

Efficient Brains That Imagine

Vicky Kalogeiton

50th Pattern Recognition and Computer Vision Colloquium

Czech Technical University, Prague

Scale is religion?

Vicky Kalogeiton

50th Pattern Recognition and Computer Vision Colloquium
Czech Technical University, Prague

09 October 2025

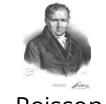
My academic story

Section 1

Lagrange Poincare

Professor, 2020 –

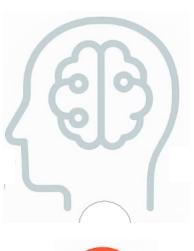
- VISTA Group, Ecole Polytechnique, France
- Assistant Professor 2020-2025


- *Post-doc*, 2018 2020
 - Visual Geometry Group, University of Oxford, UK
 - Andrew Zisserman

- University of Edinburgh, UK, INRIA, Grenoble, France
- Vittorio Ferrari, Cordelia Schmid

Monge

Deslandres Poisson



From perception to imagination

Seeing the world - Visual recognition, mapping, detection

Acting with intent
- Goal driven generation,
semantic control, motion

Imagining futures
- Multiple outcomes,
belief modeling, inference

We need **efficient generative brains** models that learn and adapt from very little, imagine, infer, and act → only from a chip in our living room

Challenges efficient generative brains

Training data

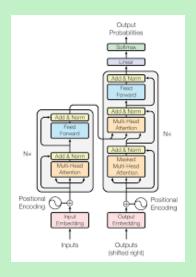
- · Collecting, filtering
- Privacy

Training & conditioning

- How to condition?
- Long training times

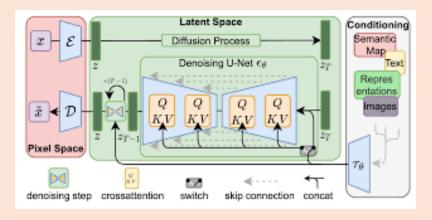
Model

- Large model size
- Scaling resolution


Inference & post-training

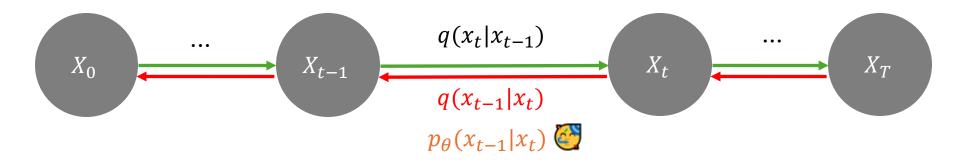
- Multiple denoising steps
- Apply RL?

Popular Generative Al architectures



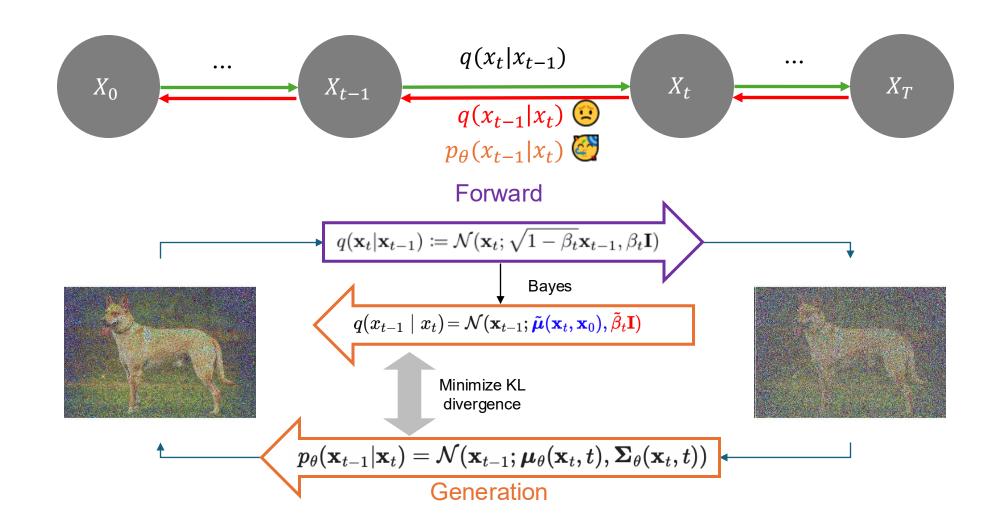
Transformers

Use: Text, code, tokens, sequential data Examples: GPT series, LLaMA, Claude


Diffusion Models

Use: Image, audio, continuous data Examples: Stable Diffusion, DALL-E

Diffusion Models



Diffusion Models

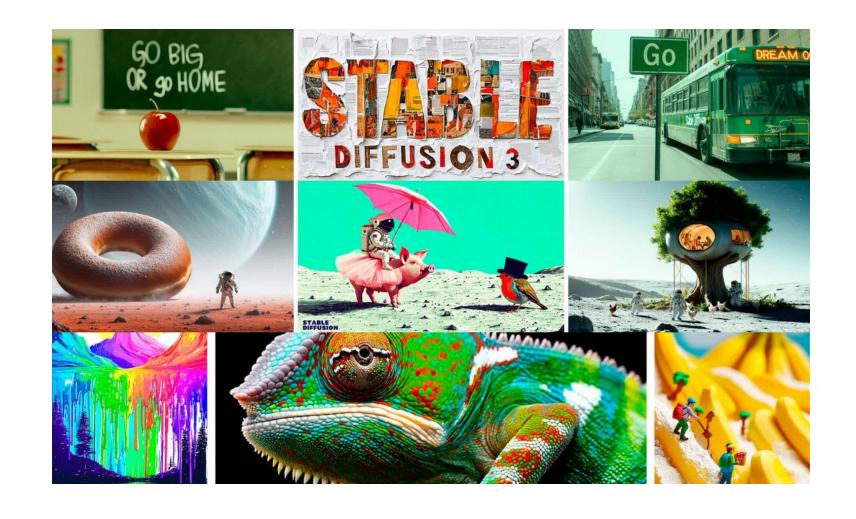
Dalle-2 (Text-to-Image)

A bowl of soup as a planet in the universe

An astronaut riding a horse in a photorealistic style

Teddy bears mixing sparkling chemicals as mad scientists

Diffusion Models


OpenAI: DALL-E3

Midjourney

music, audio, animation, video, physical etc....

Stable Diffusion 3

SORA (Text-to-Video)

Human Motion Diffusion (Text-to-Motion)

Efficiency: Challenges

Training data

- · Collecting, filtering
- Privacy

Training & conditioning

- How to condition?
- Long training times

Model

- Large model size
- Scaling resolution

Inference & post-training

- Multiple denoising steps
- Apply RL?

Efficiency

Model

- Large model size
- Scaling resolution

Inference & post-training

- Multiple denoising steps
- Apply RL?

Training & conditioning

- How to condition?
- Long training times

Training data

- Collecting, filtering
- Privacy

Don't drop your samples! Coherence-aware training benefits Conditional diffusion

Nicolas Dufour, Victor Besnier, David Picard, Vicky Kalogeiton CVPR 2024 Highlight

Code: https://github.com/nicolas-dufour/CAD

Website with weights and demo: https://nicolas-dufour.github.io/cad

Motivation: Datasets are noisy by nature

Diffusion models are easy to condition

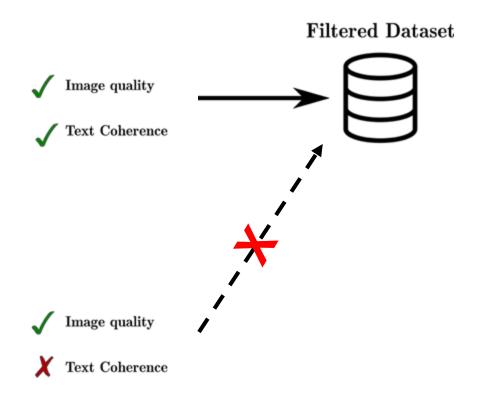
 But, aligned datasets are rare and usually contain annotation noise (e.g. webscrapped text/image datasets)

 Noise in annotations makes training harder

Vancouver could delay plastic straw and foam food container ban until 2020

17 best Backyard images on Pinterest

Related work: Collect billions of data, filter and discard



Two Impala Rams squaring off.

The food on Jeju Island was fishy, in the best possible way.
Jeju Island, Sea Urchin, Noodle Soup, Noodles, Spaghetti,
Eat, Ethnic Recipes, Food, Macaroni Pasta

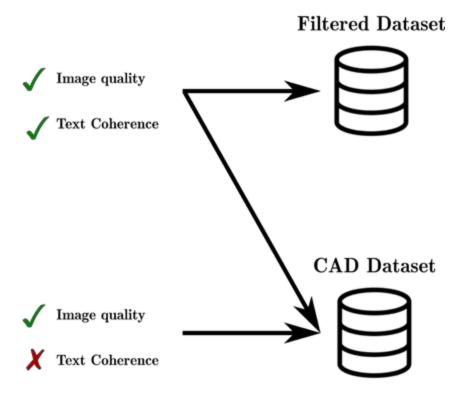
Filtering discards useful data!

- Datasets: filtered on a coherence score:
 - measures how coherent the label is with the data
- → Discard too noisy annotations

Stable diffusion, Imagen, E-Diffi

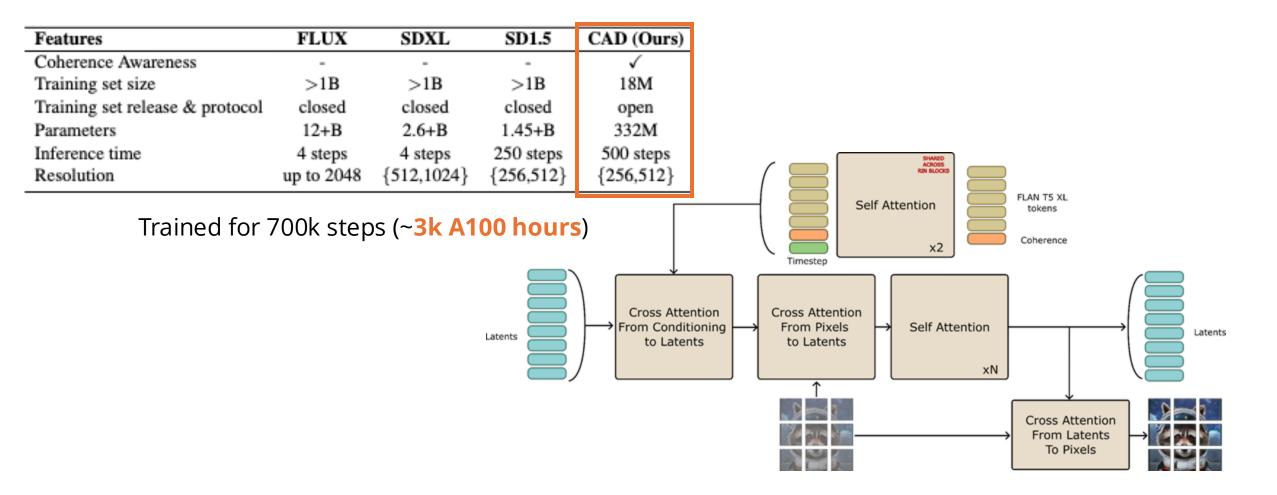
Our approach: Coherence-Aware Diffusion (CAD)

COLE POLYTECHNIQUE


Our finding: Providing the coherence score to the model, it can learn what to do with the conditioning in presence of low coherence scores

Two Impala Rams squaring off.

The food on Jeju Island was fishy, in the best possible way.
Jeju Island, Sea Urchin, Noodle Soup, Noodles, Spaghetti,
Eat, Ethnic Recipes, Food, Macaroni Pasta


Estimate alignment with coherence score

- annotator confidence
- annotator agreement
- expert network (e.g. CLIPScore)

Condition the model by coherence score

CAD: Relatively *small* diffusion model

Results on text-to-image generation

"a raccoon wearing an astronaut suit. The racoon is looking out of the window at a starry night; unreal engine, detailed, digital painting, cinematic, character"

"An armchair in the shape of an avocado"

Qualitative samples

Pirate ship trapped in a cosmic maelstrom nebula rendered in cosmic beach whirlpool engine volumetric lighting spectacular ambient lights light pollution cinematic atmosphere art nouveau style illustration art artwork by SenseiJaye intricate detail.

an oil painting of rain at a traditional Chinese town

Efficient Brains that Imagine

Conclusion

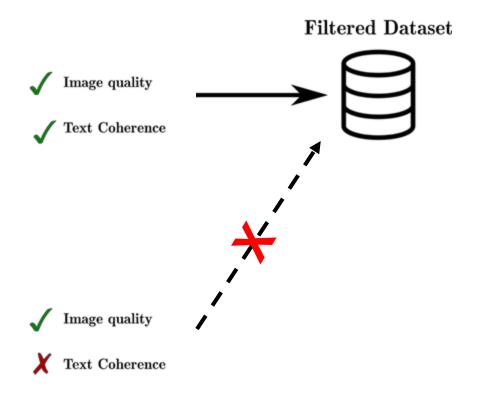
Don't drop your samples!

 Evaluate the conditioning coherence instead and condition your network with it

 Resulting model: conditional + unconditional, allowing classifier-free guidance without dropping the conditioning

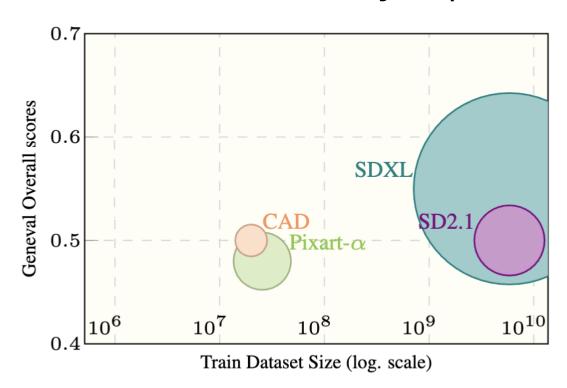
• Bonus: academia can also train a text-to-image diffusion model ©

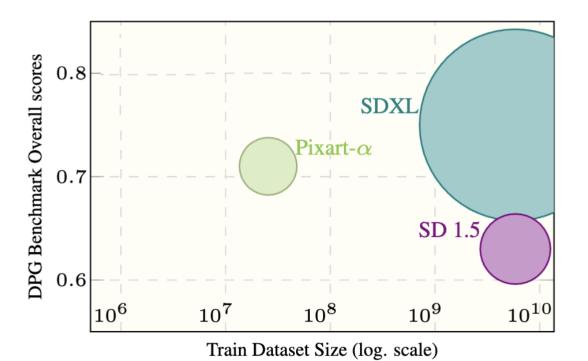
Related work: After filtering Training >> Billions of data



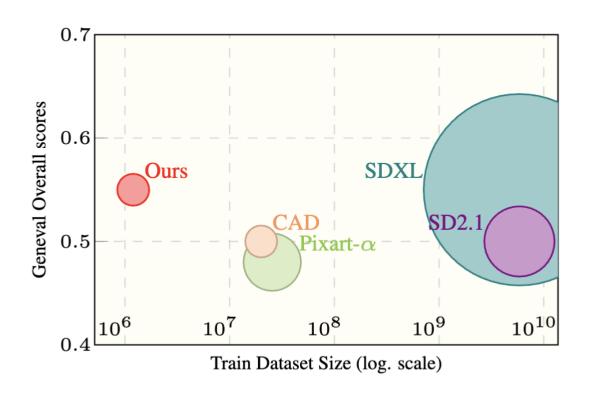
Two Impala Rams squaring off.

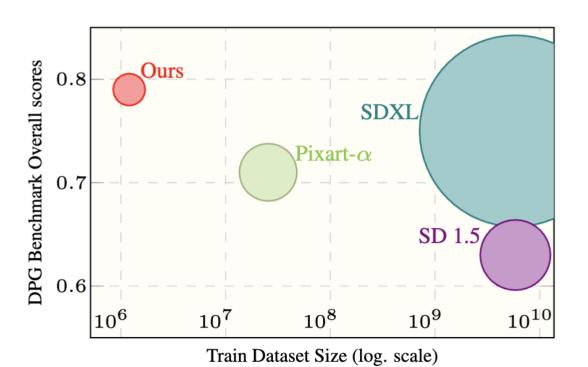
The food on Jeju Island was fishy, in the best possible way. Jeju Island, Sea Urchin, Noodle Soup, Noodles, Spaghetti, Eat, Ethnic Recipes, Food, Macaroni Pasta




Stable diffusion, Imagen, E-Diffi

Motivation: Train datasets: billions of data


- The larger the dataset size, the higher the performance
- But, do we really exploit training data?



How far can we go with ImageNet for text-to-image generation?

How far can we go with ImageNet for text-to-image generation?

Lucas Degeorge*, Arijit Ghosh*, Nicolas Dufour, David Picard, Vicky Kalogeiton arXiv 2025

Efficiency: Challenges

Training data

- · Collecting, filtering
- Privacy

Training & conditioning

- How to condition?
- Long training times

Model

- Large model size
- Scaling resolution

Inference & post-training

- Multiple denoising steps
- Apply RL?

Efficiency

Training data

- Collecting, filtering
- Privacy

Model

- Large model size
- Scaling resolution

Training & conditioning

- How to condition?
- Long training times

Inference & post-training

- Multiple denoising steps
- Apply RL?

Augmentations

A delicate white butterfly... The flower, a stunning shade of purple The butterfly, positioned slightly to the left of the flower's center, ...

a trombone and a king penguin

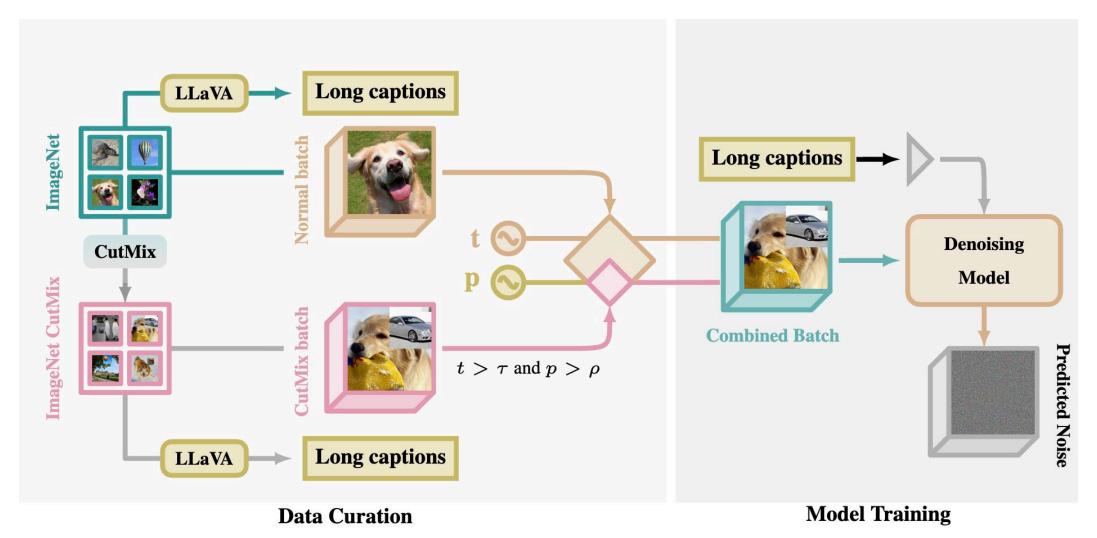
On the left side,
 a person is
 playing the
 trumpet on a
 street. On
 the right side of
 the image, there
 are two penguins
 standing

a golden
retriever and a
 car wheel

... a silver
sports car in the
background. ... a
Golden Retriever,
 is on the left
side of the frame
 ... The sports
car, positioned on
 the right, ...

a palace and a balloon

... a palace or manor house, ... In front of the building is a well-maintained garden ... In the sky, there is a single hot air balloon


a malamute and a red wine

... a husky dog resting in the snow. ... Next to the dog's side, there is a wine glass with red wine and a few purple flowers...

How far can we go with ImageNet for text-to-image generation?

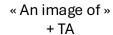

Model	IA	Overall [†]	One obj.↑	Two obj.↑	Count. ↑	Col.↑	Pos.↑	Col. attr.
DiT-I	×	0.55	0.95	0.61	0.36	0.80	0.28	0.33
	Crop	0.54	0.96	0.56	0.38	0.79	0.22	0.33
	CutMix	0.58	0.95	0.67	0.43	0.80	0.30	0.35
CAD-I	×	0.55	0.97	0.60	0.42	0.74	0.26	0.35
	Crop	0.54	0.96	0.61	0.40	0.71	0.23	0.33
	CutMix	0.57	0.94	0.68	0.40	0.70	0.35	0.36

Table 2: GenEval scores of TA and TA + IA models. All models are trained with long captions. A Prompt Extender was used before generating images. Models are evaluated at 256² resolution.

[Thanks to Alyosha for the crop-only augmentation idea!]

Qualitative Analysis: Augmentations

« An image of » + TA + IA

A teddy bear driving a motorbike

A teapot and cookies on a table

A goat on a mountain top

TA: Text Augmentation IA: Image Augmentation

Qualitative results

A corgi wearing a red bowtie and a purple party hat.

A mountain

An old man with a long grey beard and green eyes

A bird and its reflection in a fountain.

What about resolution?

Resolution 512²: Quantitative results

- Initialization: 250k steps DiT checkpoint
- Fine-tuning: 50k steps on the same data
 - → adjusting the image tokenization to handle larger input size

Resolution	Overall [↑]	One obj.↑	Two obj.↑	Count. ↑	Col.↑	Pos.↑	Col. attr.↑
DiT-I 256 ²	0.58	0.95	0.67	0.43	0.80	0.30	0.35
DiT-I 512^2	0.61	0.98	0.73	0.43	0.76	0.34	0.40

Table 4: GenEval scores of models with different resolution. The 512^2 is finetuned from the 256^2 .

→ Is it all about initialization?

Resolution 512²: Qualitative results

Efficient Brains that Imagine

→ Scale is not required!

Model	#params	#train data	Overall [†]	One obj. [↑]	Two obj.↑	Count.↑	Col.↑	Pos.↑	Col.
SD v1.5	0.9B	5B+	0.43	0.97	0.38	0.35	0.76	0.04	0.06
PixArt- α	0.6B	25M	0.48	0.98	0.50	0.44	0.80	0.08	0.07
PixArt- Σ (512)	0.6B	35M+	0.52	0.98	0.59	0.50	0.80	0.10	0.15
SD v2.1	0.9B	5B+	0.50	0.98	0.51	0.44	0.85	0.07	0.17
SDXL	3.5B	5B+	0.55	0.98	0.74	0.39	0.85	0.15	0.23
SD3 M (512)	2B	1B+	0.62	0.98	0.74	0.63	0.67	0.34	0.36
SANA-0.6	0.6B	0	0.64	0.99	0.71	0.63	0.91	0.16	0.42
FLUX-dev	12B	0	0.67	0.99	0.81	0.79	0.74	<u>0.20</u>	0.47
Ours (512 ²)	0.4B	1.2M	0.61	<u>0.98</u>	0.73	0.43	0.76	0.34	0.40

Table 5: **Results on GenEval**. Results are reported from their papers. **Bold** indicates best, <u>underline</u> second best.

What about aesthetics?

- Initialization: 300k steps DiT 512² checkpoint
- Upscale to 1024²
- Fine-tuning: on LAION-POP (400K images) for high aesthetics targets
 → adjusting the image tokenization to handle larger input size

Model	#params	#train data	Aes. Score	PickScore [↑]	HPSv2.1↑	ImageReward ↑
SD v1.5	0.9B	5B+	5.68	21.3	0.25	0.24
SD v2.1	0.9B	5B+	5.81	21.5	0.26	0.38
PixArt- α	0.6B	25M	6.47	22.6	0.29	0.97
PixArt- Σ	0.6B	35M+	$\overline{6.44}$	22.5	$\overline{0.29}$	1.02
CAD	0.35B	-	5.56	21.4	$\overline{0.26}$	0.69
Sana-0.6B	0.6B	-	6.31	22.8	0.30	1.23
Sana-1.6B	1.6B	-	6.36	$\overline{22.8}$	0.30	1.23
SDXL	2.6B	5B+	5.94	$\overline{22.0}$	0.25	0.46
SD3-Medium	2B	1B+	6.18	22.5	0.30	1.15
FLUX-dev	12B	-	6.56	22.9	0.30	<u>1.19</u>
Ours (ft. Laion-POP 1024 ²)	0.4B	1.5M	6.28	21.6	0.29	0.64

Table 11: **Results on Reward Metrics.** Results are computed using the <u>PartiPrompts Yu et al.</u> (2022). SOTA scores are computing using HuggingFace checkpoints at their native resolution. **Bold** indicates best, <u>underline</u> second best.

Finetuning on high-aesthetic dataset

A fox with glasses and dressed in white shirt and khaki cargo

Finetuning on high-aesthetic dataset

Plants, flowers, trees being mixed in a bowl

Finetuning on high-aesthetic dataset

Ours

SDXL

Pixart- α

SD3-Medium

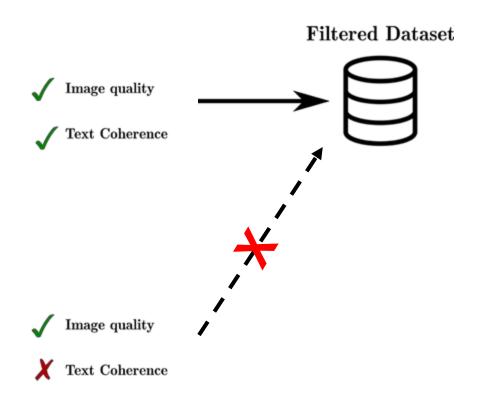
A harsh winter landscape with mountains, a river, and forest, where a lone man walks through deep snow beneath birds flying

A cat with bunny ears
Efficient Brains that Imagine

Conclusions

- Text-to-image generation: data is not enough
- From billion-scale datasets → 1M image datasets with augmentations
- Performance on par to modern models, while trained with
 - x10 fewer #params and
 - $x10^2-10^3$ fewer #data

Related work Collect billions of data, filter and discard



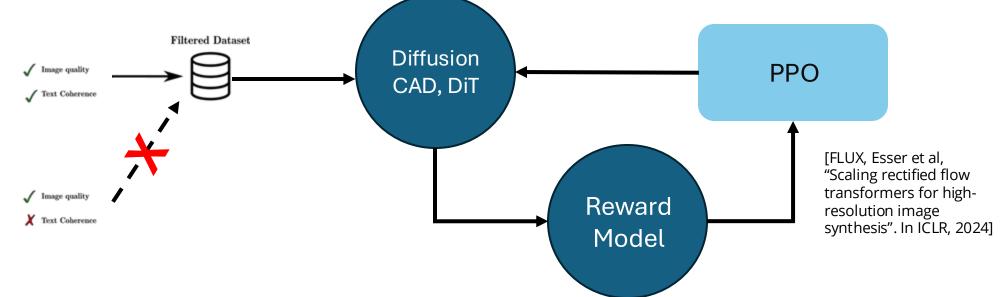
Two Impala Rams squaring off.

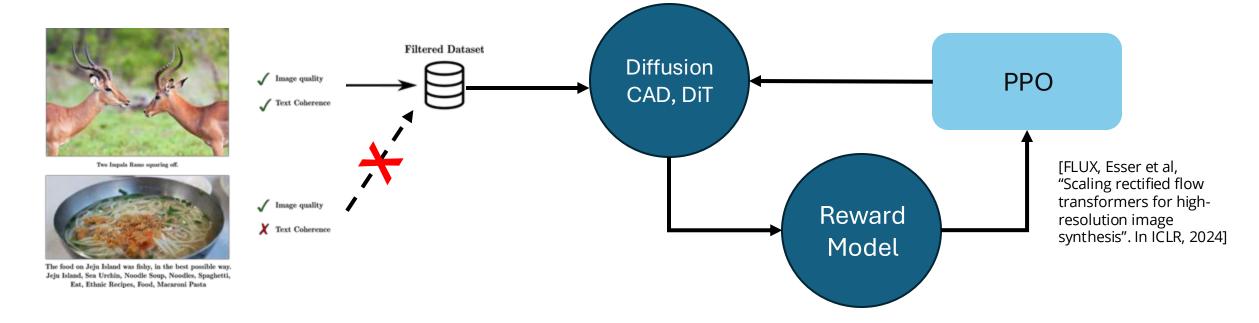
The food on Jeju Island was fishy, in the best possible way.
Jeju Island, Sea Urchin, Noodle Soup, Noodles, Spaghetti,
Eat, Ethnic Recipes, Food, Macaroni Pasta

Filtering discards useful data!

- Datasets: filtered on a coherence score:
 - measures how coherent the label is with the data
- → Discard too noisy annotations

Stable diffusion, Imagen, E-Diffi


Related work Aligning with human preferences


The food on Jeju Island was fishy, in the best possible way Jeju Island, Sea Urchin, Noodle Soup, Noodles, Spaghetti, Eat, Ethnic Recipes, Food, Macaroni Pasta

- X Discards informative "low-quality" data
- X Complicates training with additional optimization step
- **X** Overfit to a single reward →
- X harming diversity (mode collapse) or semantic fidelity and efficiency

Related work Aligning with human preferences

Rather than correcting a pre-trained text-to-image model

Can we teach model how to trade off multiple rewards from the beginning?

Efficiency: Challenges

Training data

- · Collecting, filtering
- Privacy

Training & conditioning

- How to condition?
- Long training times

Model

- Large model size
- Scaling resolution

Inference & post-training

- Multiple denoising steps
- Apply RL?

Efficiency

Training & conditioning

- How to condition?
- Long training times

Model

- Large model size
- Scaling resolution

Inference & post-training

- Multiple denoising steps
- Apply RL?

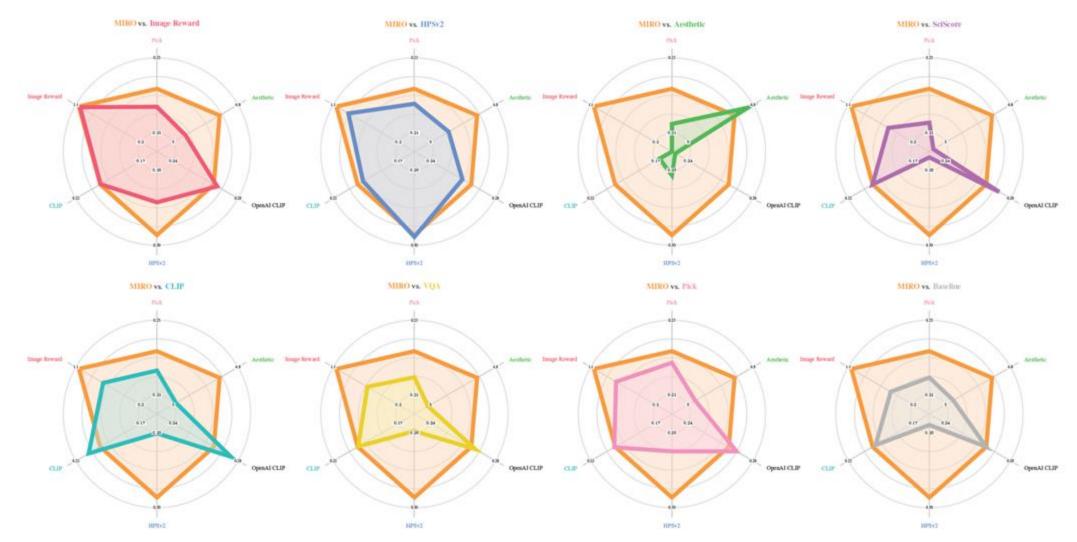
Training data

- Collecting, filtering
- Privacy

MIRO: Multi-Reward Conditioned Retraining improves text-to-image quality and efficiency

Nicolas Dufour, Lucas Degeorge*, Arijit Ghosh*, David Picard, Vicky Kalogeiton arXiv 2025

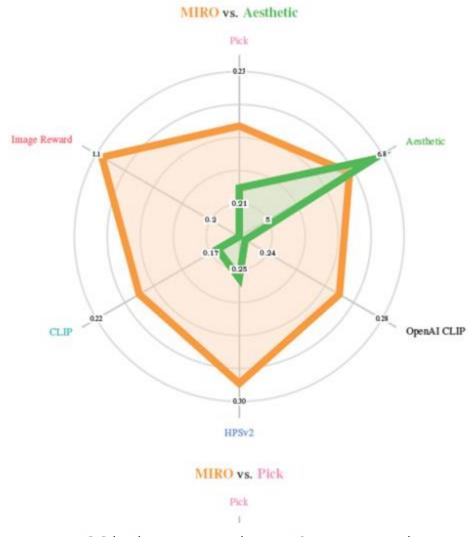
Qualitative results


MIRO: improves model quality

- 1. Outperforms single-reward approaches across all metrics
- 2. Mitigates reward hacking
- 3. Accelerates training convergence
- 4. Outperforms synthetic captioning alone
- 5. MIRO + synthetic captions: strongest performance
- 6. Enhances compositional understanding
- 7. Single-reward models exhibit varying alignment capabilities

ECOLE POLYTECHNIQUE

1. Outperforms single-reward approaches across all metrics



Vicky Kalogeiton

Efficient Brains that Imagine

2. Mitigates reward hacking

3. Accelerates training convergence

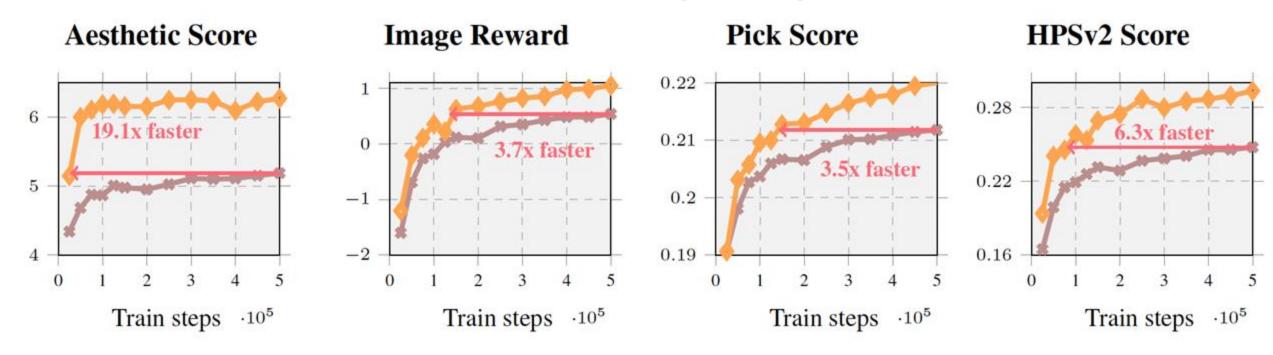
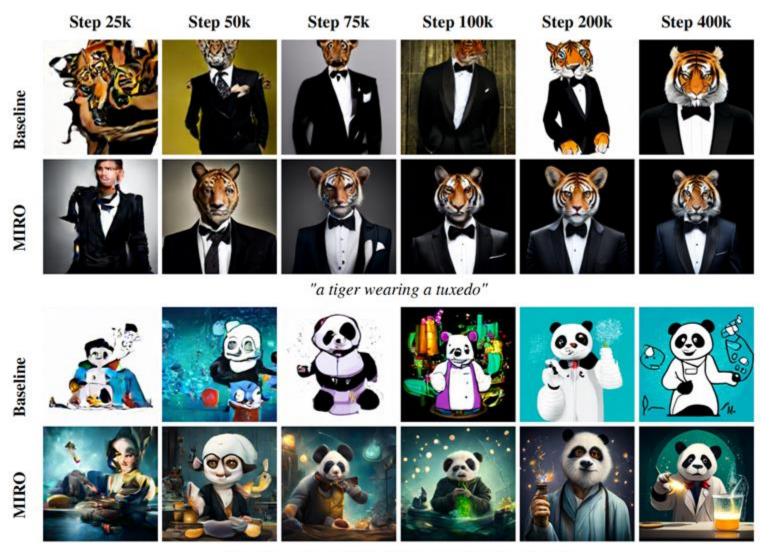
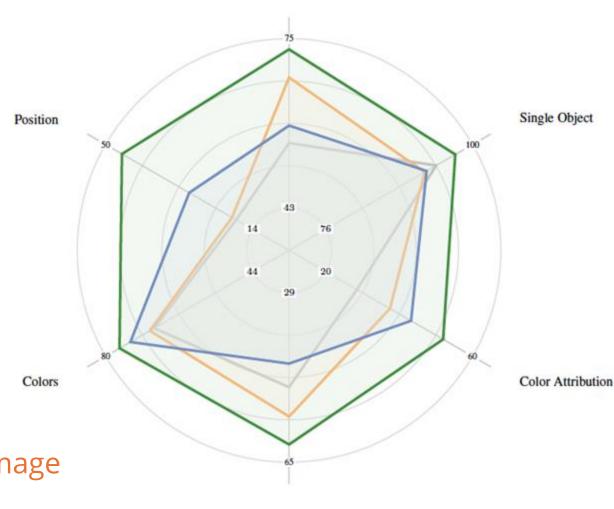



Figure 3: Training curves showing reward evolution during training. × Baseline,

MIRO.

3. Accelerates training convergence


4. MIRO outperforms synthetic captioning alone

GenEval Metrics

Two Objects

Legend (GenEval Overall):

- Baseline 52.2 (Real only)
- MIRO 56.8 (Real only)
- Synth Baseline 56.9 (50% Real + 50% Synth)
- Synth MIRO 67.7 (50% Real + 50% Synth)

Counting

More effective approach to improving text-image alignment than synthetic captioning alone

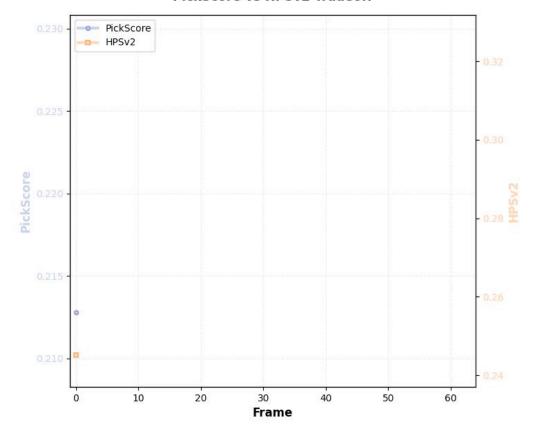
						GenEva	I			PartiPrompts				
Model	Params (B)	Inference TFLOPs	Overall	Single Obj.	Two Obj.	Position	Counting	Colors	Color Attr.	Aesthetic	Image	HPSv2	PickAScore	
					SOT	A Baselines								
SD v1.5	0.9	-	43	97	38	4	35	76	6	5.68	0.24	0.25	0.213	
SD v2.1	0.9	-	50	98	51	7	44	85	17	5.81	0.38	0.26	0.215	
PixArt- α	0.6	-	48	98	50	8	44	80	7	6.47	0.97	0.29	0.226	
PixArt- Σ	0.6	-	52	98	59	10	50	80	15	6.44	1.02	0.29	0.225	
CAD	0.35	20.8	50	95	56	11	40	76	22	5.56	0.69	0.26	0.214	
Sana-0.6B	0.6	-	64	99	71	16	63	91	42	6.31	1.23	0.30	0.228	
Sana-1.6B	1.6	-	66	99	79	18	63	88	47	6.36	1.23	0.30	0.228	
SDXL	2.6	-	55	98	74	15	39	85	23	5.94	0.46	0.25	0.220	
SD3-medium	2.0	-	62	98	74	34	63	67	36	6.18	1.15	0.30	0.225	
FLUX-dev	12.0	1540	67	99	81	20	79	74	47	6.56	1.19	0.30	0.229	
				CAL	D-like M	lodels (our	models)							
Image Reward	0.36	4.16	57	97	59	21	56	76	33	5.31	1.04	0.27	0.214	
HPSv2	0.36	4.16	56	95	63	15	52	78	31	5.47	0.90	0.29	0.215	
Aesthetic	0.36	4.16	33	74	37	6	24	42	15	6.65	0.00	0.26	0.209	
SciScore	0.36	4.16	58	94	62	24	61	72	35	4.62	0.56	0.24	0.209	
CLIP	0.36	4.16	57	97	63	24	57	70	32	5.04	0.73	0.25	0.214	
VQA	0.36	4.16	57	97	58	20	57	76	37	4.88	0.64	0.25	0.212	
Pick	0.36	4.16	57	93	62	17	58	75	34	5.16	0.76	0.26	0.216	
				Real	Caption	Models (ou	r models)							
Baseline	0.36	4.16	52	94	55	18	49	68	29	5.18	0.52	0.25	0.212	
MIRO	0.36	4.16	57	92	68	19	55	69	38	6.28	1.06	0.29	0.220	
			Synthetic C	Caption M	odels (5	0% Real +	50% Synth) (our model	s)					
Baseline	0.36	4.16	57	93	59	30	44	74	43	4.96	0.52	0.24	0.211	
MIRO	0.36	4.16	68	97	73	46	61	77	52	6.28	1.11	0.29	0.220	
	Infe	rence Scaled	+ Synthetic	Caption	Models	(MIRO + 1)	28 samples ir	nference so	caled) (or	ır models)				
Aesthetic Scaled MIRO	0.36	532	63	97	68	40	57	75	45	6.81	1.04	0.29	0.219	
Image Reward Scaled MIRO	0.36	532	75	98	84	52	69	82	65	6.28	1.61	0.30	0.223	
HPSv2 Scaled MIRO	0.36	532	$\frac{74}{74}$	98	83	$\frac{47}{44}$	74	80	65	6.28	1.35	0.32	0.225	
PickAScore Scaled MIRO	0.36	532	<u>74</u>	98	83	44	<u>76</u>	81	<u>59</u>	6.27	1.32	0.31	0.229	

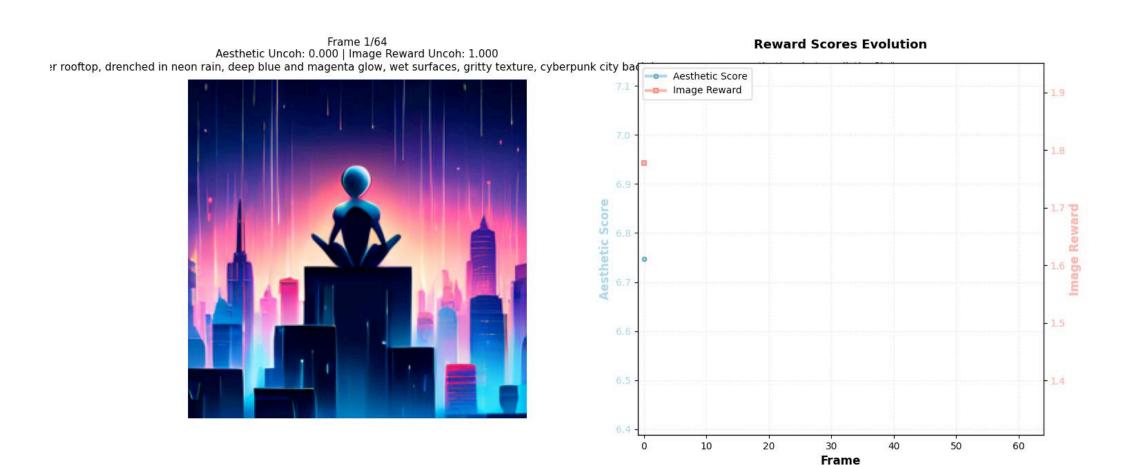
			GenEval								PartiPrompts				
Model	Params (B)	Inference TFLOPs	Overall	Single Obj.	Two Obj.	Position	Counting	Colors	Color Attr.	Aesthetic	Image	HPSv2	PickAScore		
					SOT	A Baseline.	S								
SD v1.5	0.9		43	97	38	4	35	76	6	5.68	0.24	0.25	0.213		
SD v2.1	0.9	-	50	98	51	7	44	85	17	5.81	0.38	0.26	0.215		
PixArt-α	0.6	-	48	98	50	8	44	80	7	6.47	0.97	0.29	0.226		
PixArt-Σ	0.6	-	52	98	59	10	50	80	15	6.44	1.02	0.29	0.225		
CAD	0.35	20.8	50	95	56	11	40	76	22	5.56	0.69	0.26	0.214		
Sana-0.6B	0.6	-	64	99	71	16	63	91	42	6.31	1.23	0.30	0.228		
Sana-1.6B	1.6	-	66	99	79	18	63	88	47	6.36	1.23	0.30	0.228		
SDXL	2.6	-	55	98	74	15	39	85	23	5.94	0.46	0.25	0.220		
SD3-medium	2.0	-	62	98	74	34	63	67	36	6.18	1.15	0.30	0.225		
FLUX-dev	12.0	1540	67	99	81	20	79	74	47	6.56	1.19	0.30	0.229		
				CA	D-like M	lodels (our	models)								
Image Reward	0.36	4.16	57	97	59	21	56	76	33	5.31	1.04	0.27	0.214		
HPSv2	0.36	4.16	56	95	63	15	52	78	31	5.47	0.90	0.29	0.215		
Aesthetic	0.36	4.16	33	74	37	6	24	42	15	6.65	0.00	0.26	0.209		
SciScore	0.36	4.16	58	94	62	24	61	72	35	4.62	0.56	0.24	0.209		
CLIP	0.36	4.16	57	97	63	24	57	70	32	5.04	0.73	0.25	0.214		
VQA	0.36	4.16	57	97	58	20	57	76	37	4.88	0.64	0.25	0.212		
Pick	0.36	4.16	57	93	62	17	58	75	34	5.16	0.76	0.26	0.216		
				Real	Caption	Models (or	ır models)								
Baseline	0.36	4.16	52	94	55	18	49	68	29	5.18	0.52	0.25	0.212		
MIRO	0.36	4.16	57	92	68	19	55	69	38	6.28	1.06	0.29	0.220		
			Synthetic (antion M	adele (5	n% Real ±	50% Swath) (our model	el						
Baseline MIRO	5. MIRO) + sy	nthe	tic c	apt	ions:	stron	gest	per	forma	ance		0.211 0.220		
	Infe	rence Scaled	+ Synthetic	Caption	Models	(MIRO + 1	28 samples ir	nference so	aled) (ou	ır models)					
Aesthetic Scaled MIRO	0.36	532	63	97	68	40	57	75	45	6.81	1.04	0.29	0.219		
Image Reward Scaled MIF		532	75	98	84	52	69	82	65	6.28	1.61	0.30	0.223		
HPSv2 Scaled MIRO	0.36	532	<u>74</u>	98	83	<u>47</u>	74	80	65	6.28	1.35	0.32	0.225		
PickAScore Scaled MIRO		532	74	98	83	44	76	81	59	6.27	1.32	0.31	0.229		

		GenEval										PartiPrompts					
Model	Params (B)	Inference TFLOPs	Overall	Single Obj.	Two Obj.	Position	Counting	Colors	Color Attr.	Aesthetic	Image	HPSv2	PickAScore				
					SOT	A Baselines											
SD v1.5	0.9	-	43	97	38	4	35	76	6	5.68	0.24	0.25	0.213				
SD v2.1	0.9	-	50	98	51	7	44	85	17	5.81	0.38	0.26	0.215				
PixArt- α	0.6	-	48	98	50	8	44	80	7	6.47	0.97	0.29	0.226				
PixArt-Σ	0.6	-	52	98	59	10	50	80	15	6.44	1.02	0.29	0.225				
CAD	0.35	20.8	50	95	56	11	40	76	22	5.56	0.69	0.26	0.214				
Sana-0.6B	0.6	-	64	99	71	16	63	91	42	6.31	1.23	0.30	0.228				
Sana-1.6B	1.6	-	66	99	79	18	63	88	47	6.36	1.23	0.30	0.228				
SDXL	2.6	-	55	98	74	15	39	85	23	5.94	0.46	0.25	0.220				
SD3-medium	2.0	-	62	98	74	34	63	67	36	6.18	1.15	0.30	0.225				
FLUX-dev	12.0	1540	67	99	81	20	79	74	47	6.56	1.19	0.30	0.229				
				CAI	D-like N	lodels (our	models)										
Image Reward	0.36	4.16	57	97	59	21	56	76	33	5.31	1.04	0.27	0.214				
HPSv2	0.36	4.16	56	95	63	15	52	78	31	5.47	0.90	0.29	0.215				
Aesthetic	0.36	4.16	33	74	37	6	24	42	15	6.65	0.00	0.26	0.209				
SciScore	0.36	4.16	58	94	62	24	61	72	35	4.62	0.56	0.24	0.209				
CLIP		- 1				• . •	100	4		1.			0.214				
VQA	6.	Enha	nces	con	าทด	sitior	าลI un	iders	stan	ding			0.212				
Pick					. -								0.216				
				Real (Caption	Models (ou	r models)										
Baseline	0.36	4.16	52	94	55	18	49	68	29	5.18	0.52	0.25	0.212				
MIRO	0.36	4.16	57	92	68	19	55	69	38	6.28	1.06	0.29	0.220				
			Syntnetic C	aption M	oaeis (3	0% Keat +	50% Syntn) (our model	S)								
Baseline	0.36	4.16	57	93	59	30	44	74	43	4.96	0.52	0.24	0.211				
MIRO	0.36	4.16	68	97	73	46	61	77	52	6.28	1.11	0.29	0.220				
	Infe	rence Scaled	+ Synthetic	Caption	Models	(MIRO + 1)	28 samples ir	iference so	caled) (or	ır models)							
Aesthetic Scaled MIRO	0.36	532	63	97	68	40	57	75	45	6.81	1.04	0.29	0.219				
Image Reward Scaled MIRO	0.36	532	75	98	84	52	69	82	65	6.28	1.61	0.30	0.223				
HPSv2 Scaled MIRO	0.36	532	74	98	83	47	74	80	65	6.28	1.35	0.32	0.225				
PickAScore Scaled MIRO	0.36	532	74	98	83	44	76	81	59	6.27	1.32	0.31	0.229				

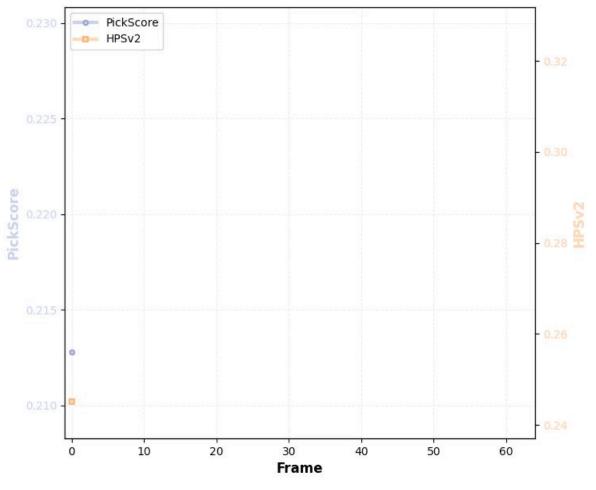
	GenEval										Parti	Prompts	
Model	Params (B)	Inference TFLOPs	Overall	Single Obj.	Two Obj.	Position	Counting	Colors	Color Attr.	Aesthetic	Image	HPSv2	PickAScore
					SOT	A Baselines							
SD v1.5	0.9	-	43	97	38	4	35	76	6	5.68	0.24	0.25	0.213
SD v2.1	0.9	-	50	98	51	7	44	85	17	5.81	0.38	0.26	0.215
PixArt- α	0.6	-	48	98	50	8	44	80	7	6.47	0.97	0.29	0.226
PixArt- Σ	0.6	-	52	98	59	10	50	80	15	6.44	1.02	0.29	0.225
CAD	0.35	20.8	50	95	56	11	40	76	22	5.56	0.69	0.26	0.214
Sana-0.6B	0.6	-	64	99	71	16	63	91	42	6.31	1.23	0.30	0.228
Sana-1.6B	1.6	-	66	99	79	18	63	88	47	6.36	1.23	0.30	0.228
SDXL SD3-medium 7. Sil	ngle-	rewar	d mo	dels	s ex	hibit	varyii	ng al	ignr	ment	capa	abilit	ies
FLUX-dev	1400	1570	• • • • • • • • • • • • • • • • • • • •	"	01	20		7.7	77	0.50	1.17	VIDV	V
				CA	D-like N	Iodels (our	models)						
Image Reward	0.36	4.16	57	97	59	21	56	76	33	5.31	1.04	0.27	0.214
HPSv2	0.36	4.16	56	95	63	15	52	78	31	5.47	0.90	0.29	0.215
Aesthetic	0.36	4.16	33	74	37	6	24	42	15	6.65	0.00	0.26	0.209
SciScore	0.36	4.16	58	94	62	24	61	72	35	4.62	0.56	0.24	0.209
CLIP	0.36	4.16	57	97	63	24	57	70	32	5.04	0.73	0.25	0.214
VQA	0.36	4.16	57	97	58	20	57	76	37	4.88	0.64	0.25	0.212
Pick	0.36	4.16	57	93	62	17	58	75	34	5.16	0.76	0.26	0.216
				кеаі	Capuon	moaeis (ou	r moaeis)						
Baseline	0.36	4.16	52	94	55	18	49	68	29	5.18	0.52	0.25	0.212
MIRO	0.36	4.16	57	92	68	19	55	69	38	6.28	1.06	0.29	0.220
			Synthetic C	aption M	odels (5	0% Real +	50% Synth) (our model	s)				
Baseline	0.36	4.16	57	93	59	30	44	74	43	4.96	0.52	0.24	0.211
MIRO	0.36	4.16	68	97	73	46	61	77	52	6.28	1.11	0.29	0.220
	Infe	rence Scaled	+ Synthetic	Caption	Models	(MIRO + 1)	28 samples in	iference so	aled) (or	ır models)			
Aesthetic Scaled MIRO	0.36	532	63	97	68	40	57	75	45	6.81	1.04	0.29	0.219
Image Reward Scaled MIRO	0.36	532	75	98	84	52	69	82	65	6.28	1.61	0.30	0.223
HPSv2 Scaled MIRO	0.36	532	74	98	83	47	74	80	65	6.28	1.35	0.32	0.225
PickAScore Scaled MIRO	0.36	532	74	98	83	44	76	81	59	6.27	1.32	0.31	0.229

Reward controllability


Robots meditating on a skyscraper rooftop under neon rain with deep blue and magenta glow

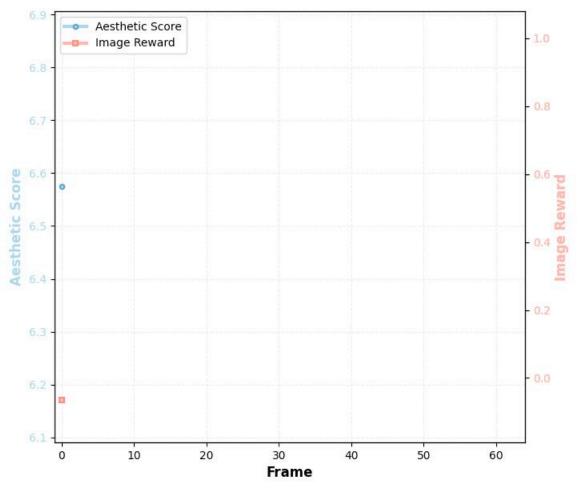

Frame 1/64
PickScore Uncoh: 0.000 | HPSv2 Uncoh: 1.000
Prompt: "Robots meditating, on a skyscraper rooftop, drenched in neon rain"

PickScore vs HPSv2 Tradeoff



Frame 1/64
PickScore Uncoh: 0.000 | HPSv2 Uncoh: 1.000
Prompt: "Robots meditating, on a skyscraper rooftop, drenched in neon rain"

PickScore vs HPSv2 Tradeoff



Frame 1/64
Aesthetic Uncoh: 0.000 | Image Reward Uncoh: 1.000
Prompt: "a beautiful sunset over the ocean"

Reward Scores Evolution

Test-time scaling

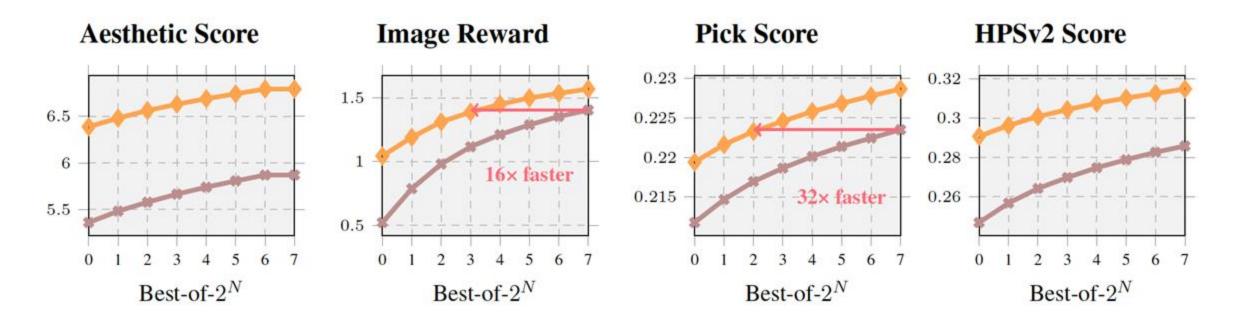


Figure 6: Test-time scaling showing performance vs. Best-of- 2^N sampling. \times Baseline, \diamond MIRO.

Conclusions

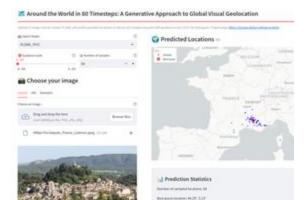
• MIRO:

Condition on a vector of reward scores to integrate alignment into training vs post-hoc

Goodies:

- outperforms no-conditioning and single-reward baselines
- converges substantially faster
- mitigates reward hacking
- strengthens compositional alignment

State-of-the-art results


- on PartiPrompts w/ inference-time scaling, while more compute-efficient
- 🔽 Outperforms FLUX-dev on GenEval and PartiPrompts at a fraction of the compute

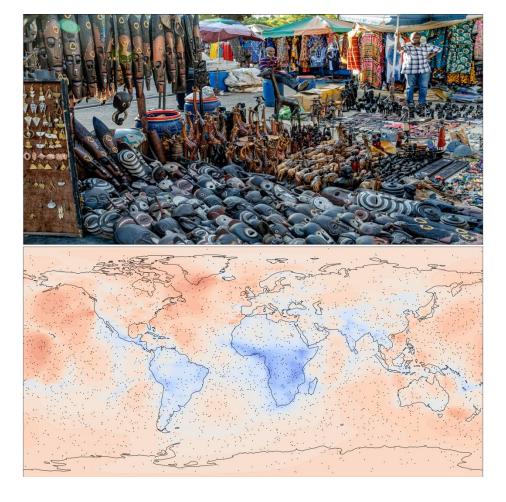
Future:

- MIRO trained on ImageNet
- MIRO + DiT
- Personalized rewards? Can we easily find your style as a function of other rewards and give you the style you prefer

Bonus (For Jiří: added 30 minutes before presentation!)

Around the World in 80 Time Steps A Generative Approach to Global Geolocation

https://nicolas-dufour.github.io/plonk

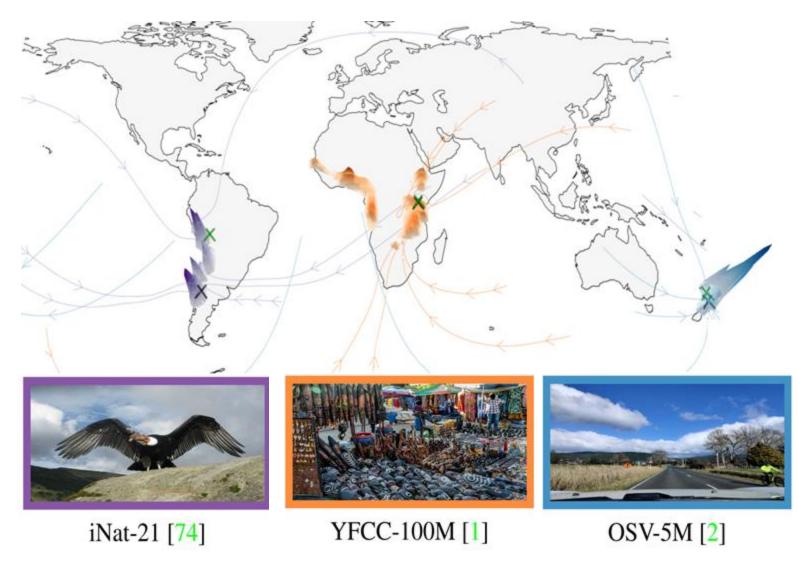


Nicolas Dufour, David Picard, Vicky Kalogeiton, Loic Landrieu CVPR 2025

Challenge: ambiguity

- Canada? Norway? Elsewhere?

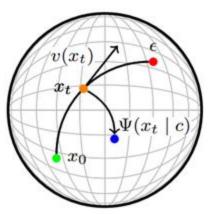
- Regression predicts the mean of two modes, one per region



Middle of the Atlantic Wrong prediction!

Plonk: Generative Geolocalization

L' ECOLE POLYTECHNIQUE


- **Solution:** predict (conditional) distributions instead of "hard" locations
- Sample multiple locations to access the distribution of possible locations
- More interpretable

Geolocation as a Generative Process

- Method: we use Diffusion / Flow Matching techniques
- In Practice: we learn to "correct" noisy coordinates, given an image

- x₀: true location
- \bullet ϵ : sampled noise
- x_t: noisy location
- $\psi(x_t \mid c)$: prediction

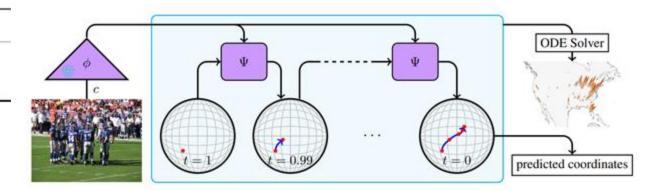
 $\rightarrow v(x_t)$: velocity field

	Diffusion
а	$c_t = \sqrt{1 - \kappa(t)}x_0 + \sqrt{\kappa(t)}\epsilon$ $\mathcal{L}_D = \ \psi(x_t \mid c) - \epsilon\ ^2$

Flow Matching

$$x_t = (1 - \kappa(t))x_0 + \kappa(t)\epsilon$$

$$\mathcal{L}_{FM} = \|\psi(x_t \mid c) - v(x_t)\|^2$$


Riemannian Flow Matching

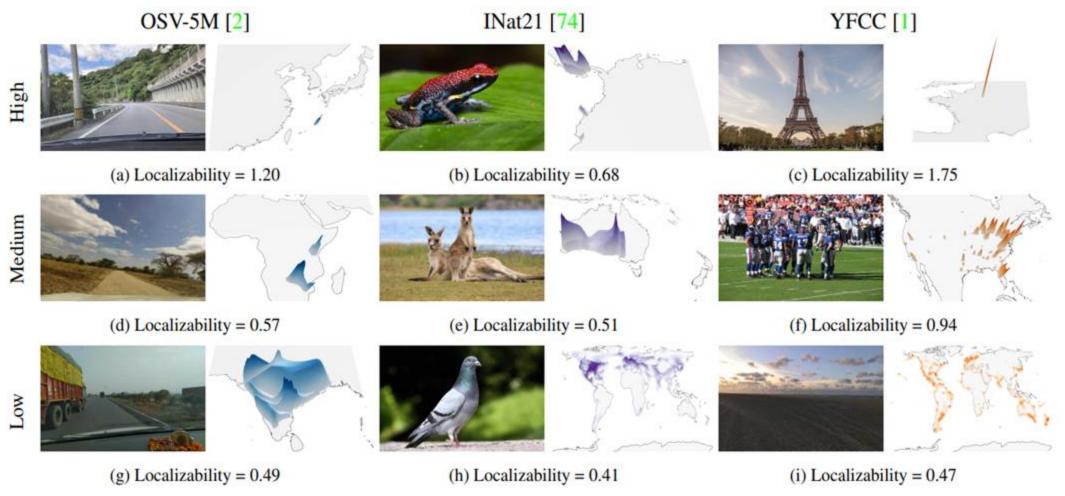
$$x_t = \exp_{x_0} \left(\kappa(t) \log_{x_0} (\epsilon) \right)$$

$$\mathcal{L}_{RFM} = \| \psi(x_t \mid c) - v(x_t) \|_{x_t}^2$$

 $\kappa(t)$: noise scheduler

Trick: Riemannian flow matching to take into account Earth's geometry

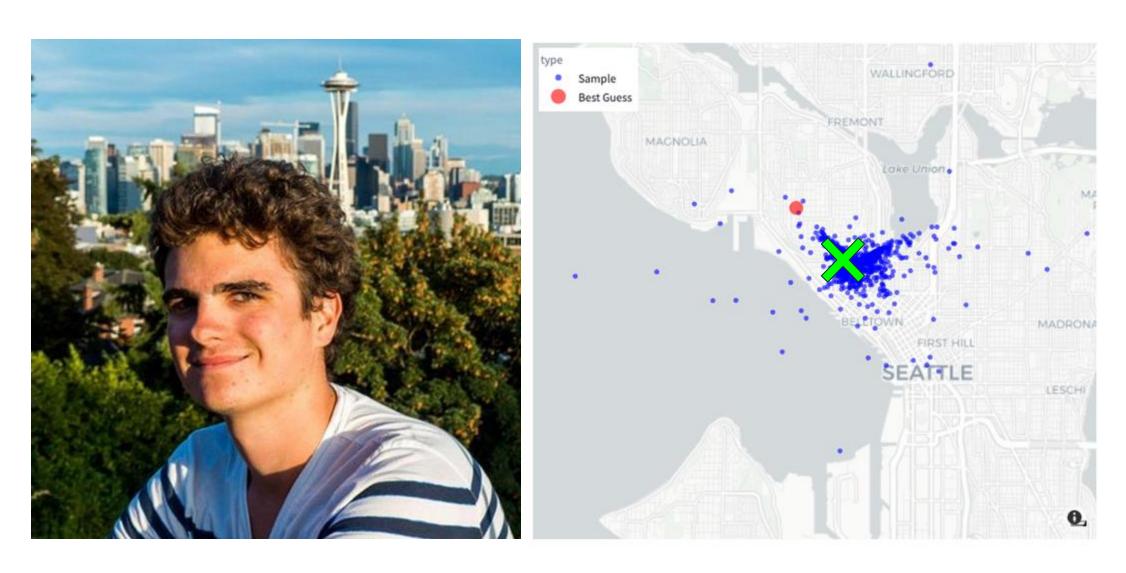
Results: SOTA for geolocation


			iNat21 [74]				
		geos. ↑	dist↓	accuracy ↑ (in %)			dist ↓
		/5000	(km)	country	region	city	(km)
deterministic	SC 0-shot [25]	2273	2854	38.4	20.8	14.8	
	Regression [2]	3028	1481	56.5	16.3	0.7	
	ISNs [52]	3331	2308	66.8	39.4	4.2	
	Hybrid [2]	3361	1814	68.0	39.4	5.9	
	SC Retrieval [25]	3597	1386	73.4	45.8	19.9	
generative	Uniform	131	10052	2.4	0.1	0.0	10,010
	vMF	2776	2439	52.7	17.2	0.6	6270
	vMFMix [36]	1746	5662	34.2	11.1	0.3	4701
	Diff \mathbb{R}^3 (ours)	3762	1123	75.9	40.9	3.6	3057
	FM R3 (ours)	3688	1149	74.9	40.0	4.2	2942
	RFM S_2 (ours)	3767	1069	76.2	44.2	5.4	2500

	geos.↑	dist↓	accuracy ↑ (in %)				
	/5000	(km)	25km	200km	750km	2500km	
PlaNet [77]			14.3	22.2	36.4	55.8	
CPlaNet [66]			14.8	21.9	36.4	55.5	
ISNs [52]			16.5	24.2	37.5	54.9	
Translocator [63]			18.6	27.0	41.1	60.4	
GeoDecoder [11]			24.4	33.9	50.0	68.7	
PIGEON [26]			24.4	40.6	62.2	77.7	
Uniform	131.2	10052	0.0	0.0	0.3	3.8	
vMF	1847	3563	4.8	15.0	30.9	53.4	
vMFMix [36]	1356	4394	0.4	8.8	20.9	41.0	
Diff \mathbb{R}^3 (ours)	2845	2461	11.1	37.7	54.7	71.9	
FM \mathbb{R}^3 (ours)	2838	2514	22.1	35.0	53.2	73.1	
RFM S_2 (ours)	2889	2461	23.7	36.4	54.5	73.6	
$RFM_{10M} S_2$ (ours)	3210	2058	33.5	45.3	61.1	77.7	
	CPlaNet [66] ISNs [52] Translocator [63] GeoDecoder [11] PIGEON [26] Uniform vMF vMFMix [36] Diff \mathbb{R}^3 (ours) FM \mathbb{R}^3 (ours) RFM \mathcal{S}_2 (ours)	/5000 PlaNet [77] CPlaNet [66] ISNs [52] Translocator [63] GeoDecoder [11] PIGEON [26] Uniform 131.2 vMF 1847 vMFMix [36] 1356 Diff R³ (ours) 2845 FM R³ (ours) 2838 RFM S₂ (ours) 2889	15000 (km) PlaNet [77] CPlaNet [66] ISNs [52] Translocator [63] GeoDecoder [11] PIGEON [26] Uniform 131.2 10052 vMF 1847 3563 vMFMix [36] 1356 4394 Diff \(\mathbb{R}^3 \) (ours) 2845 2461 FM \(\mathbb{R}^3 \) (ours) 2889 2461 RFM \(\mathbb{S}_2 \) (ours) 2889 2461	/5000 (km) 25km PlaNet [77] 14.3 CPlaNet [66] 14.8 ISNs [52] 16.5 Translocator [63] 18.6 GeoDecoder [11] 24.4 PIGEON [26] 24.4 Uniform 131.2 10052 0.0 vMF 1847 3563 4.8 vMFMix [36] 1356 4394 0.4 Diff \mathbb{R}^3 (ours) 2845 2461 11.1 FM \mathbb{R}^3 (ours) 2838 2514 22.1 RFM \mathcal{S}_2 (ours) 2889 2461 23.7	/5000 (km) 25km 200km PlaNet [77] 14.3 22.2 CPlaNet [66] 14.8 21.9 ISNs [52] 16.5 24.2 Translocator [63] 18.6 27.0 GeoDecoder [11] 24.4 33.9 PIGEON [26] 24.4 40.6 Uniform 131.2 10052 0.0 0.0 vMF 1847 3563 4.8 15.0 vMFMix [36] 1356 4394 0.4 8.8 Diff \mathbb{R}^3 (ours) 2845 2461 11.1 37.7 FM \mathbb{R}^3 (ours) 2838 2514 22.1 35.0 RFM \mathcal{S}_2 (ours) 2889 2461 23.7 36.4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

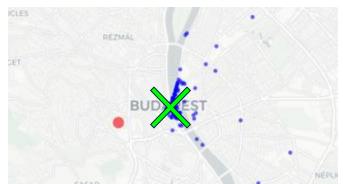
- OSV-5M (street-view)
- iNaturalist21 (animals)
- YFCC100M (uploaded on Flickr)

Results: Probabilistic geolocation



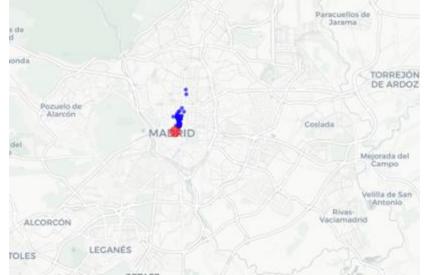
Localizability: correlates with our intuition

Some fun samples: Localizing profile pictures


Some fun samples: Localizing profile pictures

Efficient Brains that Imagine

Vicky Kalogeiton


Can you cheat in Geoguessr?

GT

Plonk

Vicky Kalogeiton

Efficient Brains that Imagine

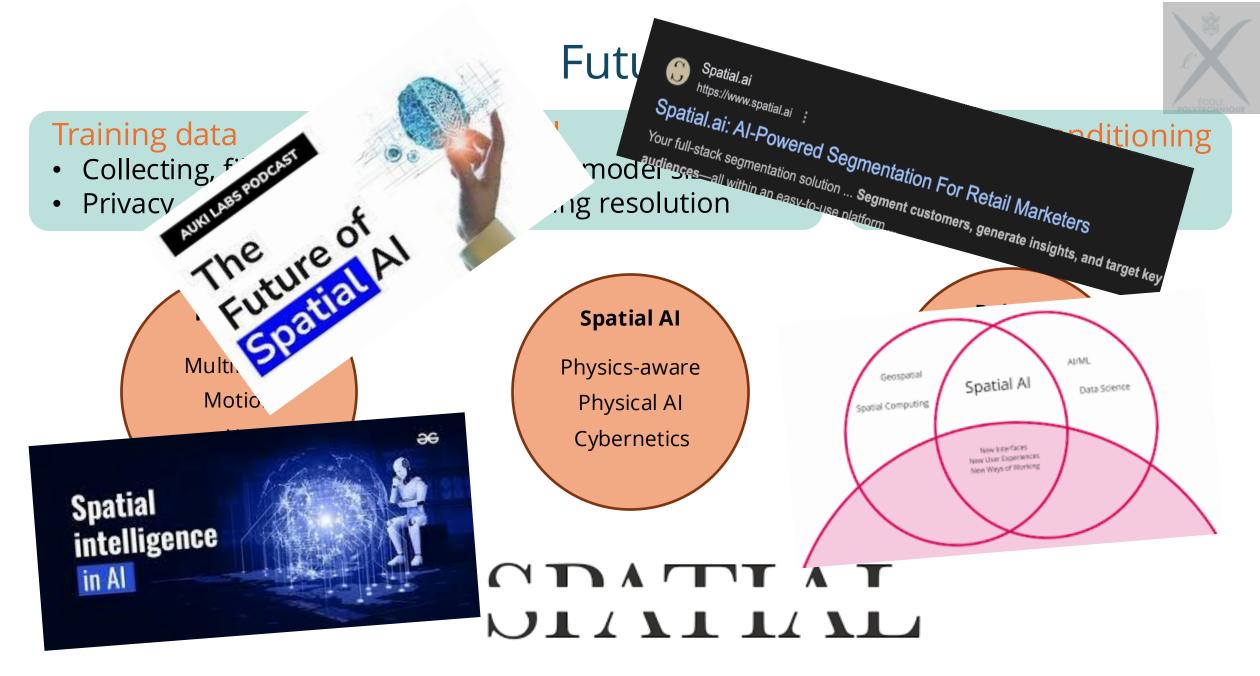
Efficiency: Challenges

Training data

- · Collecting, filtering
- Privacy

Training & conditioning

- How to condition?
- Long training times


Model

- Large model size
- Scaling resolution

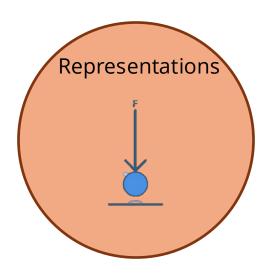
Inference & post-training

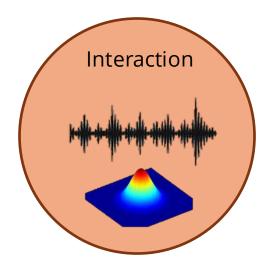
- Multiple denoising steps
- Apply RL?

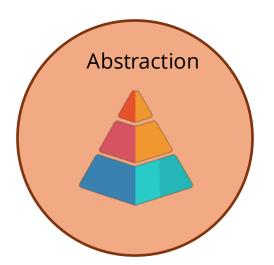
+ Bonus!

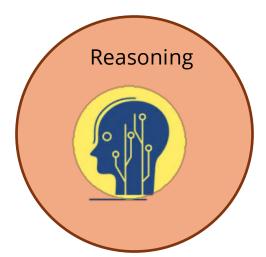
Future

Training data

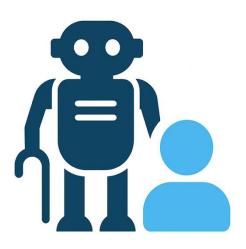

- Collecting, filtering
- Privacy


Model


- Large model size
- Scaling resolution


Training & conditioning

- How to condition?
- Long training times


Efficient human-robot collaboration

From perception to imagination to collaboration

e.ffi.ci.en.tly

Future

Efficient Brains that Imagine

Děkuju!

