

Exploring Unconventional Uses of LLMs in Vision Tasks

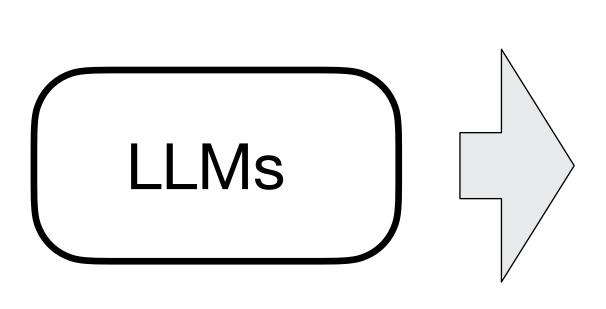
Anna Kukleva

Max-Planck-Institute for Informatics

The 50th Pattern Recognition and Computer Vision Colloquium

09.10.2025

LLMs are Everywhere



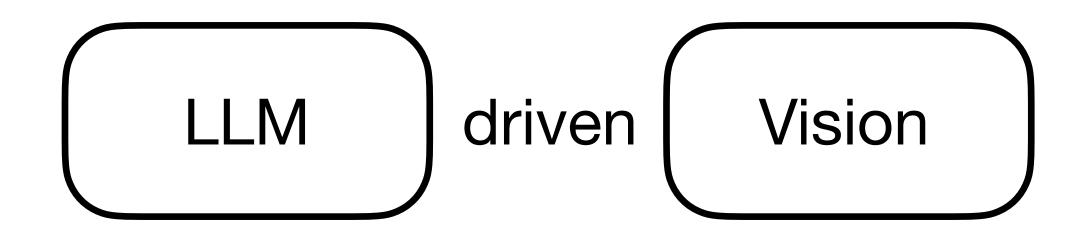
Chatbots

Code Generation

Knowledge Retrieval

Summarization

LLMs are Everywhere



LLMs are Everywhere

LLM driven Vision

- Object-based control in the real world [1]
- ▶ SMPL pose generation/editing [2]
- Tracking [3] and segmentation [4]
- Reasoning [5]
- ...
- [1] Learning to Generate Object Interactions with Physics-Guided Video Diffusion, Romero et al., arxiv
- [2] UniPose: A Unified Multimodal Framework for Human Pose Comprehension, Generation and Editing, Li et al., CVPR 25
- [3] Monocular-Video Based 3D Visual Language Tracking, Wei et. al, CVPR 25
- [4] Unifying LLM-Driven Semantic Cues with Visual Features for Robust Few-Shot Segmentation, Karimi et al., CVPR 25
- [5] Vision-Centric Reasoning with Grounded Chain-of-Thought, Man et al., CVPR 25

LLMs in this talk

LLM driven Vision

Fusion of LLM and:

- Diffusion models[1]
- Self-supervised vision pretraining [2]
- Large-scale video data [3]

- [1] RefAM: Attention Magnets for Zero-Shot Referral Segmentation, Kukleva* & Simsar* et al., arxiv
- [2] Language-Unlocked ViT (LUViT): Empowering Self-Supervised Vision Transformers with LLMs, Kuzucu et al., arxiv
- [3] HowToCaption: Prompting LLMs to Transform Video Annotations at Scale, Shvetsova* & Kukleva* et al., ECCV 24

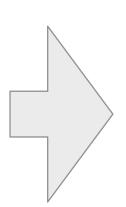
RefAM: Attention Magnets for Zero-Shot Referral Segmentation

Anna Kukleva^{1*}, Enis Simsar^{2*}, Alessio Tonioni³, Ferjad Naeem³, Federico Tombari^{3,4}, Jan Eric Lenssen¹, Bernt Schiele¹

¹Max Planck Institute for Informatics, ²ETH Zurich, ³Google, ⁴TU Munich

Leveraging pre-trained LLM for implicit semantic understanding

Zero-Shot Referral Segmentation



A largest orange goldfish

Goal: given image/video and referral expression, segment corresponding objects in the image/video

Zero-Shot Referral Segmentation Pipeline

Previous work [1,2]

- 1. Mask proposals
- 2. Local and Global reasoning modules
- 3. Integration with CLIP visual-language space

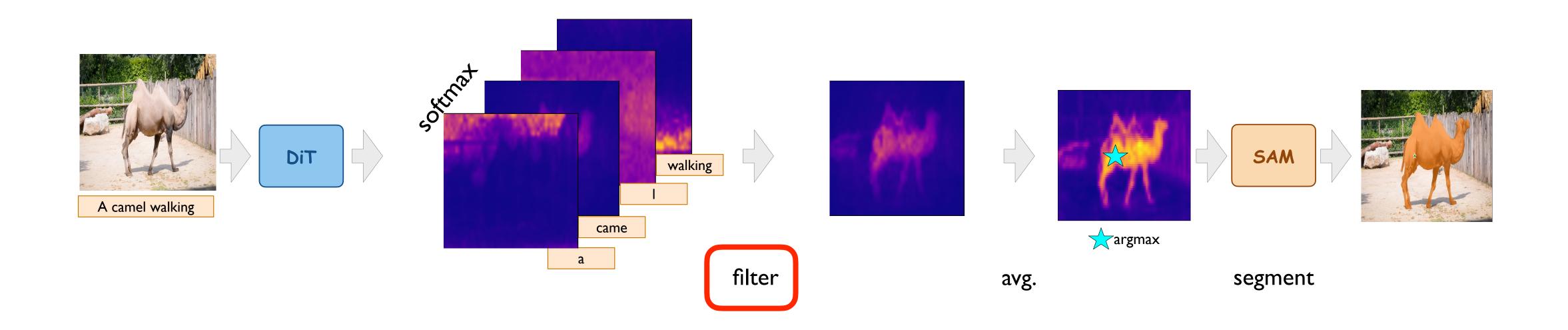
Our work

- 1. **No** Mask proposal
- 2. No Local and Global reasoning modules
- 3. No Integration with CLIP visual-language space

[1] Zero-Shot Referring Image Segmentation with Global-Local Context Features, Yu et al., CVPR 2023

[2] Hybrid Global-Local Representation with Augmented Spatial Guidance for Zero-Shot Referring Image Segmentation, Liu et al., CVPR 2025

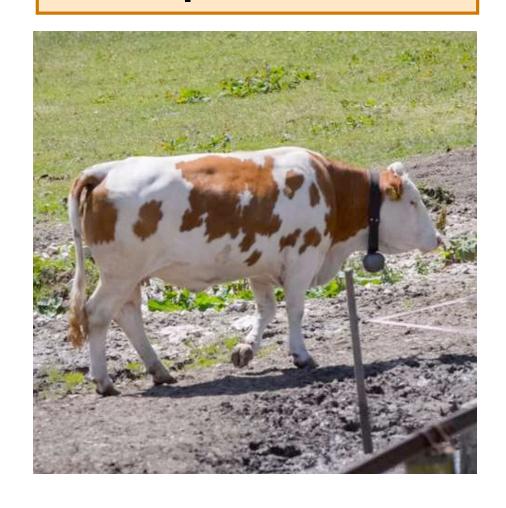
Zero-Shot Referral Segmentation Pipeline

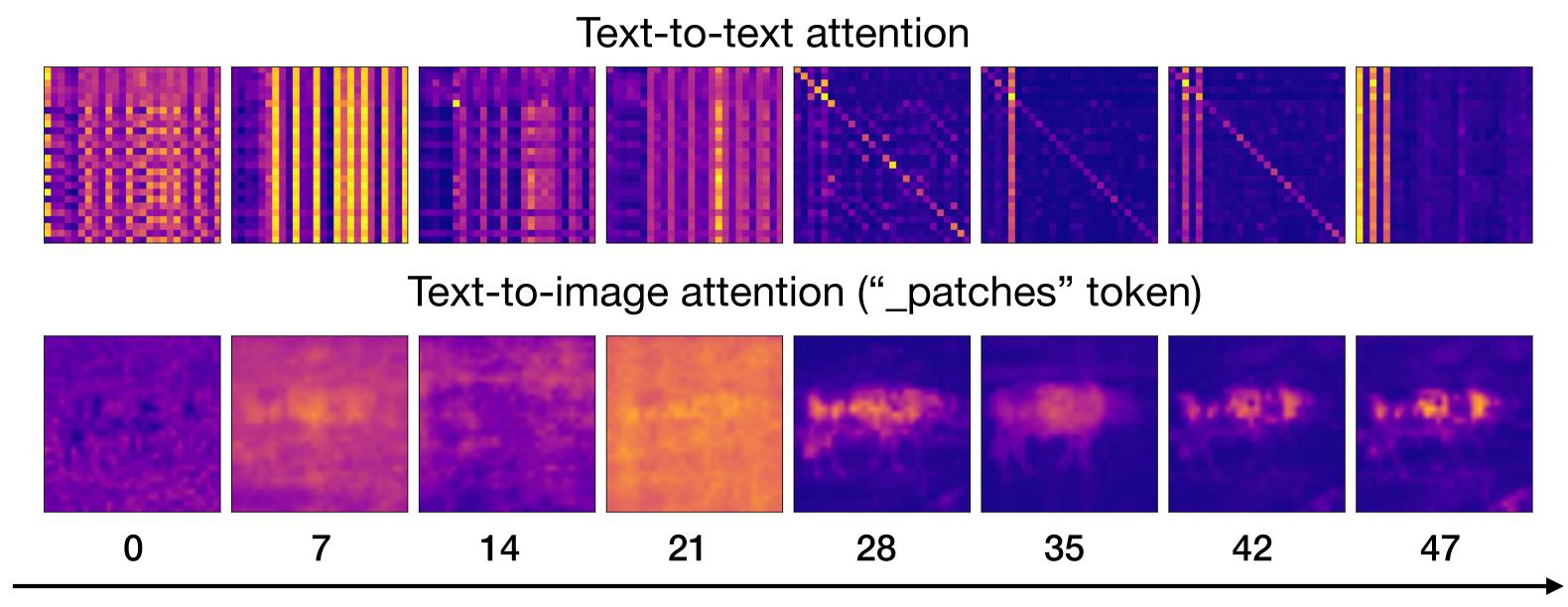


What and how we filter attention maps?

Emergence of Semantic Information in DiT

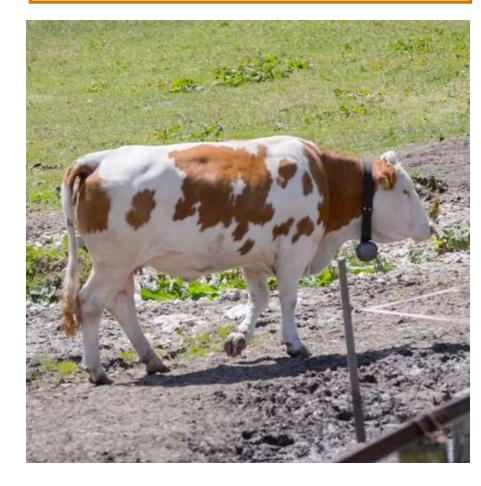
A white cow with brown patches

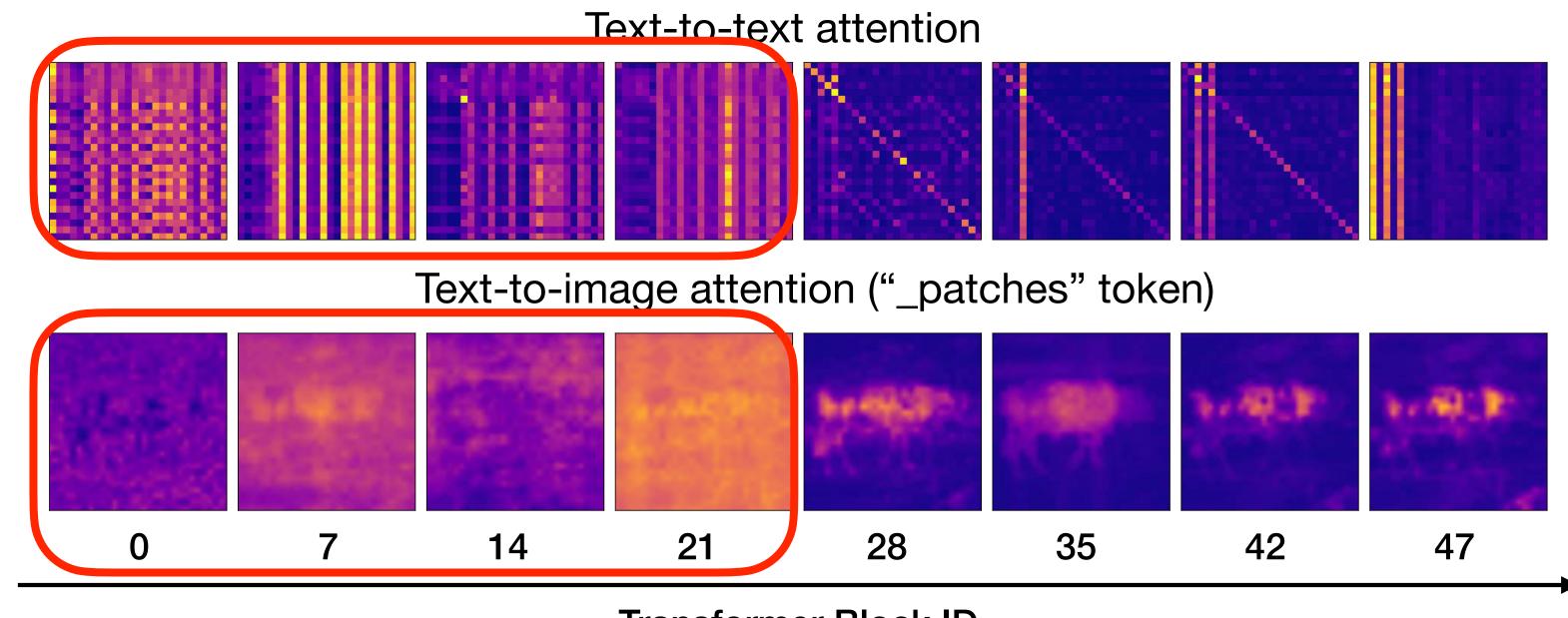




Transformer Block ID

Emergence of Semantic Information in DiT



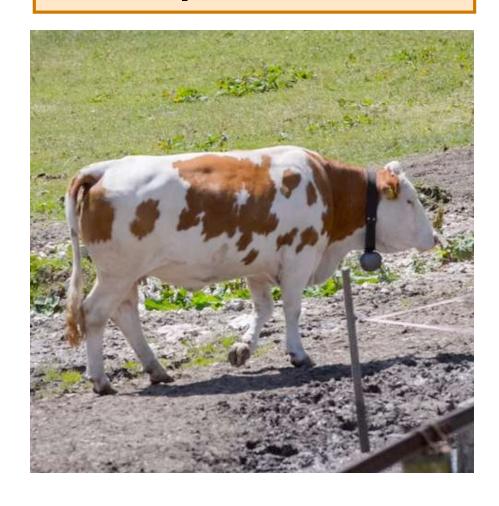


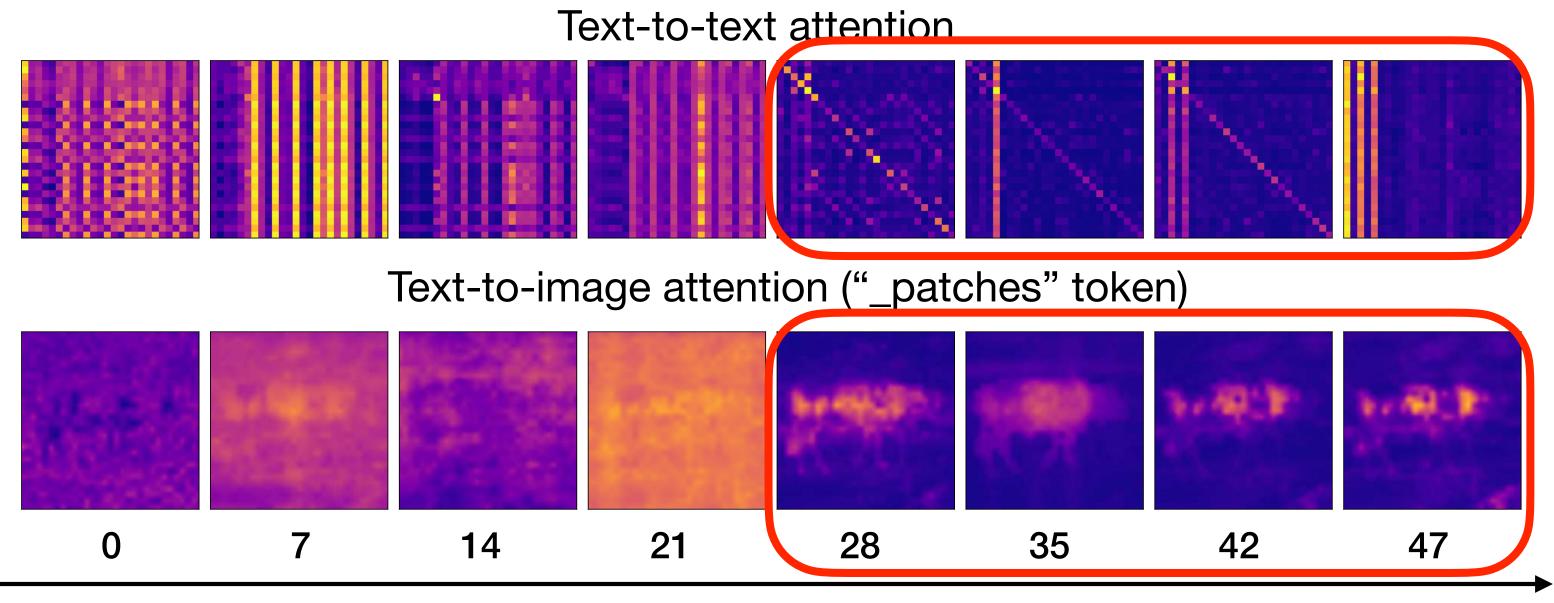
Transformer Block ID

Early Layers: No usable information, uniform attention maps

Emergence of Semantic Information in DiT

A white cow with brown patches





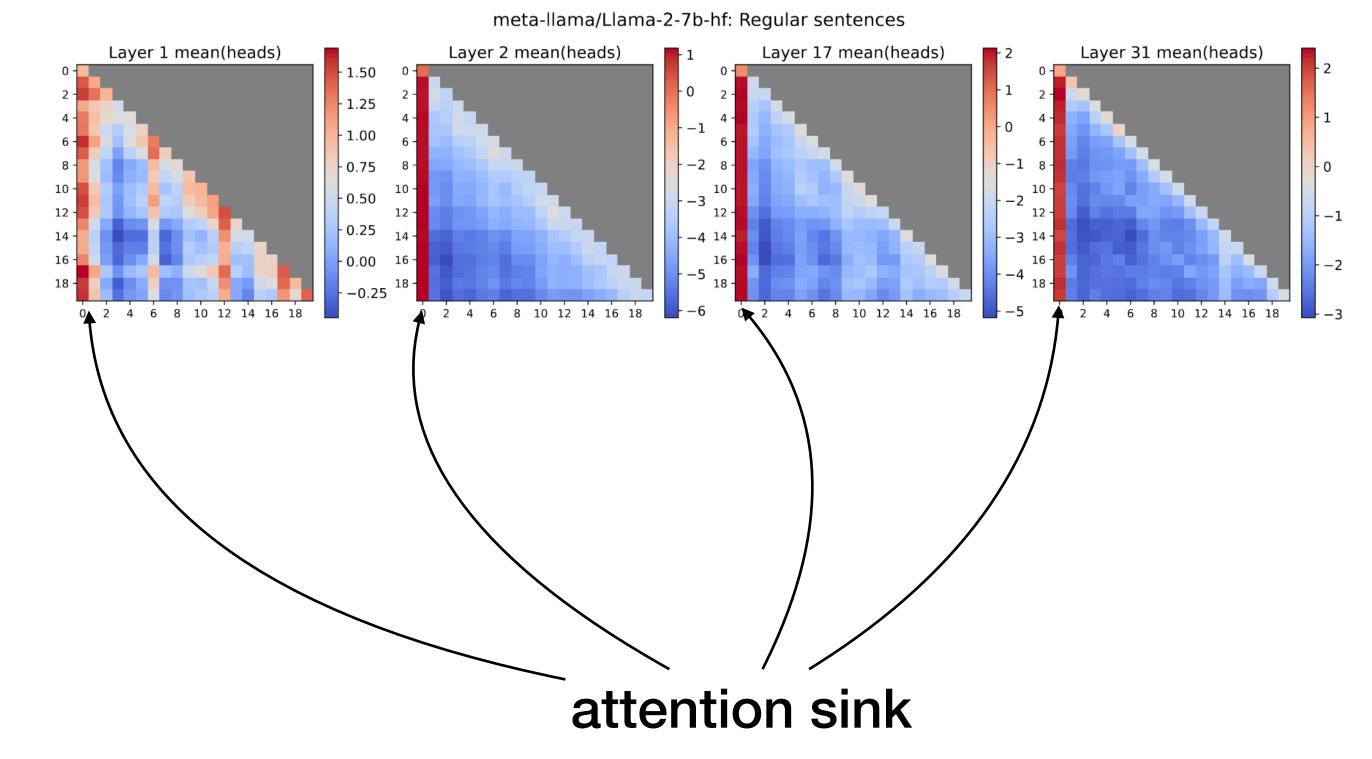
Transformer Block ID

Mid & Late Layers: Sharpened semantic alignment + global attention sinks

Attention Sinks in NLP [1,2,3,4,5] and vision [6,7]

What is attention sink?

- high-norm values
- limited semantic information
- very few tokens

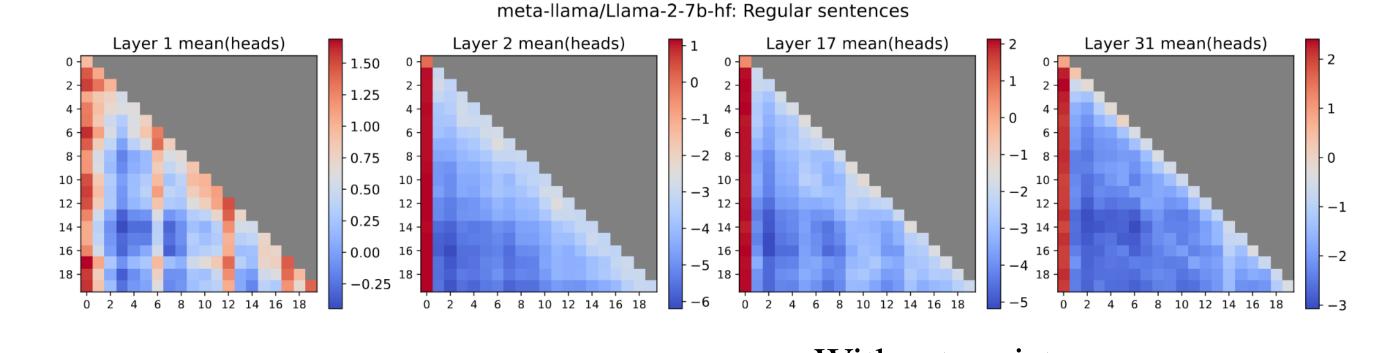


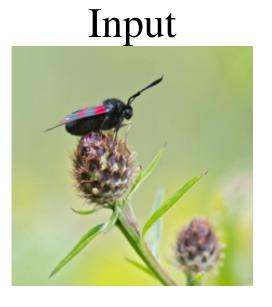
- [1] Efficient Streaming Language Models with Attention Sinks, ICLR 2024
- [2] Interpreting the Repeated Token Phenomenon in Large Language Models, ICML 2025
- [3] Massive Values in Self-Attention Modules are the Key to Contextual Knowledge Understanding, ICML 2025
- [4] Massive Activations in Large Language Models, CoLM 2024
- [5] Why do LLMs attention to the first token? arxiv 2025
- [6] Vision Transformers Need Registers, ICLR 2024
- [7] Vision Transformers Don't Need Registers, arxiv 2025

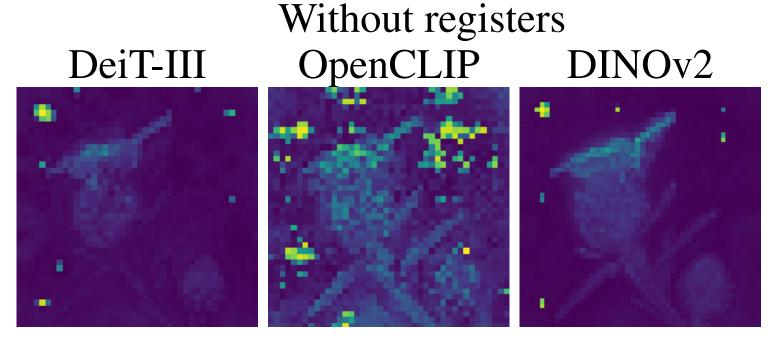
Attention Sinks in NLP [1,2,3,4,5] and vision [6,7]

What is attention sink?

- high-norm values
- limited semantic information
- very few tokens

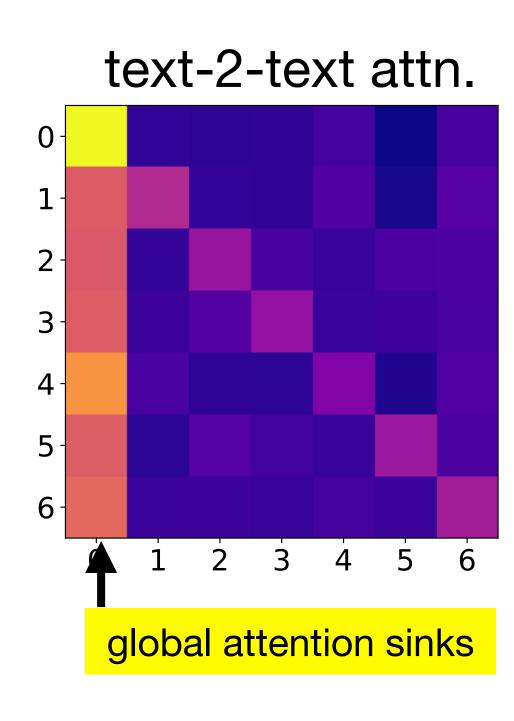


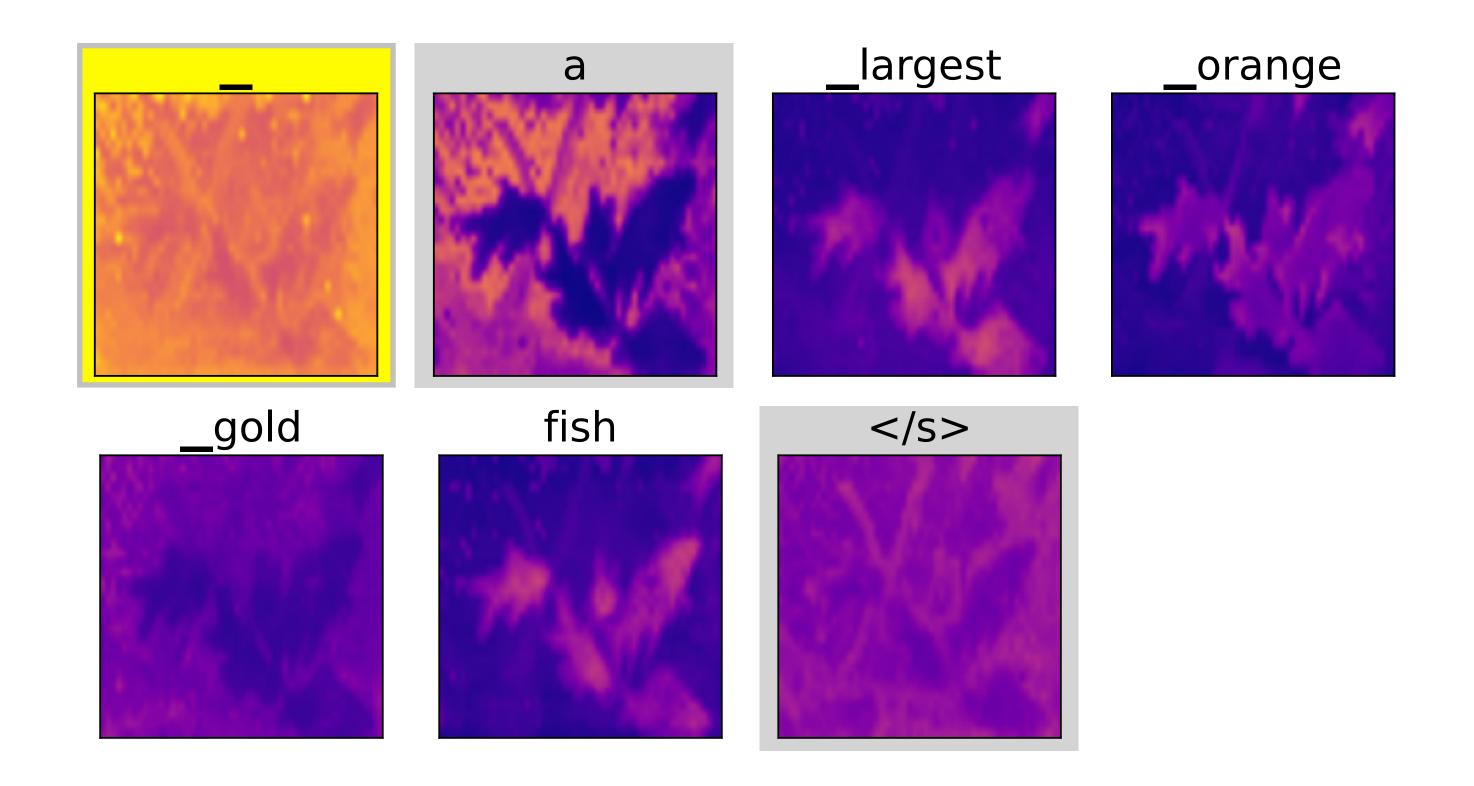




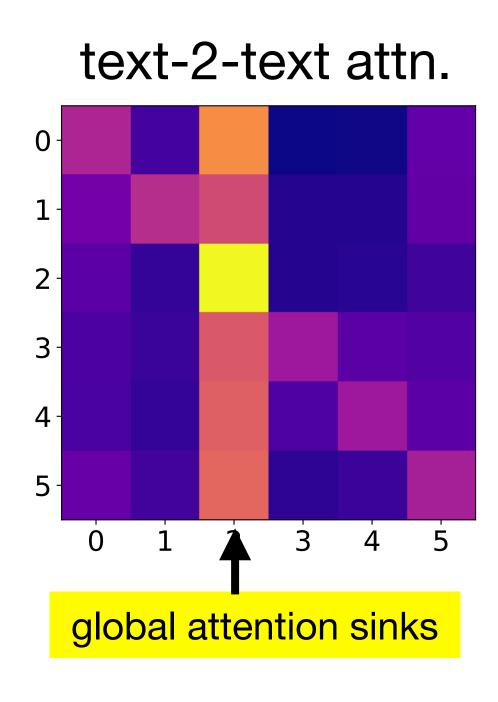
- [1] Efficient Streaming Language Models with Attention Sinks, ICLR 2024
- [2] Interpreting the Repeated Token Phenomenon in Large Language Models, ICML 2025
- [3] Massive Values in Self-Attention Modules are the Key to Contextual Knowledge Understanding, ICML 2025
- [4] Massive Activations in Large Language Models, CoLM 2024
- [5] Why do LLMs attention to the first token? arxiv 2025
- [6] Vision Transformers Need Registers, ICLR 2024
- [7] Vision Transformers Don't Need Registers, arxiv 2025

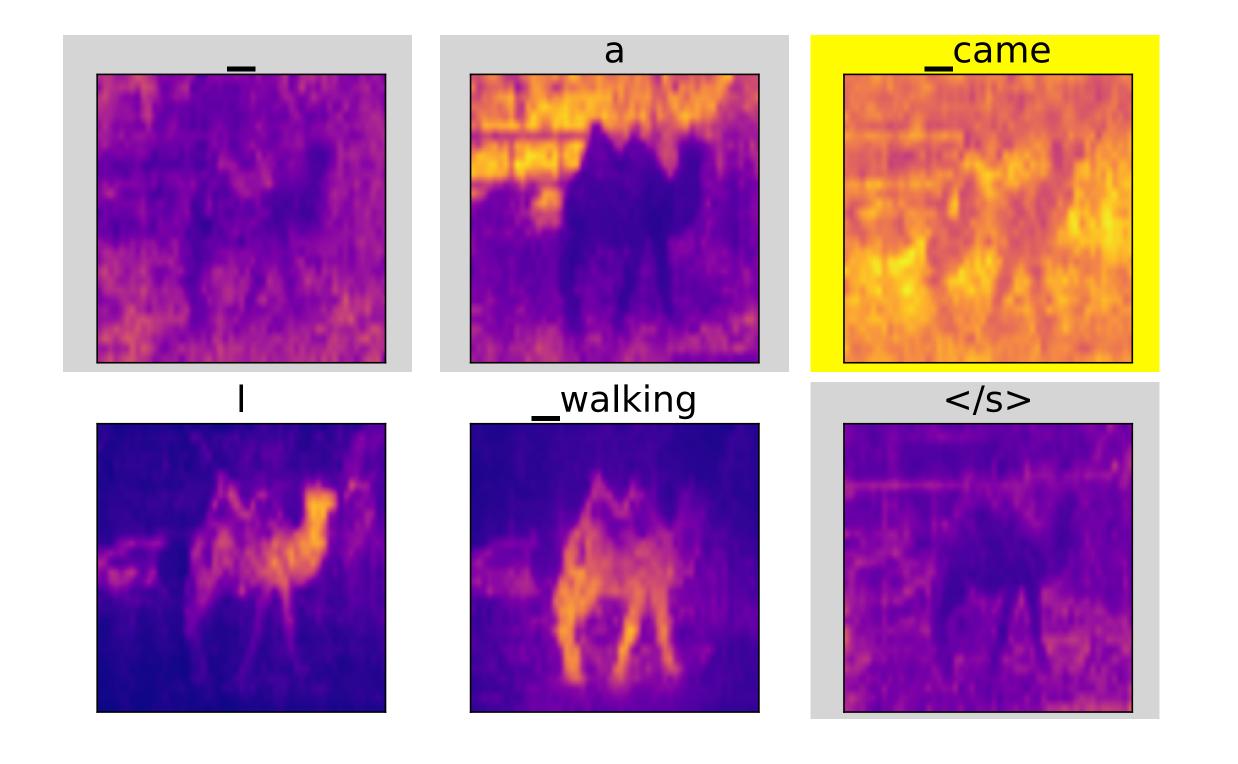
Global Attention Sinks (GAS)





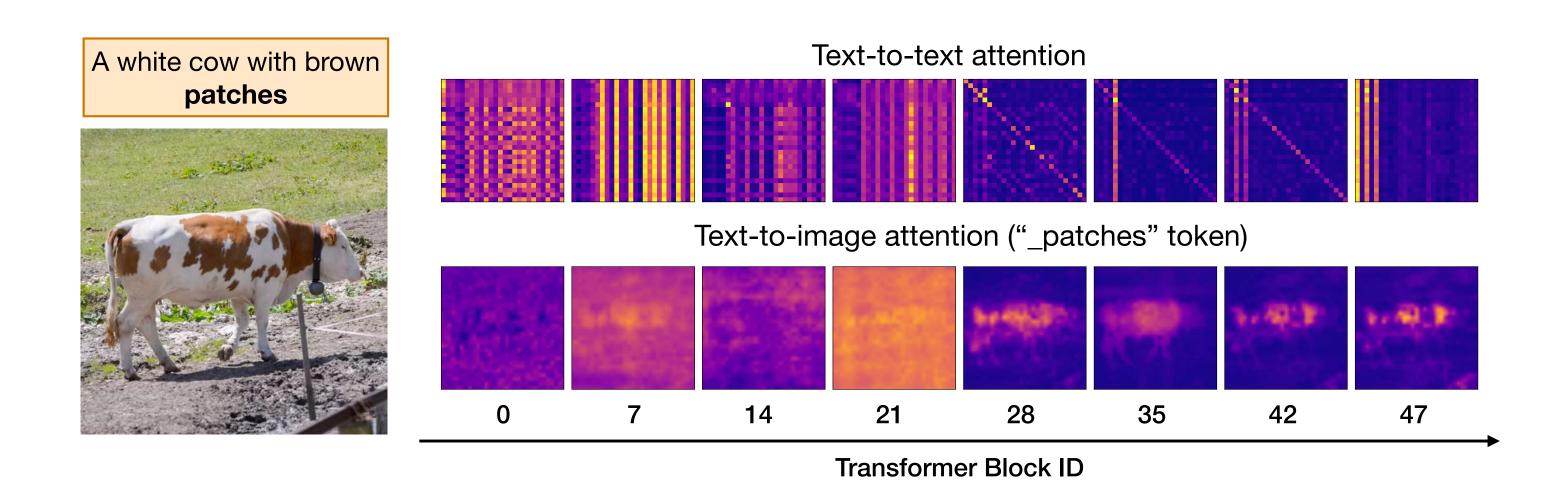
Global Attention Sinks (GAS)





Meaningful token is allocated to GAS

Interpretation of GAS



- 1. Uninformative role: Removing them does not harm the performance (inference)
- 2. Indicators of semantic structure: GAS consistently emerge only after meaningful structure is established in the mid layers
- 3. Potentially harmful role: majority of GAS tokens (77%) correspond to stop words, 10% fall on color tokens and another 10% to other content words

Redistribution Strategy

Append more stop words (attention magnets)!

Redistribution Strategy

Append more stop words (attention magnets)!

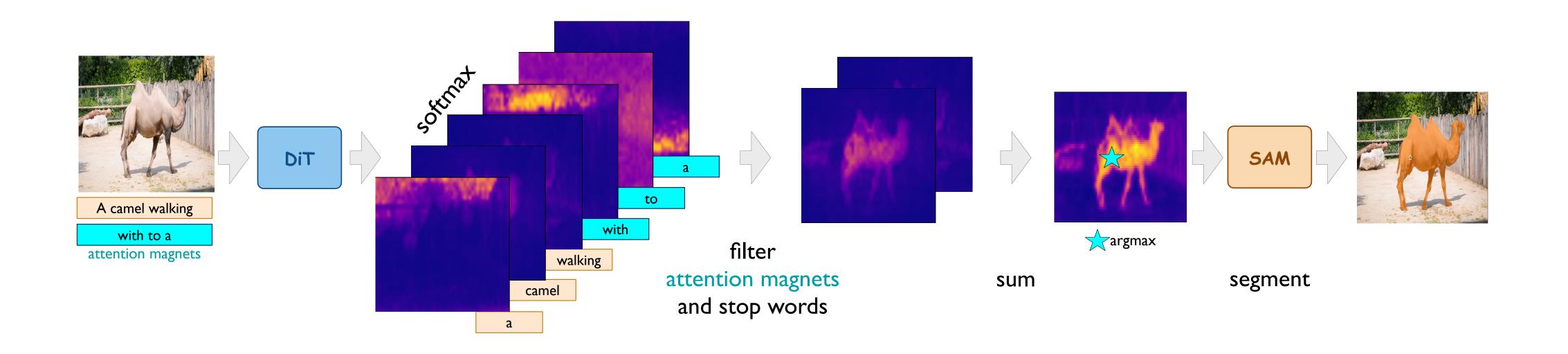
stop words: the, is, at, which, on, with, to, a, this, etc

words with little semantic value

Redistribution Strategy

Append more stop words (attention magnets)!

stop words: the, is, at, which, on, with, to, a, this, etc words with little semantic value

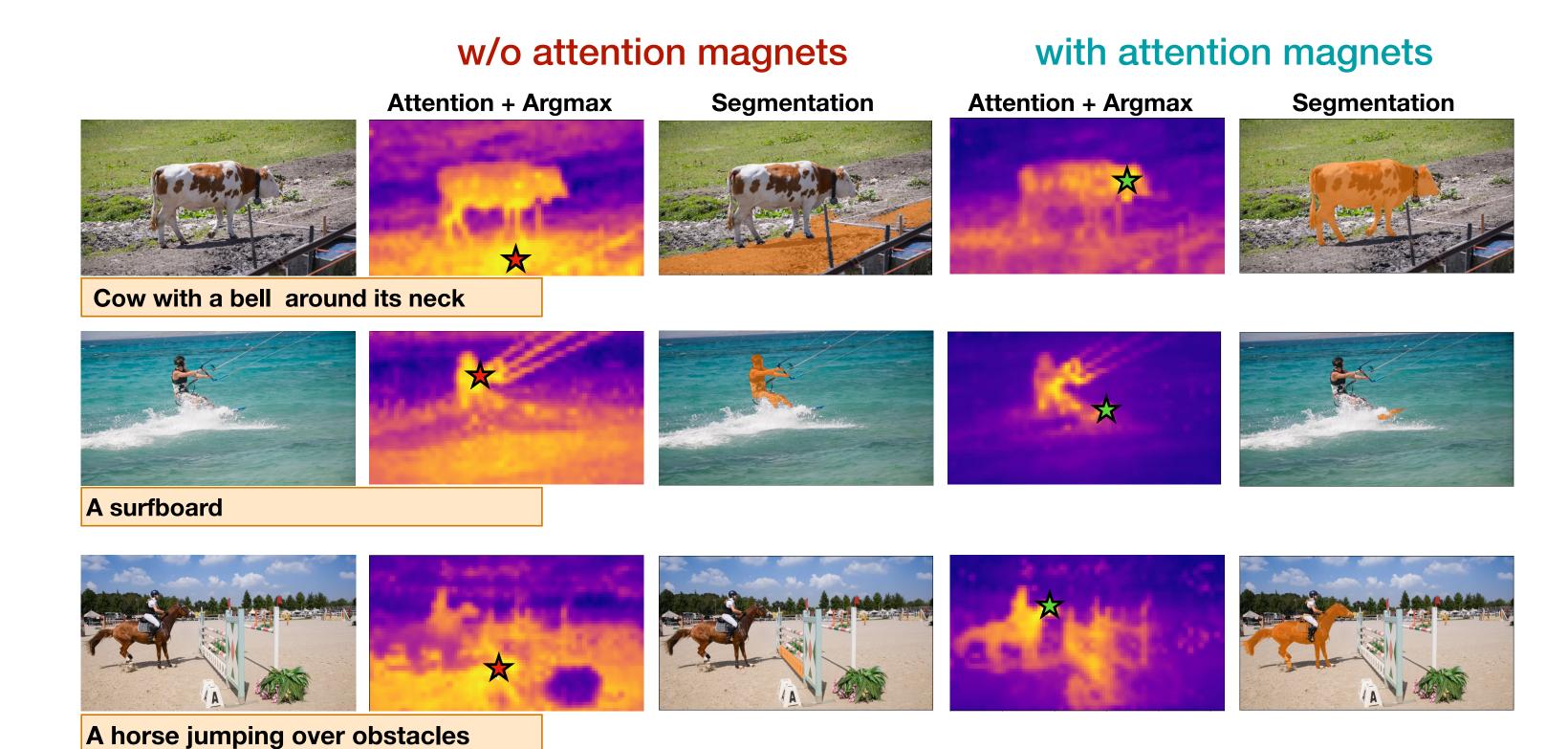


before: 77% of GAS tokens on stop words

after: 89% of GAS tokens on stop words

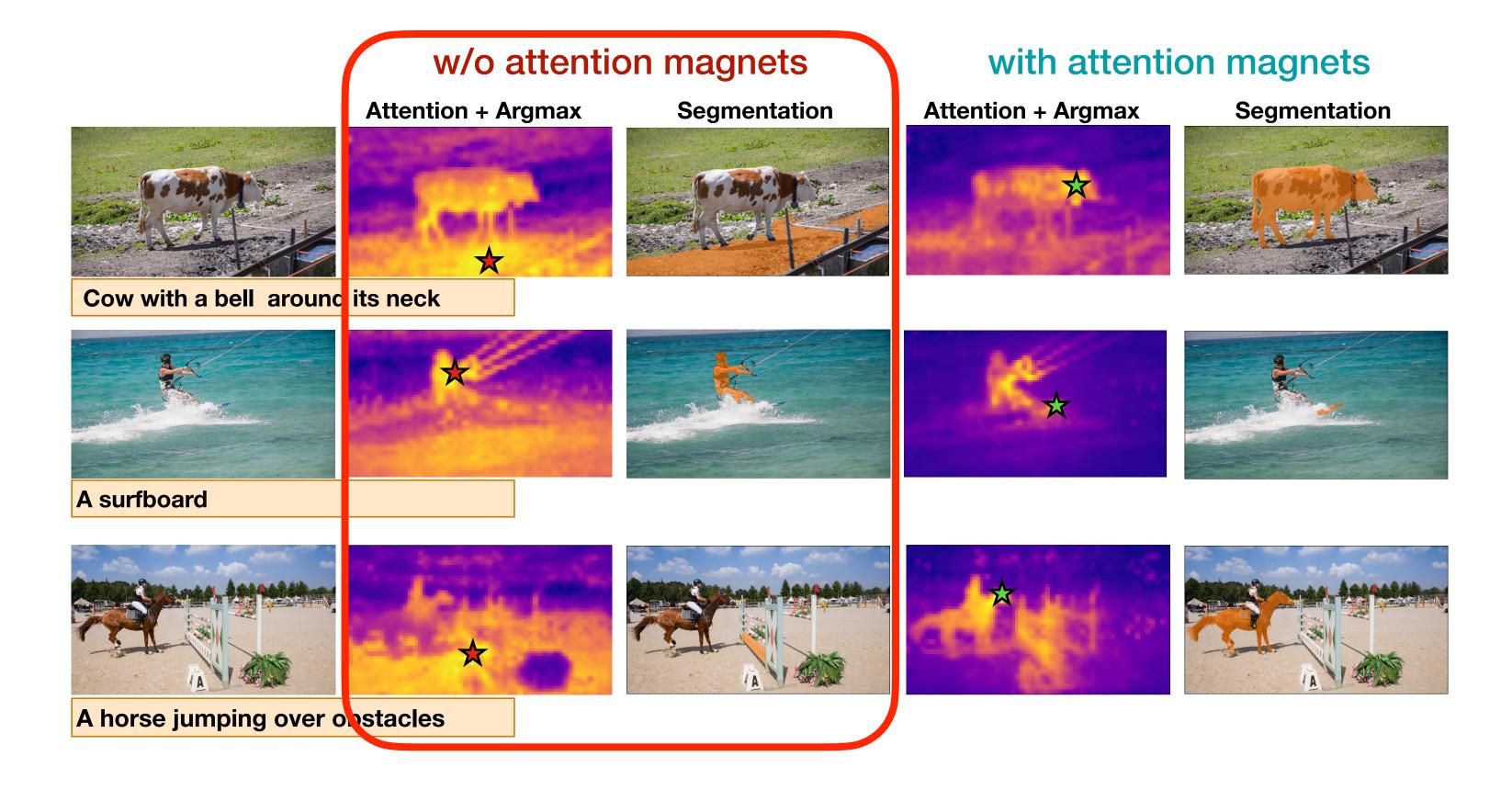
before: 77% of GAS tokens on stop words

after: 89% of GAS tokens on stop words



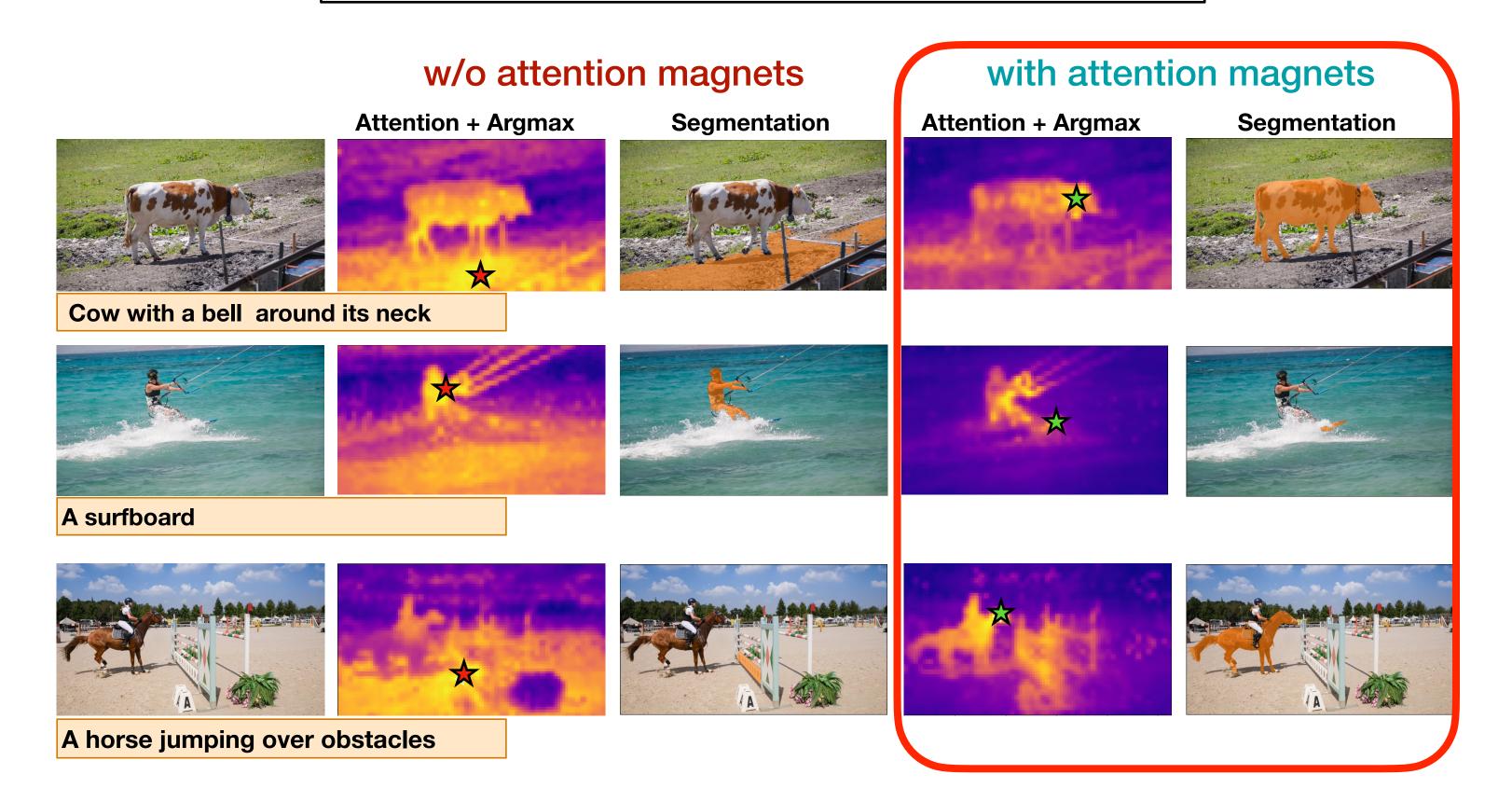
before: 77% of GAS tokens on stop words

after: 89% of GAS tokens on stop words



before: 77% of GAS tokens on stop words

after: 89% of GAS tokens on stop words



much sharper attention maps

Why Stop Words?

- \blacktriangleright natural garbage collectors in LLMs \rightarrow allocation of the surplus of attention
- background attention redistributed to these stop words

Why Stop Words?

- \blacktriangleright natural garbage collectors in LLMs \rightarrow allocation of the surplus of attention
- background attention redistributed to these stop words

is the choice of stop words important?

A N /I	Ref-DAVIS17						
AM	$\mathcal{J}\&\mathcal{F}$	${\cal J}$	${\cal F} \mid$	PA			
random stop words (5x)	57.5	54.3	60.5	68.5			
random vectors (5x)	56.2	53.1	59.4	65.5			
none	54.4	50.9	57.6	59.8			
scene description	48.9	45.2	52.2	60.6			

SOTA

Metric	Method	Wisian Daalshana	Due trained Model	RefCOCO			RefCOCO+			RefCOCOg	
	Method	Vision Backbone	Pre-trained Model	val	testA	testB	val	testA	testB	val	test
	zero-shot methods w/ additional training										
	Pseudo-RIS (Yu et al., 2024)	ViT-B	SAM, CoCa, CLIP	37.33	43.43	31.90	40.19	46.43	33.63	41.63	43.52
	VLM-VG (Wang et al., 2025)	R101	COCO*, VLM-VG*	45.40	48.00	41.40	37.00	40.70	30.50	42.80	44.10
zero-shot methods w/o additional training											
	Grad-CAM (Selvaraju et al., 2017a)	R50	SAM, CLIP	23.44	23.91	21.60	26.67	27.20	24.84	23.00	23.91
	MaskCLIP (Zhou et al., 2022)	R50	SAM, CLIP	20.18	20.52	21.30	22.06	22.43	24.61	23.05	23.41
	Global-Local (Yu et al., 2023)	R50	FreeSOLO, CLIP	24.58	23.38	24.35	25.87	24.61	25.61	30.07	29.83
oIoU	Global-Local (Yu et al., 2023)	R50	SAM, CLIP	24.55	26.00	21.03	26.62	29.99	22.23	28.92	30.48
	Global-Local (Yu et al., 2023)	ViT-B	SAM, CLIP	21.71	24.48	20.51	23.70	28.12	21.86	26.57	28.21
	Ref-Diff (Ni et al., 2023)	ViT-B	SAM, SD, CLIP	35.16	37.44	34.50	35.56	38.66	31.40	38.62	37.50
	TAS (Suo et al., 2023)	ViT-B	SAM, BLIP2, CLIP	29.53	30.26	28.24	33.21	38.77	28.01	35.84	36.16
	HybridGL (Liu & Li, 2025)	ViT-B	SAM,CLIP	<u>41.81</u>	<u>44.52</u>	<u>38.50</u>	<u>35.74</u>	<u>41.43</u>	30.90	42.47	<u>42.97</u>
	REFAM (ours)	DiT	SAM, FLUX	46.91	52.30	43.88	38.57	42.66	34.90	45.53	44.45

Referral Image Object Segmentation

	Ref-DAVIS17		Ref-YouTube-VOS			MeViS			
Method	$\mathcal{J}\&\mathcal{F}$	${\cal J}$	${\cal F}$	$\int \mathcal{J} \& \mathcal{F}$	${\cal J}$	${\cal F}$	$\mathcal{J}\&\mathcal{F}$	${\cal J}$	${\cal F}$
Training-Free with Grounded-SAM									
Grounded-SAM (Ren et al., 2024)†	65.2	62.3	68.0	62.3	61.0	63.6	-	-	_
Grounded-SAM2 (Ren et al., 2024)†	66.2	62.6	69.7	64.8	62.5	67.0	38.9	35.7	42.1
AL-Ref-SAM2 (Huang et al., 2025)	74.2	70.4	78.0	67.9	65.9	69.9	42.8	39.5	46.2
Training-Free									
G-L + SAM2 (Yu et al., 2023)†	40.6	37.6	43.6	27.0	24.3	29.7	23.7	20.4	30.0
G-L (SAM) + SAM2 (Yu et al., 2023) \dagger	<u>46.9</u>	<u>44.0</u>	<u>49.7</u>	33.6	<u>29.9</u>	<u>37.3</u>	<u>26.6</u>	<u>22.7</u>	<u>30.5</u>
REFAM + SAM2 (ours)	57.6	54.5	60.6	42.7	37.6	47.8	30.6	24.7	36.6

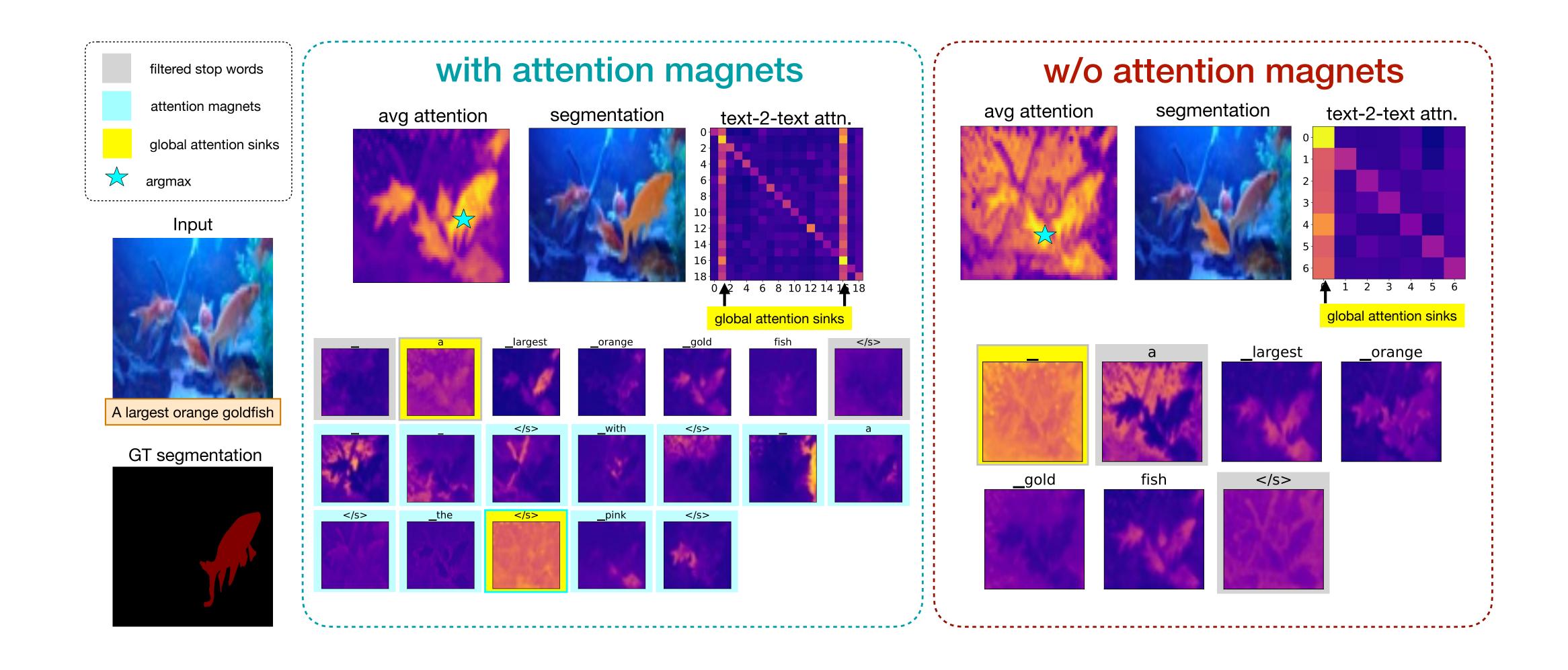
Referral Video Object Segmentation

Does our redistribution strategy help?

AM						RefCOCOg		
	val	testA	testB	val	testA	testB	val	test
/						34.90		
_	33.89	44.66	34.14	35.12	37.69	33.75	42.93	42.44

With and Without Attention Magnets (AM)

Qualitative Example



Conclusion

- RefAM framework for zero-shot referral segmentation based on DiT
- Step forward in understanding semantics in diffusion models through the lens of LLMs
- Attention redistribution strategy with attention magnets
- SOTA results on zero-shot image an video referral segmentation

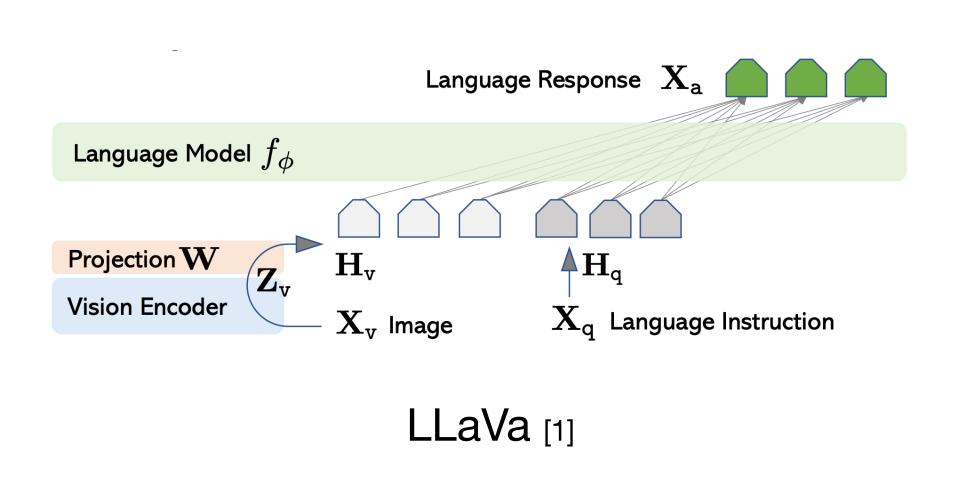
Language-Unlocked ViT (LUViT): Empowering Self-Supervised ViT with LLMs

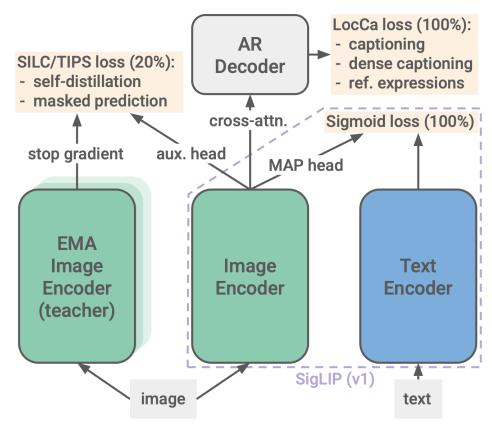
Selim Kuzucu¹, Ferjad Naeem², Anna Kukleva¹, Federico Tombari^{2,3}, Bernt Schiele¹

¹Max Planck Institute for Informatics, ²Google, ³TU Munich

Leveraging pre-trained LLM representations for pure vision tasks

Pretrained LLMs in vision





SigLIP 2 [2]

LLMs can process visual information..

IF they are trained jointly with visual encoders on vast data!

^[1] Visual Instruction Tuning, NeurIPS 2023

^[2] SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features, arxiv

Pretrained LLMs in vision



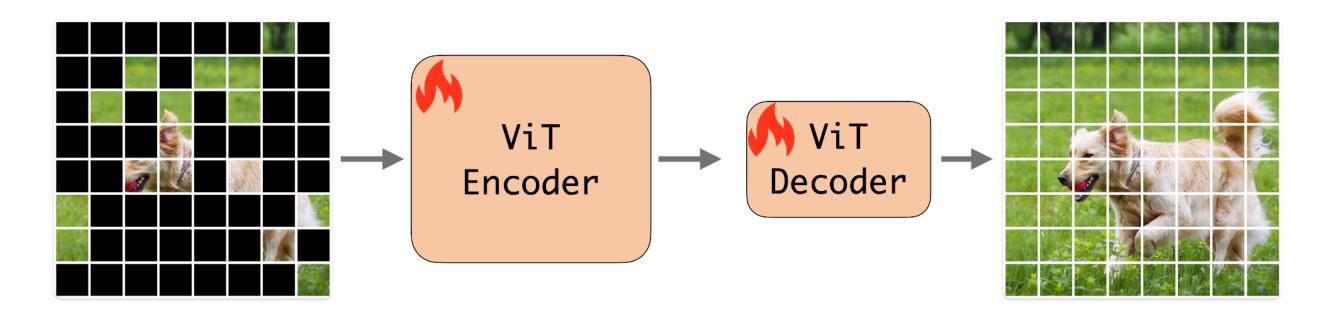
IF they are trained jointly with visual encoders on vast data!

^[1] Visual Instruction Tuning, NeurIPS 2023

^[2] SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features, arxiv

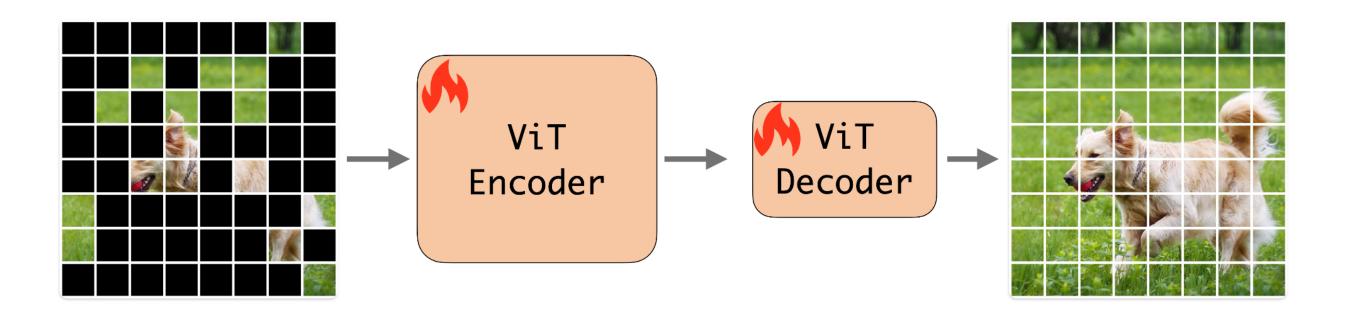
Language-unlocked ViT (LUViT)

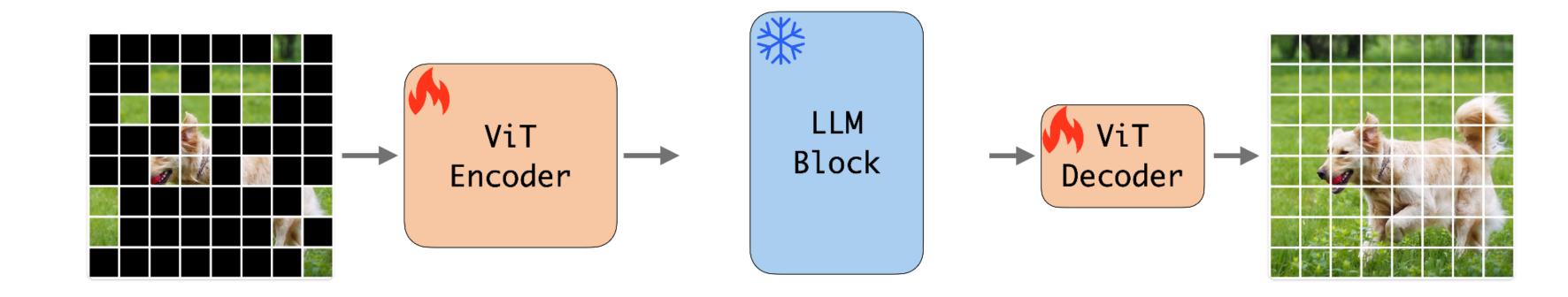
Masked Autoencoder (MAE)



Language-unlocked ViT (LUViT)

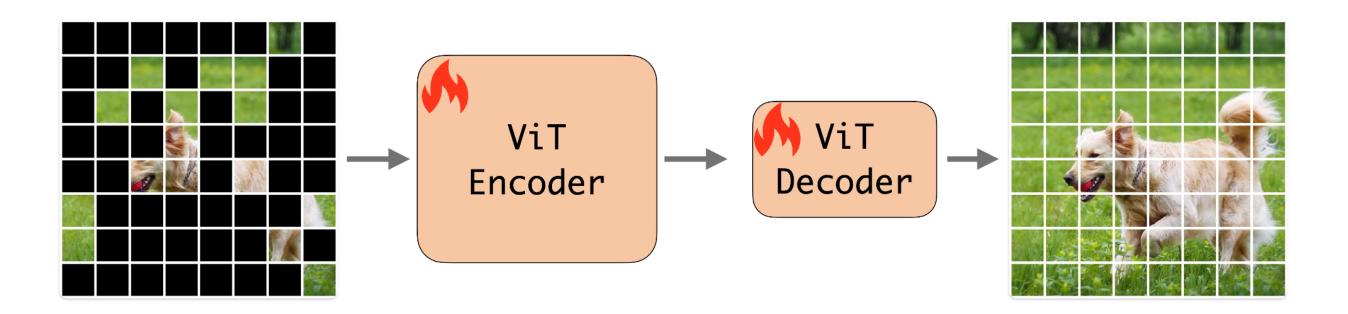
Masked Autoencoder (MAE)

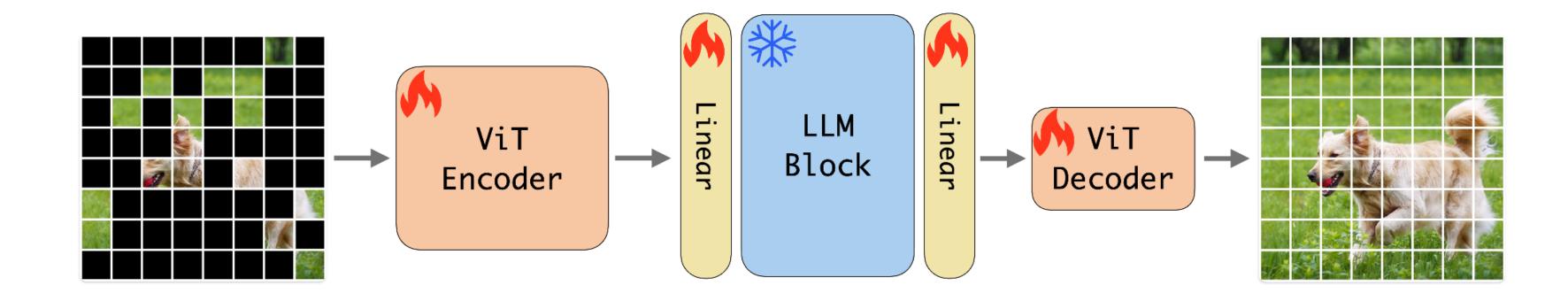




Language-unlocked ViT (LUViT)

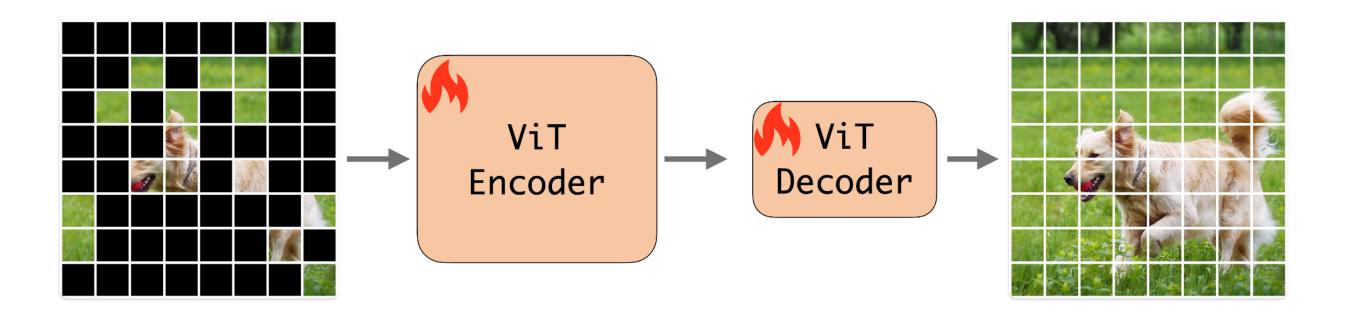
Masked Autoencoder (MAE)



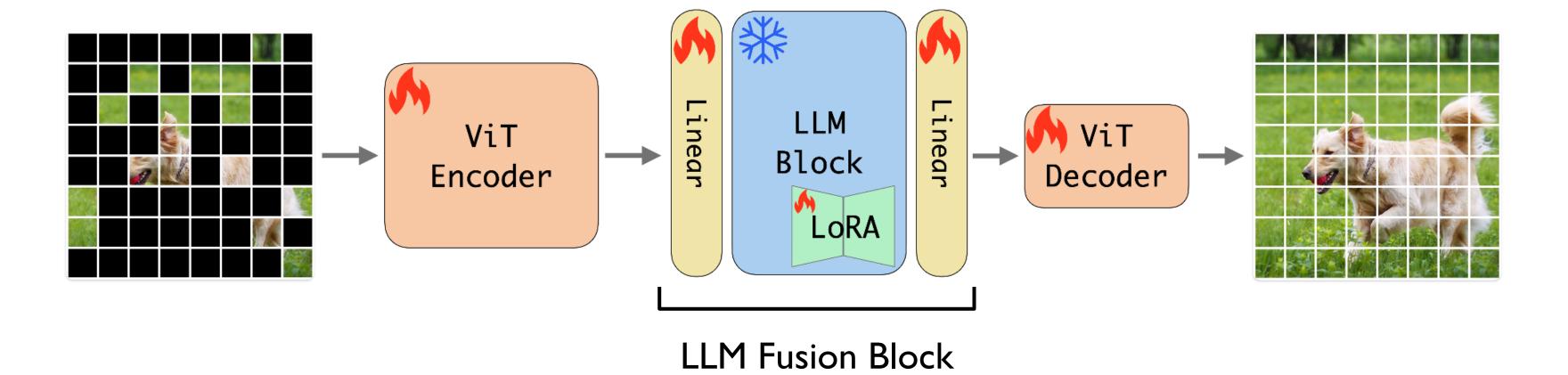


Language-unlocked ViT (LUViT)

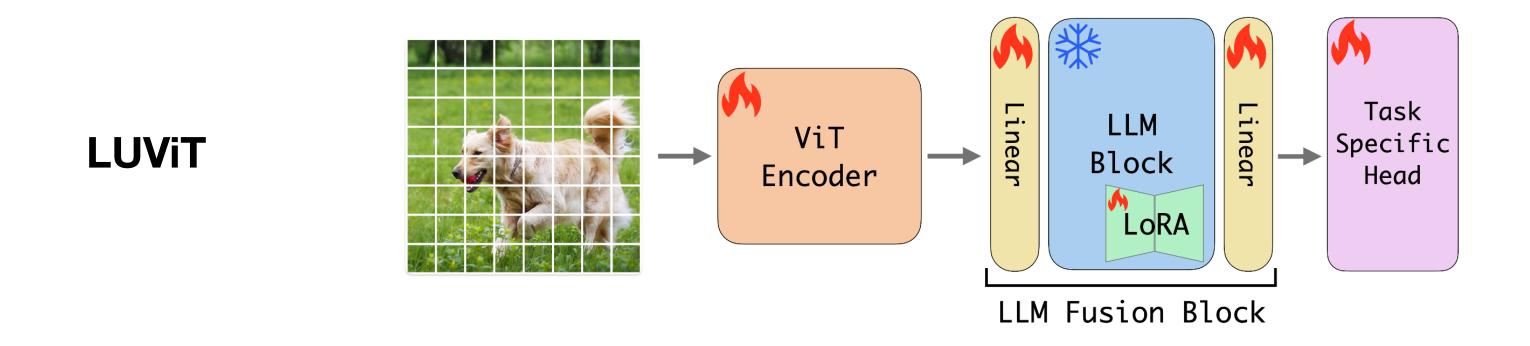
Masked Autoencoder (MAE)



LUViT

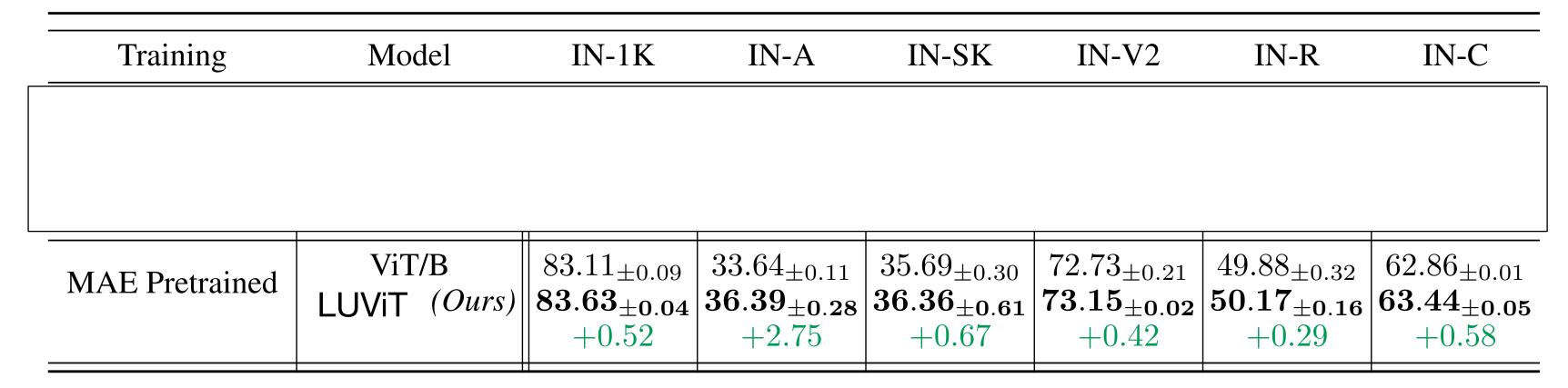


Language-unlocked ViT (LUViT)



- Effective adaptation of the LLM for pretraining/finetuning
- Single MAE objective for training both ViT and LoRA parameters

Discriminative Visual Tasks



ImageNet Classification

Model	Bounding Box			Mask		
1/10001	AP	AP_{50}	AP_{75}	AP	AP_{50}	AP_{75}
MAE ViT/B	50.6	71.0	55.5	44.9	68.2	48.7
LUViT (Ours)	51.1	71.5	55.9	45.1	68.8	48.8
	+0.5	+0.5	+0.4	+0.2	+0.6	+0.1

COCO object detection

It is not just the extra weights!

	Model	Trainable Params.	IN-1K
(a)	ViT/B	86.8M	83.11 _{±0.09}
(c)	ViT/B+LM1	92.9M	$83.13_{\pm 0.02}$
(f)	LUViT (Ours)	93.1M	$83.63_{\pm0.04}$

LoRA adaptation is crucial

It is not just the extra weights!

	Model	Trainable Params.	IN-1K
(a)	ViT/B	86.8M	$83.11_{\pm 0.09}$

(e)	ViT/B+Random LM1+LoRA	93.1M	$83.25_{\pm 0.09}$
(f)	LUViT (Ours)	93.1 M	$83.63_{\pm 0.04}$

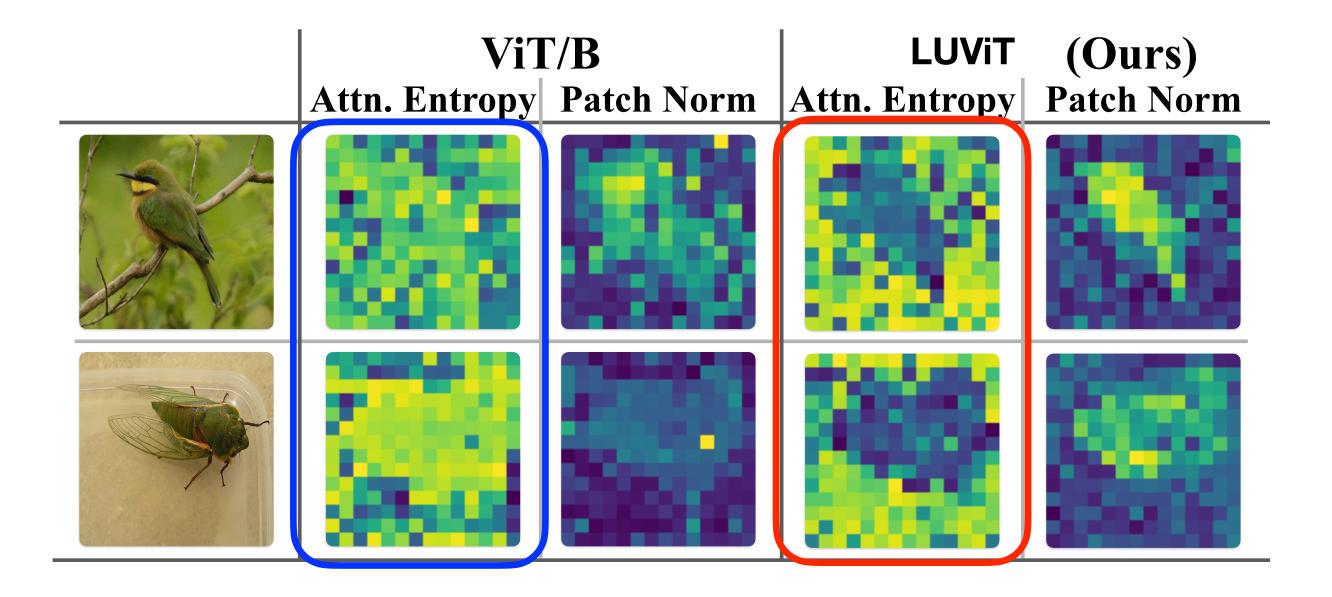
LLM knowledge matter (vs. random parameters with the same # params)

Different LLMs? Different blocks?

		LLM Type	Block	Trainable Params.	IN-1K
MAE ViT/B		N/A	N/A	86.8M	83.2
LUViT	(a) (b) (c) (d) (e) (f) (g)	LLaMA 1 LLaMA 1 LLaMA 1 LLaMA 1 (default) Gemma 2 LLaMA 3.1 LLaMA 3.1-Instruction	1 16 31 32 42 32 32	93.1M 93.1M 93.1M 93.1M 93.1M 93.1M 93.1M	83.2 83.4 83.5 83.6 83.6 83.6

Why does it work?

Background robustness!



for standard ViT all patches have same attention certainty whereas LUViT is more certain about foreground (low entropy in dark regions)

Background Robustness

Background Overreliance Benchmark

Image Classification on Imagenet-9

Model	Original	Same	Random	OrigSame↓	OrigRand.↓	Same-Rand.↓
MAE ViT/B LUViT ^{Ours}	96.5 96.6 $+0.1$	87.8 89.2 $+1.4$	83.2 85.3 $+2.1$	8.7 7.4 -1.3	13.3 11.3 -2.0	4.6 3.9 -0.7

Original

insect

09.10.25 Anna Kukleva

Conclusion

- Pretrained LLMs can be helpful even for purely self-supervised visual representations
- SSL with MAE and LoRA is the recipe to leverage LLMs
- LLM block amplifies informative foreground and attenuates reliance on background

HowToCaption: Prompting LLMs to Transform Video Annotations at Scale

Nina Shvetsova*1,2,3, Anna Kukleva*1, Xudong Hong1,4, Christian Rupprecht5, Bernt Schiele1, Hilde Kuehne2,3,6

¹Max Planck Institute for Informatics, ²Goethe University Frankfurt, ³Bonn University, ⁴Saarland University, ⁵University of Oxford, ⁶MIT-IMB Watson AI Lab

Leveraging pre-trained LLM for large scale video pretraining

09.10.25 Anna Kukleva 46

Learning from Web Data (Pretraining)

Narrated Videos

ASR subtitles:

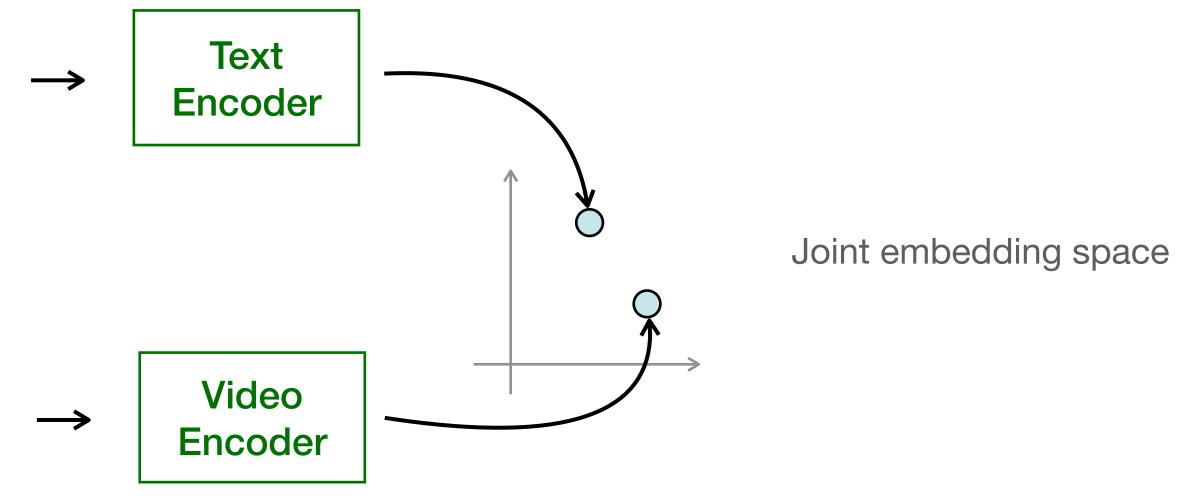
so in order to get started we have to have our patient here skeeter my dog and we're going to get some toothpaste and it's going to be something that she really likes so this is a chicken flavored toothpaste which she thinks is pretty delightful okay and then we're just going to get any old toothbrush

they make dog toothbrushes but you can just get a soft children's toothbrush or adult toothbrush for a large dog so we're going to focus here on the outside edges of the front teeth and the canine teeth

- ✓ Dense textual annotations through ASR narrations
- ✓ Can be collected on a large scale with no human supervision
- ASR narrations includes noise: incomplete sentences, filler words and phrases, such as "I'm going to", etc.
- Alignment of spoken text to the video is very noisy (might be temporal unaligned to video, or completely unrelated)

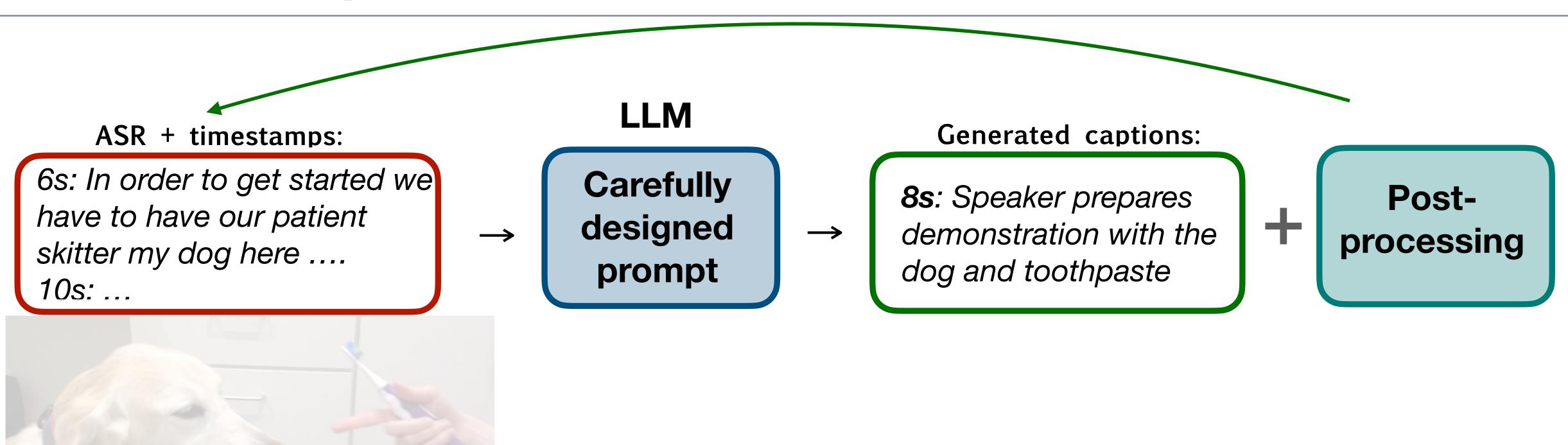
Narrated Videos for Large-scale Pretraining

6s: In order to get started we have to have our patient skitter my dog here
10s: ...



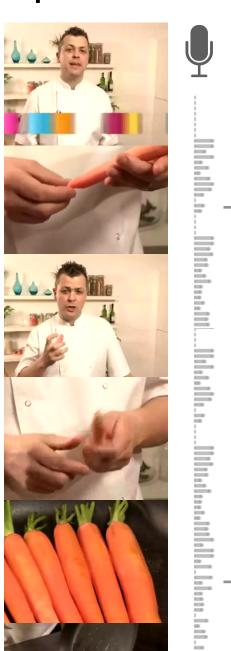
Use LLM to transform ASRs into proper aligned captions

HowToCaption Method



HowToCaption — Method

Input video:



ASR + timestamps:

4s: hi my name's adam pickett
6s: i'm head chef at plateau restaurant in canary wharf and i'm going to show you how to roast carrots
12s: so the actual carrots have lots of sugar inside

64s: they're going to take about 15 minutes if you've got a larger carrot 67s: obviously they're going to take a bit longer 69s: so i'm removing my carrots from the oven ...

Pre-trained Large Language Model:

Vicuna-13B

A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.

###Human:

###Assistant:

I will give you an automatically recognized speech with timestamps from a video segment that is cut from a long video. Write a summary for this video segment. Write only short sentences. Describe only one action per sentence. Keep only actions that happen in the present time. Begin each sentence with an estimated timestamp. Here is this automatically recognized speech: <ASR with timestamps>

Main prompt for LLM

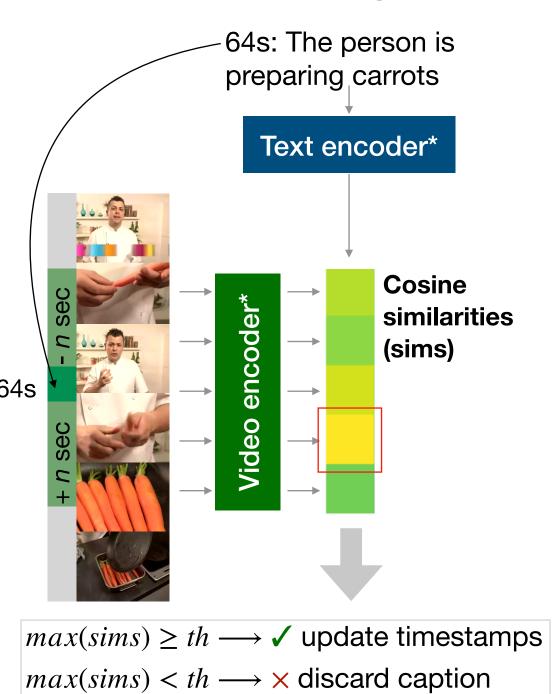
Our prompt consists of a task introduction (sent1, sent2), detailed instructions about desired captions (sent3, sent4, sent5), requests for timestamps (sent6), and input of ASR subtitles (sent7, ASR).

Generated captions:

4s: Adam Pickett introduces himself as the head chef at Plateau Restaurant in Canary Wharf.
6s: He shows how to roast carrots.
12s: The carrots' sugars will caramelize, giving them a lovely ...

64s: The person is preparing carrots.
67s: The carrots will take longer to cook.
69s: The person is removing the carrots from the oven.
78s: The carrots are ready to be served.

Post-processing:



Re-align new captions

HowToCaption — The Dataset

ASR: move them around to help direct the path

Caption: Matt Swanson gives a tip to use buckets to direct the path of the ball

ASR: so it's not going to really show

Caption: Making a bow with two colors

HowToCaption Method



HowToCaption Results

Video-Text Training Data			MSR- R10↑	
- (zero-shot)	23.6	69	70.6	3
HowTo100M with ASRs HowTo100M with dist. sup. HTM-AA (auto-aligned) HowToCaption (ours)	39.3 30.3 43.5 44.1	20 34 15 15	61.7 66.3 64.3 73.3	5 5 4 3
VideoCC3M WebVid2M	$\begin{array}{ c c } 21.7 \\ 29.0 \end{array}$	84 46	67.1 71.9	3

HowToCaption — Contributions

- Framework to obtain a large-scale high-quality text-video dataset
 - No human supervision needed
 - Only noisy ASR as input
 - Aligning&Filtering improves the quality even further
- HowToCaption-dataset
 - 25M aligned text-video pairs
 - human-style captions

What would be next unconventional way to leverage LLMs?

Thanks!

09.10.25 Anna Kukleva 56