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Object detection
Instance 

segmentation

Object localization

COCO [Lin et al. ECCV’14]

Classic benchmarks
Closed vocabulary setup

But, require
● the definition of a finite set of classes 

      → limited when we consider our world
● train a model in fully-supervised fashion

      → a lot of annotation ✍
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Object detection
Instance 

segmentation

Object localization

COCO [Lin et al. ECCV’14]

Classic benchmarks
Closed vocabulary setup

But, require
● the definition of a finite set of classes 

      → limited when we consider our world
● train a model in fully-supervised fashion

      → a lot of annotation ✍

How to find objects without knowing 
anything about them ? 

Segment anything [Kirillov et 
al., ICCV’23]

Without 
human-made 
supervision ?
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Unsupervised object localization

- Discovering objects in a 2d image
- No information/supervision about objects available

Goal

Unsupervised object 
discovery

Foreground/background
segmentation

Zero-shot open-vocabulary
semantic segmentation
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Why self-supervised features ? 

● ViT models pre-trained in a 
self-supervised manner  have good 
localization properties

● Trained on unlabelled data with a 
proxy task

Are we done ? 

DINO [Caron et al. ICCV’21]
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Why self-supervised features ? 

DINO [Caron et al. ICCV’21]

Attention is all you need [Vaswani et al. NeurIPS’17]

Several 
heads
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Self-attention maps
● The 6 heads attend to different parts of an image 
● Without supervision hard to distinguish what is important and is an object

Head 1 Head 2 Head 3 Head 4 Head 5 Head 6 10

[CLS] self-attention maps
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Unsupervised object localization

Single object 
localization

Self-sup 
backbone

LOST
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Self-sup 
backbone

K features

Patch degrees
Low to high

Single object localization

LOST [Siméoni et al. BMVC’21]

● Patches of foreground are 
less correlated than those of 
background

similarity graph

Siméoni et al., Localizing Objects with Self-Supervised Transformers and no Labels, BMVC’21
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Self-sup 
backbone

K features

Patch degrees
Low to high

initial 
seed

similar 
patches

Single object localization

LOST [Siméoni et al. BMVC’21]

● Patches of foreground are 
less correlated than those of 
background

● Object = patch with the 
lowest degree & connected 
correlated patches

● Additional expansion step

similarity graph

Siméoni et al., Localizing Objects with Self-Supervised Transformers and no Labels, BMVC’21
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Qualitative results

14
Siméoni et al., Localizing Objects with Self-Supervised Transformers and no Labels, BMVC’21
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Qualitative results
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Siméoni et al., Localizing Objects with Self-Supervised Transformers and no Labels, BMVC’21

Corloc metric = % of correct 
boxes 
→ a predicted box is correct if 
has IoU > 0.5 with one of gt 
boxes

+ 7.4 + 8.7 + 2.2
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Improving results through learning

LOST+CAD [Siméoni et al. BMVC’21]

● Train a class-agnostic object 
detector (eg Faster R-CNN) 

● Use LOST predictions as pseudo 
ground-truth 

→ Regularization & predicts several 
boxes 

● +7pts corloc 
● more than one prediction per 

image

pseudo-labels

Self-sup 
backbone

Object det. 
Model (CAD) Loss

LOST

16gradient
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More powerful algorithms

TokenCut [Wang et al. CVPR’22], Deep Spectral Methods 

[Melas-Kyriazi et al. CVPR’22], SelfMask [Shi et al. CVPRW’22]

● Same features, similar graph
● Solve a normalized graph-cut problem with spectral 

clustering → improved localization

CutLer [Wang et al. CVPR’23]

● Detect several objects
● Remove already discovered nodes from the graph and 

repeat the operation
● Also propose an improved training scheme (propose to 

repeat 3x a training → increase number of detected boxes)

17

More details/discussion in our recent survey: 
Unsupervised Object Localization in the Era of Self-Supervised ViTs: A Survey, Siméoni et al., arxiv’23 
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Unsupervised object localization

Single object 
localization

Foreground/background
segmentation

Self-sup 
backbone

LOST

Self-sup 
backbone

FOUND

Conv1x1

18
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Discovering the background to highlight objects

Self-sup 
backbone

FOUND [Siméoni et al. CVPR’23]

● Look for the background 
instead of objects

● No hypotheses about objects

background 
seed

attention
maps 

Background mask

Background mask
● Seed = patch receiving least 

attention
K features

Siméoni et al., Unsupervised Object Localization: Observing the Background to Discover Objects, CVPR’23

● Mask = correlated patches to 
seed

19
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Self-supervised refinement

Self-sup 
backbone

conv1x1
Predicted maskK features

Generate
Background mask

BS BS

BS Bilateral Solver

gradient

binary-cross entropy

FOUND [Siméoni et al. CVPR’23]

● Look for the background 
instead of objects

● No hypotheses about objects

FOUND = a single conv 1x1
● Trained using background 

masks as pseudo-labels

Siméoni et al., Unsupervised Object Localization: Observing the Background to Discover Objects, CVPR’23
20

● Bilateral Solver used to refine 
masks along pixel edges
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Out-of-domain predictions (no post-processing)

FOUND [Siméoni et al. CVPR’23]

● Single conv 1x1 layer trained 
with pseudo-labels

● Trained for 500 it. on DUTS-TR 
(10k images) [Wang et al, CVPR17] 
~ 2h with a single GPU 

● Inference at 80 FPS 🚀on a V100

Siméoni et al., Unsupervised Object Localization: Observing the Background to Discover Objects, CVPR’23
21

https://docs.google.com/file/d/15HO6yjyZyV83VXef2gr9hYLzoOpYf5bC/preview
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Quantitative results

● 80 FPS vs
60 FPS (LOST) 
13 FPS (SelfMask, FreeSolo)

● <1000 learned parameters
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Unsupervised object localization

Single object 
localization

Foreground/background
segmentation

Self-sup 
backbone

LOST

Self-sup 
backbone

FOUND

Conv1x1

What about 
classes ?

23
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Unsupervised object localization

Single object 
localization

Foreground/background
segmentation

Self-sup 
backbone

LOST

Self-sup 
backbone

FOUND

Conv1x1

Open-vocabulary 
segmentation

CLIPSelf-sup 
backbone

CLIP-DIY

Conv1x1

24
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Open-vocabulary text/global image alignment

prompts

sheep,background,
dog,..

● Powerful VLMs which align 
text and images

● CLIP [Ilharco et al. 21] trained with 
a global objective to align text 
to images
→ good zero-shot classification

Wysoczanska et al., CLIP-DIY: CLIP Dense Inference Yields Open-Vocabulary Semantic Segmentation For-Free, WACV’24

CLIPImg

CLIPText

25

● Densifying CLIP is a hard 
task: require training (TCL [Cha 

et al. CVPR’23], CLIPpy [Ranasinghe et 

al. ICCV’23]), very noisy 
(MaskCLIP [Zhou et al. ECCV’22]), 
extra annotation, etc.. 



Oriane Siméoni @ 46th Pattern Recognition and Computer Vision Colloquium 

CLIP densification 

CLIPImg

prompts
sheep,

background,
dog,..

CLIPText

CLIP-DIY[Wysoczanska et al. WACV’24]

● Idea: leverage CLIP good 
global properties

● Perform prompt assignment is 
a sliding window fashion

Wysoczanska et al., CLIP-DIY: CLIP Dense Inference Yields Open-Vocabulary Semantic Segmentation For-Free, WACV’24
26
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CLIP densification 

CLIPImg

prompts
sheep,

background,
dog,..

…

CLIPText

CLIP-DIY[Wysoczanska et al. WACV’24]

● Idea: leverage CLIP good 
global properties

● Perform prompt assignment is 
a sliding window fashion

Wysoczanska et al., CLIP-DIY: CLIP Dense Inference Yields Open-Vocabulary Semantic Segmentation For-Free, WACV’24
27
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CLIP densification 

CLIPImg

prompts
sheep,

background,
dog,..

…
…

Merge 
Upsample

CLIPText

CLIP-DIY[Wysoczanska et al. WACV’24]

● Idea: leverage CLIP good 
global properties

● Perform prompt assignment is 
a sliding window fashion

Wysoczanska et al., CLIP-DIY: CLIP Dense Inference Yields Open-Vocabulary Semantic Segmentation For-Free, WACV’24
28
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CLIP densification 

CLIPImg

prompts
sheep,

background,
dog,..

…
…

Merge 
Upsample

Prediction 
aggregation

CLIPText

Dense 
prediction

CLIP-DIY[Wysoczanska et al. WACV’24]

● Idea: leverage CLIP good 
global properties

● Perform prompt assignment is 
a sliding window fashion

● Aggregate predictions 

Wysoczanska et al., CLIP-DIY: CLIP Dense Inference Yields Open-Vocabulary Semantic Segmentation For-Free, WACV’24
29
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Objectness guided fusion 

CLIP-DIY[Wysoczanska et al. WACV’24]

● Idea: leverage CLIP good 
global properties

● Perform prompt assignment is 
a sliding window fashion

● Aggregate predictions

our CLIP 
densification

prompts
sheep,

background,
dog,..

CLIPText

Self-sup 
backbone

C
on

v1
x1

Wysoczanska et al., CLIP-DIY: CLIP Dense Inference Yields Open-Vocabulary Semantic Segmentation For-Free, WACV’24
30

Objectness guided fusion
● Assign text prompts to FOUND 

foreground pixels
● Leverage CLIP at best: in it 

global ability
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Pascal VOC 31COCO

Qualitative results

Wysoczanska et al., CLIP-DIY: CLIP Dense Inference Yields Open-Vocabulary Semantic Segmentation For-Free, WACV’24
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Comparison to SOTA
Pascal VOC COCO Context

CLIP-DIY[Wysoczanska et al. WACV’24]

● Use CLIP as is designed
● Training-free
● No post-processing
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Comparison to SOTA

CLIP-DIY[Wysoczanska et al. WACV’24]

● Use CLIP as is designed
● Training-free
● No post-processing

Wysoczanska et al., CLIP-DIY: CLIP Dense Inference Yields Open-Vocabulary Semantic Segmentation For-Free, WACV’24
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CLIP-DIY: In the wild

34
Wysoczanska et al., CLIP-DIY: CLIP Dense Inference Yields Open-Vocabulary Semantic Segmentation For-Free, WACV’24
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Sneak peek to our recent work 

35

https://arxiv.org/abs/2312.12359

https://arxiv.org/abs/2312.12359
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Related works

Unsupervised object localization

● LOD: Large-Scale Unsupervised Object Discovery. 
Vo et al. NeurIPS’21

● TokenCut:  Self-supervised transformers for 
unsupervised object discovery using normalized 
cut. Wang et al. CVPR’22 

● Deep Spectral Methods:  A surprisingly strong 
baseline for unsupervised semantic segmentation 
and localization. Melas-Kyriazi et al. CVPR’22 

● SelfMask: Unsupervised salient object detection 
with spectral cluster voting. Shi et al. CVPRW’22

● CutLER: Cut and Learn for Unsupervised Object 
Detection and Instance Segmentation. Wang et 
al. CVPR’23

Zero-shot semantic segmentation

● CLIP: Openclip. Ilharco et al. 2021
● MaskCLIP: Extract free dense labels from clip. 

Zhou et al. ECCV’22
● TCL: Learning to generate text-grounded mask for 

open-world semantic segmentation from only 
image-text pairs. Cha et al. CVPR’23

● CLIPpy: Perceptual grouping in contrastive 
vision-language models. Ranasinghe et al. 
ICCV’23

36
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Conclusion
● We can find objects without knowing anything about them 
● Self-supervised features are powerful and contain good localization 

properties without any human made annotation
● We can easily extract one object or localize all by looking for the 

background
● We can leverage open-vocabulary features to densely assign prompts to 

pixels

Perspective

● The definition of object is ill-defined, we might want to handle different 
level of granularity

● SSL correlation do not allow to separate similar objects → leverage more type 
of features ?

● What about features learnt on non object-centric/curated data?


