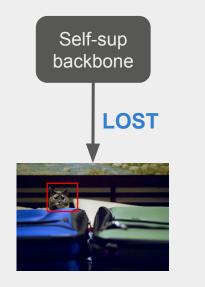
- **Single conv 1x1** layer trained with pseudo-labels
- Trained for 500 it. on DUTS-TR (10k images) [Wang et al, CVPR17]
 ~ 2h with a single GPU
- Inference at **80 FPS** 🚀 on a V100

Siméoni et al., Unsupervised Object Localization: Observing the Background to Discover Objects, CVPR'23

Quantitative results

Method		DUT-OMRON [65]		DUTS-TE [55]		ECSSD [43]		[43]			
	Learning	Acc	IoU	max F_{β}	Acc	IoU	max F_{β}	Acc	IoU	max F_{β}	
— Without post-processing bilater	ral solver —										
HS [63]		.843	.433	.561	.826	.369	.504	.847	.508	.673	
wCtr [73]		838	.416	.541	.835	.392	.522	.862	.517	.684	
WSC [28]		.865	.387	.523	.862	.384	.528	.852	.498	.683	• 80 FPS VS
DeepUSPS [36]		.779	.305	.414	.773	.305	.425	.795	.440	.584	
BigBiGAN [54]		.856	.453	.549	.878	.498	.608	.899	.672	.782	60 FPS (LOST)
E-BigBiGAN [54]		.860	.464	.563	.882	.511	.624	.906	.684	.797	13 FPS (SelfMask, Free
Melas-Kyriazi et al. [33]		.883	.509	_	.893	.528	-	.915	.713	_	• <1000 learned parame
LOST [45] ViT-S/16 [6]		.797	.410	.473	.871	.518	.611	.895	.654	.758	
DSS [34] [59]		_	.567	_		.514	_	_	.733	_	
TokenCut [59] ViT-S/16 [6]		.880	.533	.600	.903	.576	.672	.918	.712	.803	
SelfMask [44]	\checkmark	.901	.582	_	.923	.626	_	.944	.781		
FOUND — single ViT-S/8 [6]	\checkmark	.920	.586	.683	.939	.637	.733	.912	<u>.793</u>	.946	
FOUND — multi ViT-S/8 [6]	\checkmark	.912	.578	.663	.938	.645	.715	.949	.807	.955	

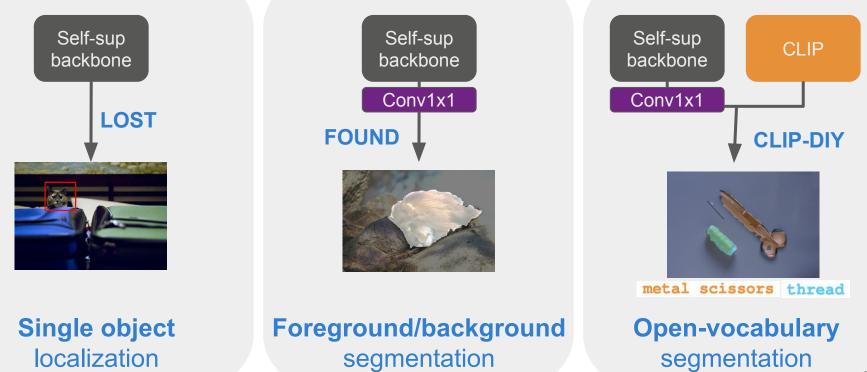
Unsupervised object localization



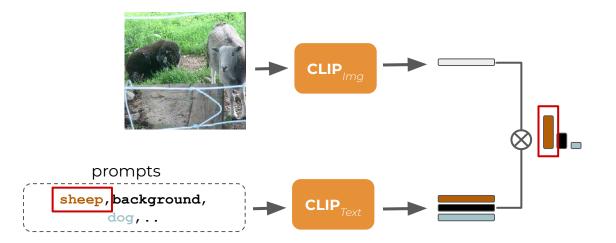
What about classes ?

Single object localization Foreground/background segmentation

Unsupervised object localization



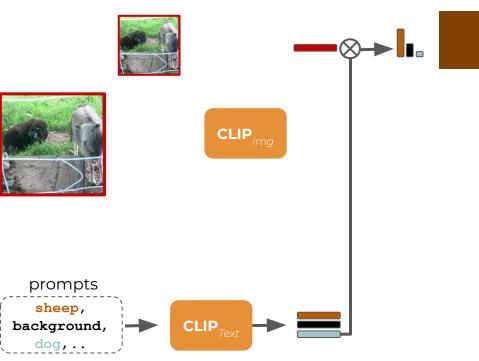
Open-vocabulary text/global image alignment



- Powerful VLMs which align text and images
- **CLIP** [Ilharco et al. 21] trained with a **global** objective to **align** *text to images*

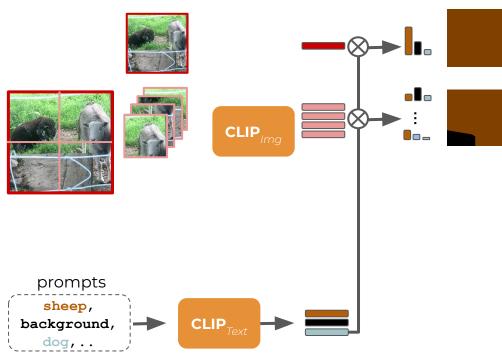
 \rightarrow good zero-shot classification

 Densifying CLIP is a hard task: require training (TCL [Cha et al. CVPR'23], CLIPpy [Ranasinghe et al. ICCV'23]), Very noisy (MaskCLIP [Zhou et al. ECCV'22]), extra annotation, etc..



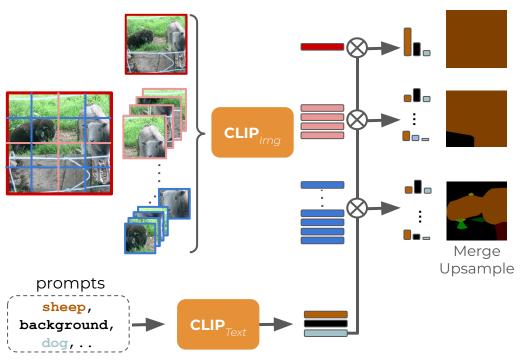
CLIP-DIY [Wysoczanska et al. WACV'24]

- Idea: leverage CLIP good global properties
- Perform prompt assignment is a **sliding window** fashion



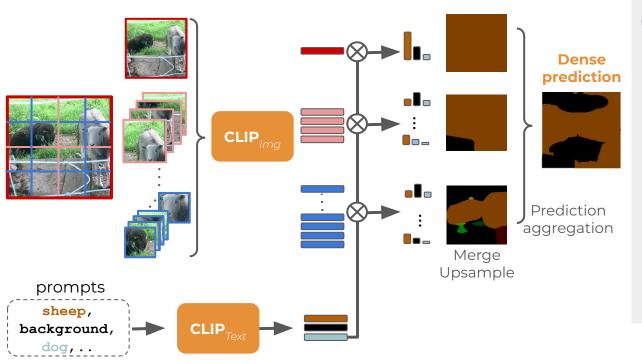
CLIP-DIY [Wysoczanska et al. WACV'24]

- Idea: leverage CLIP good global properties
- Perform prompt assignment is a **sliding window** fashion



CLIP-DIY [Wysoczanska et al. WACV'24]

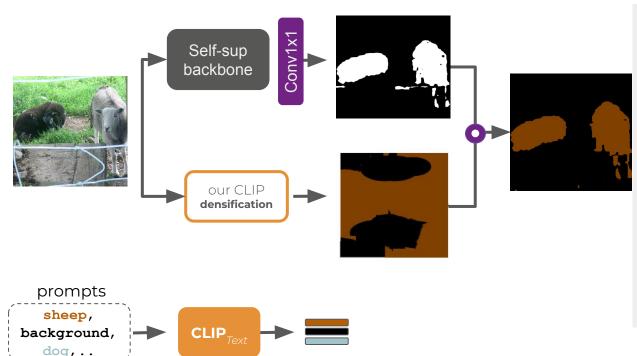
- Idea: leverage CLIP good global properties
- Perform prompt assignment is a **sliding window** fashion



CLIP-DIY [Wysoczanska et al. WACV'24]

- Idea: leverage CLIP good global properties
- Perform prompt assignment is a **sliding window** fashion
- Aggregate **predictions**

Objectness guided fusion



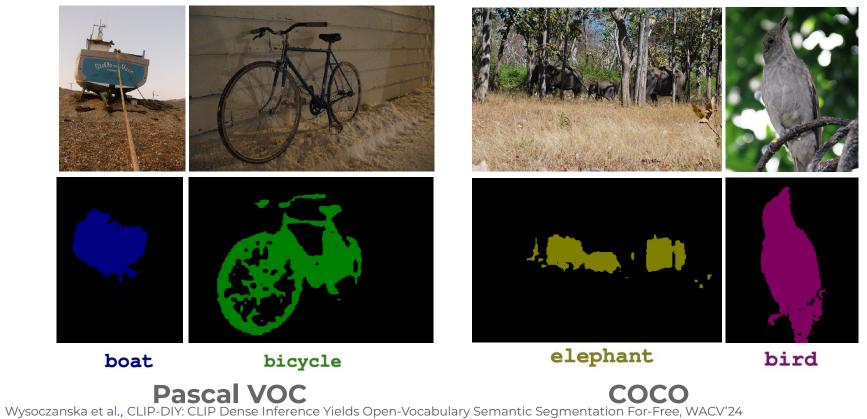
CLIP-DIY [Wysoczanska et al. WACV'24]

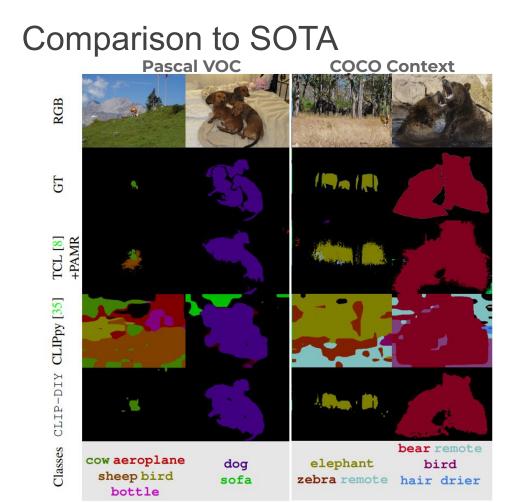
- Idea: leverage CLIP good global properties
- Perform prompt assignment is a **sliding window** fashion
- Aggregate **predictions**

Objectness guided fusion

- Assign text prompts to FOUND foreground pixels
- Leverage CLIP at best: in it global ability

Qualitative results





CLIP-DIY [Wysoczanska et al. WACV'24]

- Use **CLIP** as is designed
- Training-free
- No post-processing

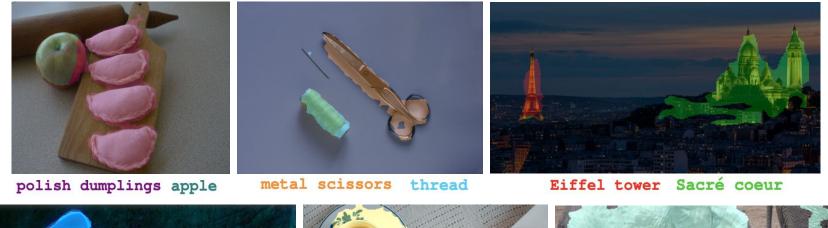
Comparison to SOTA

Method	extra training ?	Bac	PASCAL	сосо	
		Visual	Text	VOC	Object
ReCo [†] [41]	\checkmark	ViT-L/14*	CLIP-ViT-L/14*	25.1	15.7
ViL-Seg [26]	\checkmark	ViT-B/16		37.3	-
MaskCLIP+ [†] [58]	\checkmark	ResNet101 [19]		38.8	20.6
CLIPpy [35]	\checkmark	ViT-B/16	T-5 [34]	52.2	32.0
GroupViT [53]	\checkmark	ViT-S/16	12T	52.3	
ViewCo [37]	\checkmark	ViT-S/16	12T	52.4	23.5
SegCLIP [27]	\checkmark	ViT-B/16	CLIP-ViT-B/16	52.6	26.5
OVSegmentor [54]	\checkmark	ViT-B/16	BERT-ViT-B/16	53.8	25.1
TCL [8] + PAMR [2]	\checkmark	ViT-B/16	CLIP-ViT-B/16	55.0	31.6
CLIP-DIY (ours)		ViT-B/16	CLIP-ViT-B/16	59.0	30.4
CLIP-DIY (ours)		ViT-B/32	CLIP-ViT-B/32	59.9	31.0

CLIP-DIY [Wysoczanska et al. WACV'24]

- Use **CLIP** as is designed
- Training-free
- No post-processing

CLIP-DIY: In the wild



Nemo

pasteis de nata

grey elephant

Sneak peek to our recent work https://arxiv.org/abs/2312.12359

CLIP-DINOiser: Teaching CLIP a few DINO tricks

Monika Wysoczańska¹ Oriane Siméoni² Michaël Ramamonjisoa³ Andrei Bursuc² Tomasz Trzcinski^{1,4,5} Patrick Pérez² ¹Warsaw University of Technology, ²Valeo.ai, ³Meta AI, ⁴Tooploox, ⁵IDEAS NCBR

Related works

Unsupervised object localization

- LOD: Large-Scale Unsupervised Object Discovery. Vo et al. NeurIPS'21
- **TokenCut:** Self-supervised transformers for unsupervised object discovery using normalized cut. *Wang et al.* CVPR'22
- **Deep Spectral Methods:** A surprisingly strong baseline for unsupervised semantic segmentation and localization. *Melas-Kyriazi et al.* CVPR'22
- **SelfMask:** Unsupervised salient object detection with spectral cluster voting. *Shi et al.* CVPRW'22
- **CutLER:** Cut and Learn for Unsupervised Object Detection and Instance Segmentation. *Wang et al.* CVPR'23

Zero-shot semantic segmentation

- **CLIP:** Openclip. Ilharco et al. 2021
- **MaskCLIP:** Extract free dense labels from clip. *Zhou et al.* ECCV'22
- **TCL:** Learning to generate text-grounded mask for open-world semantic segmentation from only image-text pairs. *Cha et al.* CVPR'23
- **CLIPpy:** Perceptual grouping in contrastive vision-language models. *Ranasinghe et al.* ICCV'23

References

Unsupervised object localization

- Localizing Objects with Self-Supervised Transformers and no Labels, Siméoni et al., BMVC'21
- Unsupervised Object Localization: Observing the Background to Discover Objects, *Siméoni* et al., CVPR'23
- Unsupervised Object Localization in the Era of Self-Supervised ViTs: A Survey, *Siméoni et al.*, arxiv'23

Open-vocabulary zero-shot semantic segmentation

- CLIP-DIY: CLIP Dense Inference Yields Open-Vocabulary Semantic Segmentation For-Free, *Wysoczanska et al.*, WACV'24
- CLIP-DINOiser: Teaching CLIP a few DINO tricks, Wysoczanska et al., arxiv'23

Collaborators

Gilles Puy

Eloi Zablocki

Patrick Pérez

Monika Wysoczańska

Spyros Gidaris

Michaël Ramamonjisoa

Antonin Vobecky

Renaud Marlet

Chloé

Sekkat

Huy

V. Vo

Jean Ponce

Andrei Bursuc

Simon Roburin

Conclusion

- We can find objects **without knowing anything** about them
- Self-supervised features are powerful and contain good localization properties without any human made annotation
- We can easily extract **one object** or localize *all* by looking for the **background**
- We can leverage **open-vocabulary** features to **densely** assign prompts to pixels

Perspective

- The definition of object is **ill-defined**, we might want to handle **different level of granularity**
- SSL correlation do not allow to separate similar objects → leverage more type of features ?
- What about features learnt on **non object-centric/curated data**?