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How to learn the Encoder: from scratch
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How to learn the Encoder: Transfer Learning

Input 
Image

Encoder

Features

Global 
Representation

• Supervised, two stage: firstly learn on 
classification (cheap)

“fish”
Image 

Classification

🔥

🔥



47th PRCVCApril 4, 2024 11

How to learn the Encoder: Transfer Learning

Input 
Image

Encoder

Features

• Supervised, two stage: firstly learn on 
classification (cheap) and then 
downstream to other tasks

❄️

Local 
Representations

Global 
Representation

“holoacanthus”
Image 

Classification

Image 
Retrieval

Semantic
Segmentation

Object 
Detection

🔥

🔥

 Better, but still labor-intensive…

🔥/



47th PRCVCApril 4, 2024 12

How to learn the Encoder: Self-supervised Learning
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How to learn the Encoder: Self-supervised Learning
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θ=?

colorization“jigsaw puzzle”rotation prediction

Self-supervised pretext tasks

1. Solving the pretext tasks allow the model to learn good features
2. We can automatically generate labels for the pretext tasks

Stanford University CS231n: Deep Learning for Computer Vision
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θ=?

colorization“jigsaw puzzle”rotation prediction

Self-supervised pretext tasks

 Learned representations may be tied to a specific pretext task!  

Can we come up with a more general pretext task?

Stanford University CS231n: Deep Learning for Computer Vision
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θ=?

A more general pretext task?

same subject

Stanford University CS231n: Deep Learning for Computer Vision
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θ=?

A more general pretext task?

same subject
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subject

Stanford University CS231n: Deep Learning for Computer Vision
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θ=?

Self-supervised Contrastive Learning

attract

repel

Stanford University CS231n: Deep Learning for Computer Vision
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Masked Image Modeling (MIM)
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- Divide an input image into patch tokens
- Mask a portion of the input patch tokens
- Train a Vision Transformer to reconstruct them



Focus: Which patch tokens to mask?
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- Not well explored; prior works use (block-wise) random token masking

Zhou et al., iBOT: Image BERT Pre-training with Online Tokenizer ICLR, 2022
Bao et al., BEiT: BERT Pre-Training of Image Transformers ICLR, 2022
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- Not well explored; prior works use (block-wise) random token masking
- Less likely to hide “interesting” parts → easy reconstruction
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Focus: Which patch tokens to mask?
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- Not well explored; prior works use (block-wise) random token masking
- Less likely to hide “interesting” parts → easy reconstruction
- Compensating with extreme masking (e.g. 75% of tokens) → overly aggressive
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random 
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block
wise He et al., Masked Autoencoders Are Scalable Vision Learners CVPR, 2022



Approach: Attention-guided token masking (AttMask)

47th PRCVCApril 4, 2024 26

- Leverage ViT’s self-attention to mask tokens
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- Leverage ViT’s self-attention to mask tokens
× AttMask-Low: masks low-attended tokens (essentially background)

→very easy reconstruction task → degrades performance
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Approach: Attention-guided token masking (AttMask)
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- Leverage ViT’s self-attention to mask tokens
 AttMask-High: masks highly-attended tokens (essentially foreground)

→very challenging reconstruction task → boosts performance
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- Leverage ViT’s self-attention to mask tokens
 AttMask-High: masks highly-attended tokens (essentially foreground)

→very challenging reconstruction task → boosts performance
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Perhaps overly aggressive for high mask ratios!

Approach: Attention-guided token masking (AttMask)

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022 
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- Leverage ViT’s self-attention to mask tokens
 AttMask-High: masks highly-attended tokens (essentially foreground)

→very challenging reconstruction task → boosts performance
 AttMask-Hint: masks highly-attended tokens, but leaves some hints

→provides hints for the identity of the masked object → boosts performance
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Approach: Attention-guided token masking (AttMask)

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022 



47th PRCVCApril 4, 2024 31

Incorporating AttMask into distillation-based methods

- We exhibit AttMask in the context of distillation-based MIM, such as iBOT

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022 
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Incorporating AttMask into distillation-based methods

- We exhibit AttMask in the context of distillation-based MIM, such as iBOT
- The teacher transformer encoder sees the entire image and generates the attention map
- The student sees only the masked image and solves the reconstruction task
- AttMask thus incurs zero additional cost

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022 
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Qualitative examination of masking strategies

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022 
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Evaluating token masking strategies (20% of ImageNet-1k)

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022 

Top-1 accuracy for k-NN and linear probing

: default iBOT masking strategy from BEiT : aggressive random masking strategy from MAE

 AttMask-High improves iBOT by +3% on k-NN and +1.5% on linear probing
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Evaluating token masking strategies (20% of ImageNet-1k)
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Evaluating token masking strategies (20% of ImageNet-1k)

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022 

Top-1 accuracy for k-NN and linear probing

: default iBOT masking strategy from BEiT : aggressive random masking strategy from MAE

Epochs

k-
N

N

 AttMask-High improves iBOT by +3% on k-NN and +1.5% on linear probing
 AttMask-High accelerates the learning process
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Evaluating token masking strategies (different % of ImageNet-1k)

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022 

Improved performance when:
 Pre-training with fewer data

Top-1 k-NN accuracy for pre-training
on different percentages of ImageNet-1k

: default iBOT masking strategy from BEiT
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Evaluating token masking strategies (different % of ImageNet-1k)

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022 

Improved performance when:
 Pre-training with fewer data
 Pre-training on the full ImageNet-1k (+1.3% on k-NN and +1.5% on linear probing)

Top-1 k-NN accuracy for pre-training
on different percentages of ImageNet-1k

: default iBOT masking strategy from BEiT

Top-1 accuracy for pre-training on 100% of ImageNet-1k 
(a) k-NN and linear probing

(b) k-NN using only few examples per class
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Property: Low-shot performance

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022 

Improved performance when:
 Pre-training with fewer data
 Pre-training on the full ImageNet-1k (+1.3% on k-NN and +1.5% on linear probing)
 Evaluating using only 1, 5, 10 or 20 samples per class for the k-NN classifier (more than +3% on low shot k-NN)

Top-1 k-NN accuracy for pre-training
on different percentages of ImageNet-1k

: default iBOT masking strategy from BEiT

Top-1 accuracy for pre-training on 100% of ImageNet-1k 
(a) k-NN and linear probing

(b) k-NN using only few examples per class



Property: Background robustness

47th PRCVCApril 4, 2024 46

Classification robustness against background changes
Classification accuracy of linear probe on IN-9 and its variations

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022 
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Downstream tasks

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022 

 Improved performance on downstream tasks with or without fine-tuning

Object detection (COCO) and semantic segmentation (ADE20K) with fine-tuning
Image Retrieval (ROXFORD and RPARIS) and video object segmentation (DAVIS) without fine-tuning



47th PRCVCApril 4, 2024 48

Property: High-quality features

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022 

 Improved performance on downstream tasks with or without fine-tuning

Object detection (COCO) and semantic segmentation (ADE20K) with fine-tuning
Image Retrieval (ROXFORD and RPARIS) and video object segmentation (DAVIS) without fine-tuning



Conclusion
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AttMask:

 Zero additional cost
 Faster convergence
 Benefits over random masking
 Outperforms the other self-supervised distillation-based MIM methods
 Major improvements in challenging tasks; i.e., using features without any 

fine-tuning, or working with limited data.

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022 
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CNNs vs. ViTs
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Supervised ViTs: low-quality attention
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Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023

ViT-S on Imagenet-1k; mean attention map of the [CLS]; final block



Is supervision the problem?
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Caron et al., Emerging Properties in Self-Supervised Vision Transformers, ICCV 2021

ViT-S on Imagenet-1k; images from COCO val set; 
attention maps of the [CLS] for 3 different heads; final block

Supervised Self-supervised w/ DINO



CNNs vs. ViTs
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“Universal” Pooling
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- Pooling at the very last step of both network types improving over default?
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- Pooling at the very last step of both network types improving over default?
- Pooling for high-quality spatial attention?



Focus
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- Pooling at the very last step of both network types improving over default?
- Pooling for high-quality spatial attention?
- Validity in both supervised and self-supervised settings?



Generic Pooling Framework
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Formulate methods as instantiations 
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Discuss and derive
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SimPool
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Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023
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Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023
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Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023
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Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023



SimPool
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Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023
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Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023



SimPool
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Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023



Benchmark
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Property: “Universal” (Network & Settings)
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Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023

Classification accuracy on ImageNet-1k; 
Supervised training; 

Baseline: GAP for convolutional, [CLS] for transformers.
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Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023

Classification accuracy on ImageNet-1k; 
Supervised training; 

Baseline: GAP for convolutional, [CLS] for transformers.



Property: “Universal” (Network & Settings)

47th PRCVCApril 4, 2024 85

Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023

Classification accuracy on ImageNet-1k; 
Supervised training; 

Baseline: GAP for convolutional, [CLS] for transformers.

Classification accuracy on ImageNet-1k; 
Self-supervised pre-training w/ DINO; 

Baseline: GAP for convolutional, [CLS] for transformers.



Property: “Universal” (Network & Settings)
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Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023

Classification accuracy on ImageNet-1k; 
Supervised training; 

Baseline: GAP for convolutional, [CLS] for transformers.

Classification accuracy on ImageNet-1k; 
Self-supervised pre-training w/ DINO; 

Baseline: GAP for convolutional, [CLS] for transformers.



Property: High-quality attention maps from Transformers 
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ViT-S on Imagenet-1k; mean attention map of the [CLS] vs. SimPool attention map
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ViT-S on Imagenet-1k; mean attention map of the [CLS] vs. SimPool attention map
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ViT-S on Imagenet-1k; mean attention map of the [CLS] vs. SimPool attention map
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ViT-S on Imagenet-1k; mean attention map of the [CLS] vs. SimPool attention map
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ViT-S on Imagenet-1k; supervised training; 
mean attention map of the [CLS]
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ViT-S on Imagenet-1k; supervised training; 
mean attention map of the [CLS] vs. SimPool attention map
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ResNet-50, ConvNeXt-S on Imagenet-1k; supervised training; SimPool attention map

input
image

ResNet-50 
supervised

ResNet-50 
DINO

ConvNeXt-S 
supervised

ConvNeXt-S 
DINO
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Choe et al., Evaluating weakly supervised object localization methods right, CVPR 2020
Caron et al., Emerging Properties in Self-Supervised Vision Transformers, ICCV 2021
Simeoni et al., Localizing Objects with Self-Supervised Transformers and no Labels, BMVC 2021

Object localization MaxBoxAccV2 with ViT-S;
Baseline: mean attention map of the [CLS];

SimPool attention map; 
@20: at epoch 20
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Choe et al., Evaluating weakly supervised object localization methods right, CVPR 2020
Caron et al., Emerging Properties in Self-Supervised Vision Transformers, ICCV 2021
Simeoni et al., Localizing Objects with Self-Supervised Transformers and no Labels, BMVC 2021

Object localization MaxBoxAccV2 with ViT-S;
Baseline: mean attention map of the [CLS];

SimPool attention map; 
@20: at epoch 20

Unsupervised object discovery CorLoc with ViT-S;
DINO-SEG uses attention maps;

@20: at epoch 20
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Choe et al., Evaluating weakly supervised object localization methods right, CVPR 2020
Caron et al., Emerging Properties in Self-Supervised Vision Transformers, ICCV 2021
Simeoni et al., Localizing Objects with Self-Supervised Transformers and no Labels, BMVC 2021

Object localization MaxBoxAccV2 with ViT-S;
Baseline: mean attention map of the [CLS];

SimPool attention map; 
@20: at epoch 20

Unsupervised object discovery CorLoc with ViT-S;
DINO-seg uses attention maps;

LOST uses raw features;
@20: at epoch 20
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Choe et al., Evaluating weakly supervised object localization methods right, CVPR 2020
Caron et al., Emerging Properties in Self-Supervised Vision Transformers, ICCV 2021
Simeoni et al., Localizing Objects with Self-Supervised Transformers and no Labels, BMVC 2021

Object localization MaxBoxAccV2 with ViT-S;
Baseline: mean attention map of the [CLS];

SimPool attention map; 
@20: at epoch 20

Unsupervised object discovery CorLoc with ViT-S;
DINO-SEG uses attention maps;

LOST uses raw features;
@20: at epoch 20

 Up to +14% when supervised and up to +7%
when self-supervised
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Choe et al., Evaluating weakly supervised object localization methods right, CVPR 2020
Caron et al., Emerging Properties in Self-Supervised Vision Transformers, ICCV 2021
Simeoni et al., Localizing Objects with Self-Supervised Transformers and no Labels, BMVC 2021

Object localization MaxBoxAccV2 with ViT-S;
Baseline: mean attention map of the [CLS];

SimPool attention map; 
@20: at epoch 20

Unsupervised object discovery CorLoc with ViT-S;
DINO-SEG uses attention maps;

LOST uses raw features;
@20: at epoch 20

 Up to +14% when supervised and up to +7%
when self-supervised

 Up to +25% for DINO-seg and up to +6% for LOST
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Choe et al., Evaluating weakly supervised object localization methods right, CVPR 2020

Object localization MaxBoxAccV2 with ViT-S;
Baseline: mean attention map of the [CLS];

SimPool attention map; 
@20: at epoch 20

Object localization on ImageNet-1k; 
green: ground-truth; red: baseline; blue: SimPool

Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023
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Background robustness 
Classification accuracy on IN-9 with ViT-S

Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023Xiao et al., Noise or Signal: The Role of Image backgrounds in Object Recognition; ICLR 2021

Classification robustness against background changes 
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Classification accuracy of ViT-S on ImageNet-1k; 
Supervised training;
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Classification accuracy of ViT-S on ImageNet-1k; 
Supervised training;

Add ViT blocks 
when using [CLS]
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Classification accuracy of ViT-S on ImageNet-1k; 
Supervised training;

Add ViT blocks 
when using [CLS]
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Classification accuracy of ViT-S on ImageNet-1k; 
Supervised training;

Add ViT blocks 
when using [CLS]
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Classification accuracy of ViT-S on ImageNet-1k; 
Supervised training;

Add ViT blocks 
when using [CLS]
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Classification accuracy of ViT-S on ImageNet-1k; 
Supervised training;

Add ViT blocks 
when using [CLS]

5 extra blocks or 
>8M more parameters 

to exceed!
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Classification accuracy of ViT-S on ImageNet-1k; 
Supervised training;
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Classification accuracy of ViT-S on ImageNet-1k; 
Supervised training;

Remove ViT blocks 
when using SimPool
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Classification accuracy of ViT-S on ImageNet-1k; 
Supervised training;

Remove ViT blocks 
when using SimPool
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Classification accuracy of ViT-S on ImageNet-1k; 
Supervised training;

Remove ViT blocks 
when using SimPool

3 less blocks or 
5M less parameters to 

be on par!
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γ is a 
hyperparameter!
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γ is a 
hyperparameter!

input
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no γ γ=0.5 γ=1.0 γ=1.25 γ=1.5 γ=2.0 γ=2.5 γ=3.0 γ=5.0

ResNet

ViT
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SimPool:

 Improves performance of convolutional networks and transformers 
under supervised or self-supervised setting

 Outperforms the other pooling methods
 Incurs low additional cost
 Produces high-quality attention maps that delineate object boundaries
 Presents strong localization properties



Collaborators

47th PRCVCApril 4, 2024 115

Ioannis
Kakogeorgiou

Spyros 
Gidaris

Andrei
Bursuc

Konstantinos
Karantzalos

Yannis
Avrithis

Nikos
Komodakis


