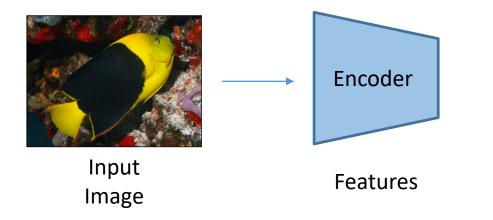


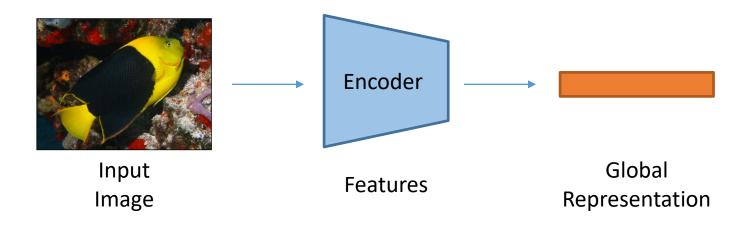
Leveraging Attention in Masked Image Modeling and Pooling

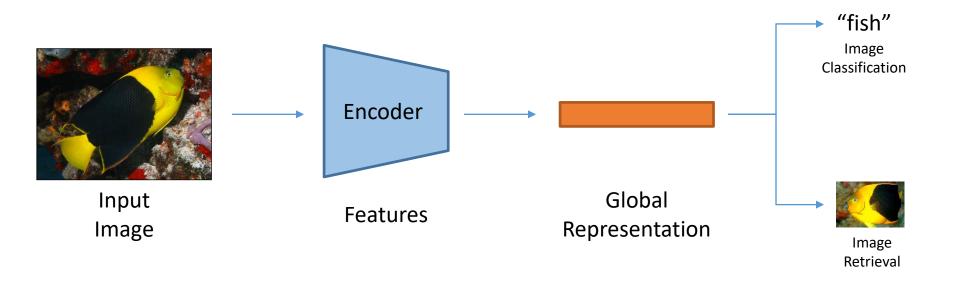
April 4, 2024

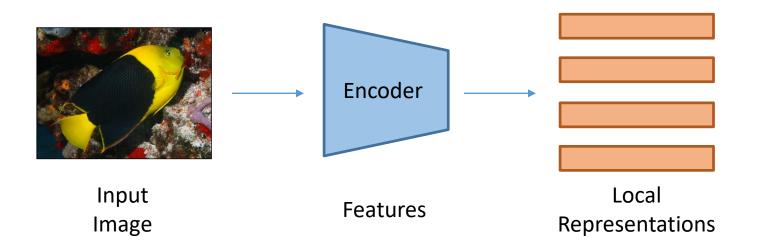
[Bill Psomas, RSLab, NTUA]

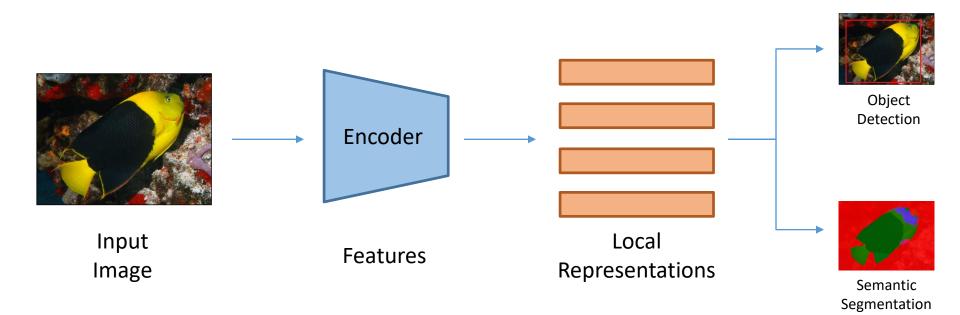
1







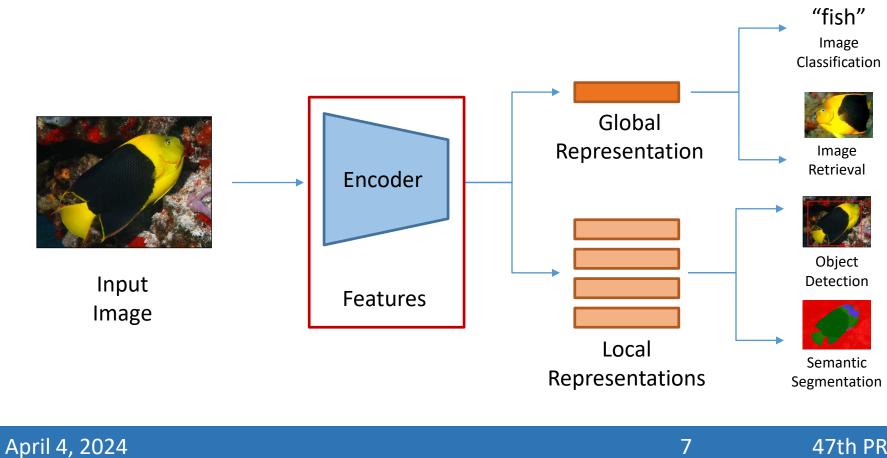


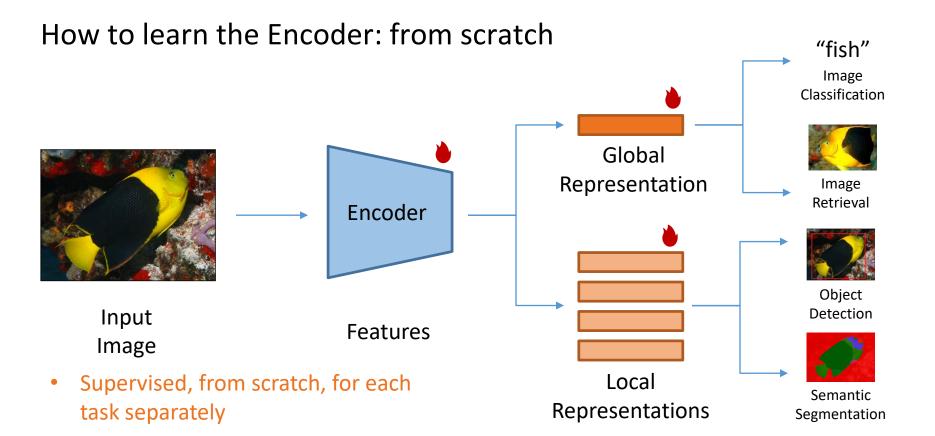


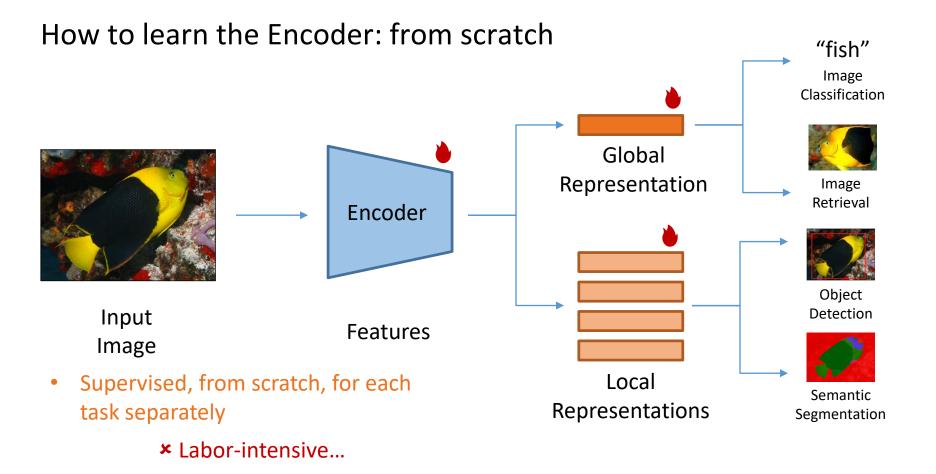
April 4, 2024

6

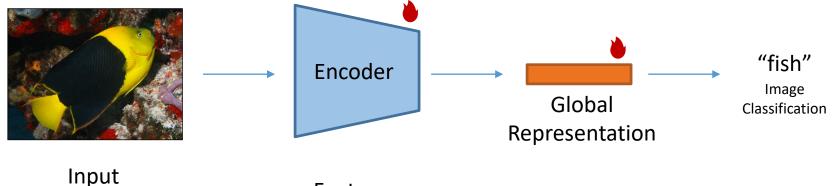
How to learn the Encoder?







How to learn the Encoder: Transfer Learning

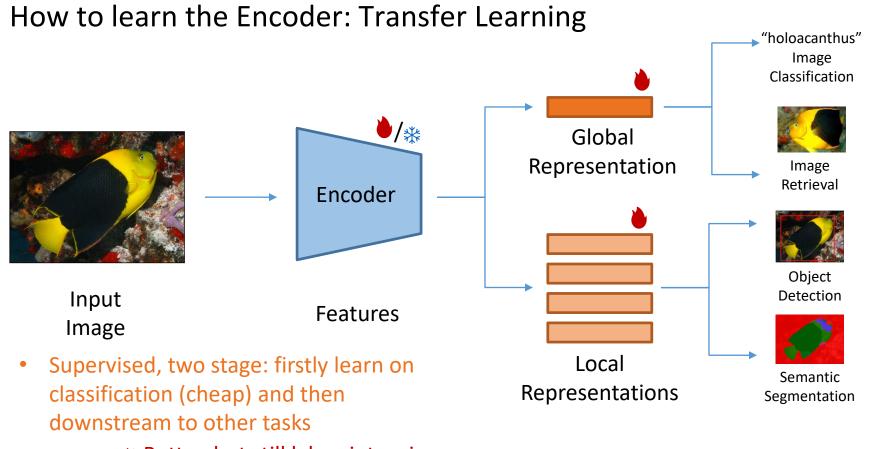


10

47th PRCVC

. Image Features

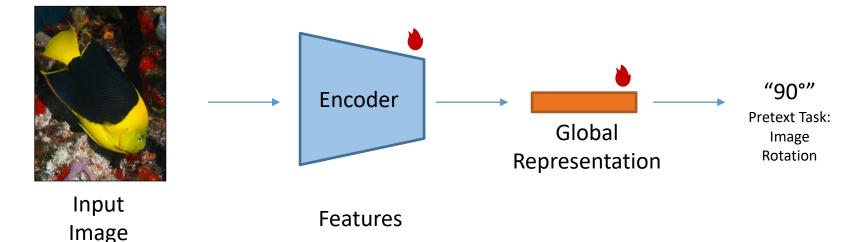
• Supervised, two stage: firstly learn on classification (cheap)



***** Better, but still labor-intensive...

11

How to learn the Encoder: Self-supervised Learning

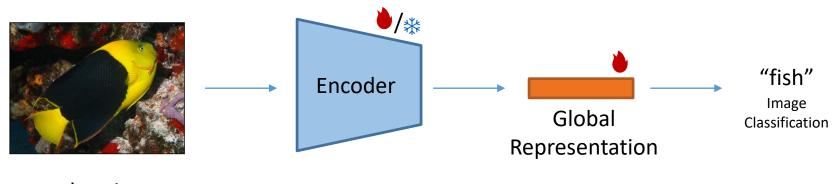


12

47th PRCVC

• Self-supervised, two stage: firstly, learn on a pretext task (free)

How to learn the Encoder: Self-supervised Learning



13

47th PRCVC

Input Image

Features

 Self-supervised, two stage: firstly, learn on a pretext task (free) and then downstream to other tasks

✓ Best, pre-training labels are automatically generated!

Self-supervised pretext tasks

rotation prediction

"jigsaw puzzle"

colorization

- 1. Solving the pretext tasks allow the model to learn good features
- 2. We can automatically generate labels for the pretext tasks

Stanford University CS231n: Deep Learning for Computer Vision

Self-supervised pretext tasks

rotation prediction

"jigsaw puzzle"

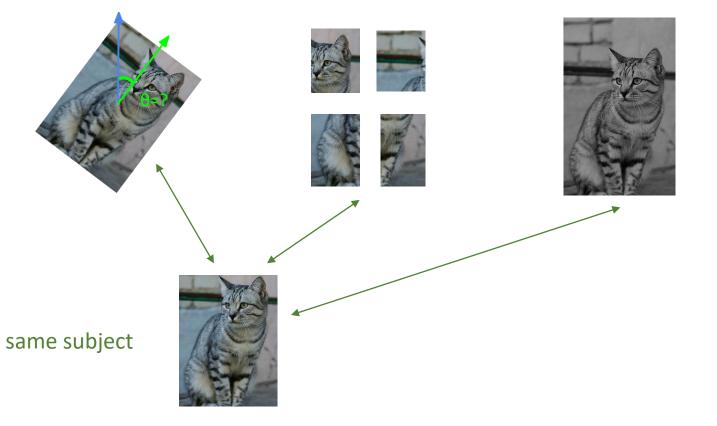
colorization

Learned representations may be tied to a specific pretext task!

Can we come up with a more general pretext task?

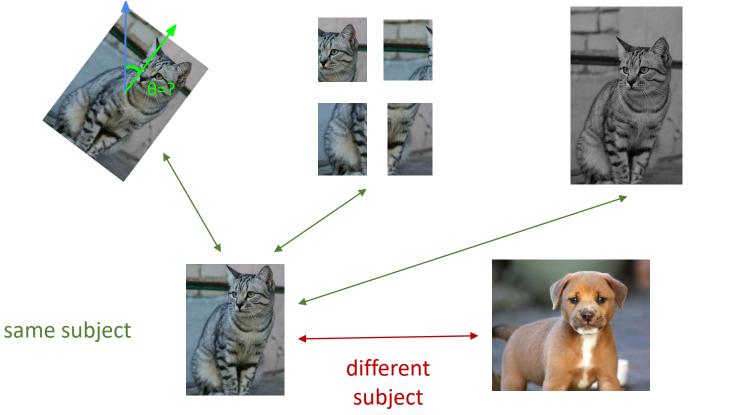
Stanford University CS231n: Deep Learning for Computer Vision

A more general pretext task?



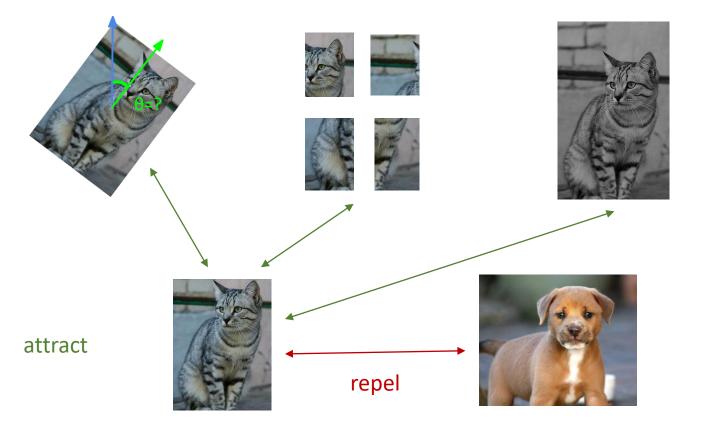
Stanford University CS231n: Deep Learning for Computer Vision

A more general pretext task?



Stanford University CS231n: Deep Learning for Computer Vision

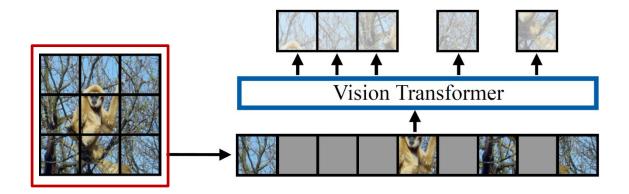
Self-supervised Contrastive Learning



Stanford University CS231n: Deep Learning for Computer Vision

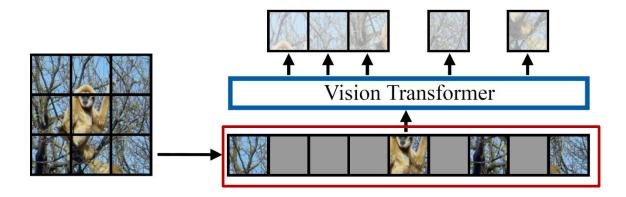
Leveraging Attention in Masked Image Modeling

Masked Image Modeling (MIM)



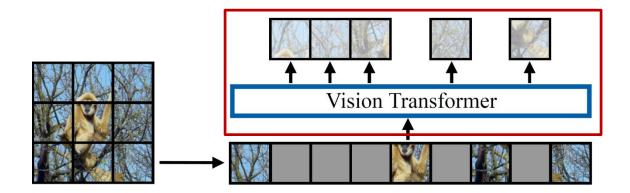
- Divide an input image into patch tokens

Masked Image Modeling (MIM)



- Divide an input image into patch tokens
- Mask a portion of the input patch tokens

Masked Image Modeling (MIM)



- Divide an input image into patch tokens
- Mask a portion of the input patch tokens
- Train a Vision Transformer to reconstruct them

Focus: Which patch tokens to mask?

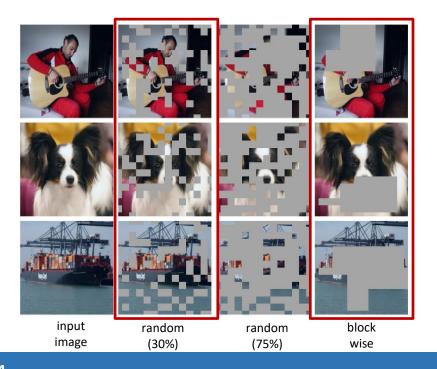
- Not well explored; prior works use (block-wise) random token masking

Zhou et al., iBOT: Image BERT Pre-training with Online Tokenizer ICLR, 2022 Bao et al., BEIT: BERT Pre-Training of Image Transformers ICLR, 2022

47th PRCVC

Focus: Which patch tokens to mask?

- Not well explored; prior works use (block-wise) random token masking
 - Less likely to hide "interesting" parts → easy reconstruction



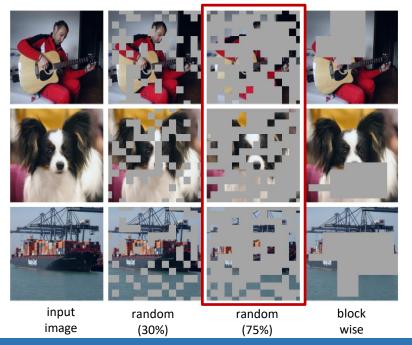
Zhou et al., iBOT: Image BERT Pre-training with Online Tokenizer ICLR, 2022 Bao et al., BEIT: BERT Pre-Training of Image Transformers ICLR, 2022

47th PRCVC

Focus: Which patch tokens to mask?

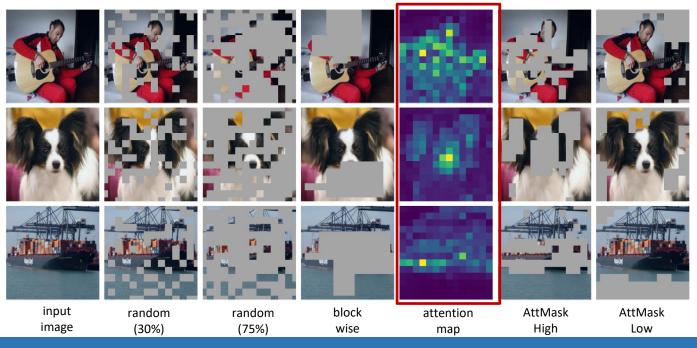
April 4, 2024

- Not well explored; prior works use (block-wise) random token masking
 - Less likely to hide "interesting" parts \rightarrow easy reconstruction
 - Compensating with extreme masking (e.g. 75% of tokens) \rightarrow overly aggressive



He et al., Masked Autoencoders Are Scalable Vision Learners CVPR, 2022

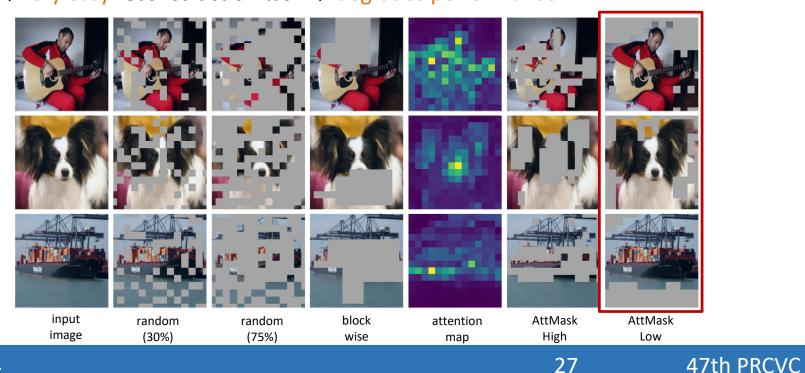
- Leverage ViT's self-attention to mask tokens



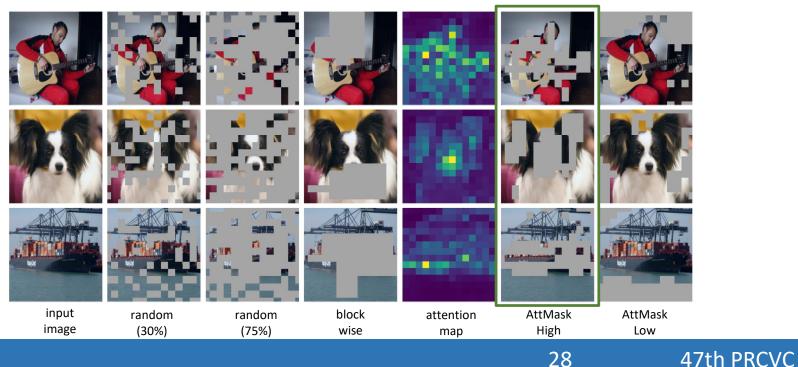
April 4, 2024

26

- Leverage ViT's self-attention to mask tokens
 - AttMask-Low: masks low-attended tokens (essentially background)
 →very easy reconstruction task → degrades performance

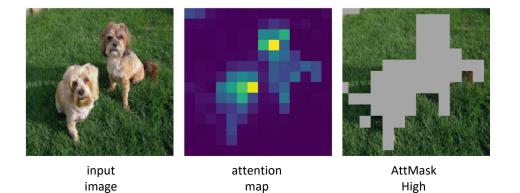


- Leverage ViT's self-attention to mask tokens
 - ✓ AttMask-High: masks highly-attended tokens (essentially foreground)
 →very challenging reconstruction task → boosts performance



- Leverage ViT's self-attention to mask tokens
 - ✓ AttMask-High: masks highly-attended tokens (essentially foreground)
 →very challenging reconstruction task → boosts performance

Perhaps overly aggressive for high mask ratios!

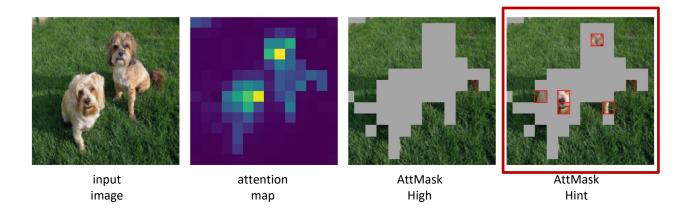


Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022

47th PRCVC

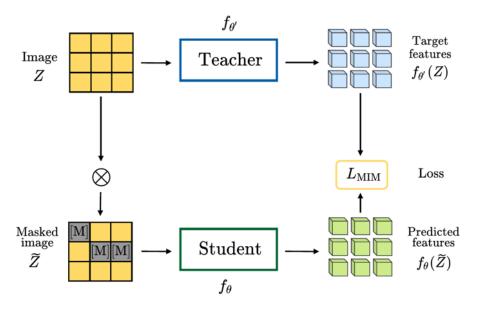
29

- Leverage ViT's self-attention to mask tokens
 - ✓ AttMask-High: masks highly-attended tokens (essentially foreground)
 →very challenging reconstruction task → boosts performance
 - ✓ AttMask-Hint: masks highly-attended tokens, but leaves some hints → provides hints for the identity of the masked object → boosts performance



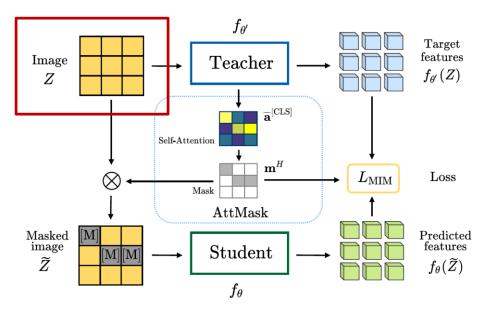
Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022

30



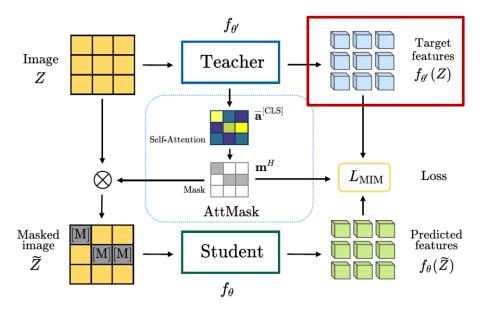
- We exhibit AttMask in the context of distillation-based MIM, such as iBOT

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022



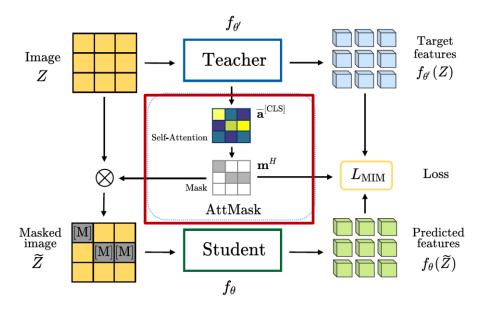
- We exhibit AttMask in the context of distillation-based MIM, such as iBOT
- The teacher transformer encoder sees the entire image and generates the attention map

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022



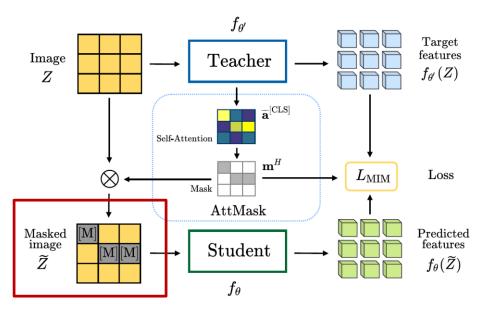
- We exhibit AttMask in the context of distillation-based MIM, such as iBOT
- The teacher transformer encoder sees the entire image and generates the attention map

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022



- We exhibit AttMask in the context of distillation-based MIM, such as iBOT
- The teacher transformer encoder sees the entire image and generates the attention map

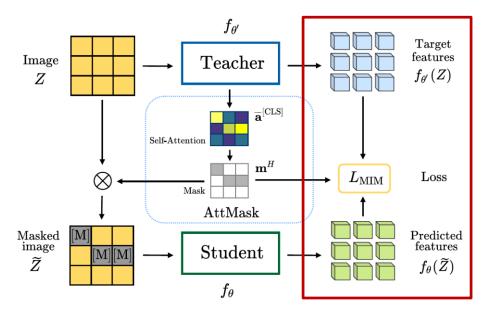
Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022



- We exhibit AttMask in the context of distillation-based MIM, such as iBOT
- The teacher transformer encoder sees the entire image and generates the attention map
- The student sees only the masked image and solves the reconstruction task

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022

47th PRCVC

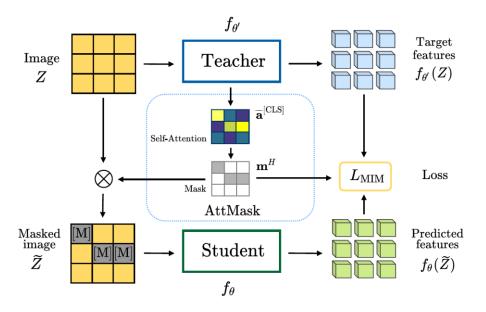


- We exhibit AttMask in the context of distillation-based MIM, such as iBOT
- The teacher transformer encoder sees the entire image and generates the attention map
- The student sees only the masked image and solves the reconstruction task

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022

47th PRCVC

Incorporating AttMask into distillation-based methods

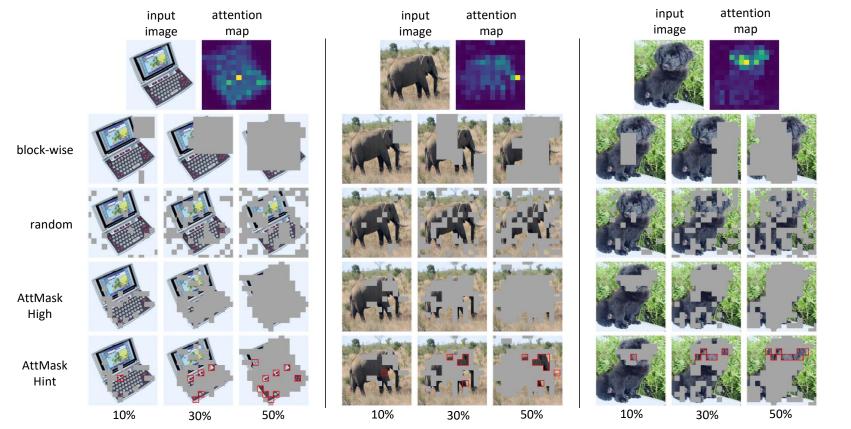


- We exhibit AttMask in the context of distillation-based MIM, such as iBOT
- The teacher transformer encoder sees the entire image and generates the attention map
- The student sees only the masked image and solves the reconstruction task
- AttMask thus incurs zero additional cost

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022

47th PRCVC

Qualitative examination of masking strategies



Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022

47th PRCVC

April 4, 2024

38

default iBOT masking stra	‡: ag	gressive ra	ndom maskir	ng strategy fro	
IBOT MASKING	Ratio (%)	IMAGI	eNet-1k	CIFAR10	CIFAR100
		k-NN	LINEAR	Fine-	ΓUNING
Random Block-Wise [†]	10-50	46.7	56.4	98.0	86.0
Random [‡]	75	47.3	55.5	97.7	85.5
Random	10-50	47.8	56.7	98.0	86.1
AttMask-Low (ours)	10-50	44.0	53.4	97.6	84.6
AttMask-Hint (ours)	10-50	49.5	57.5	98.1	86.6
AttMask-High (ours)	10-50	49.7	57.9	98.2	86.6

Top-1 accuracy for k-NN and linear probing

✓ AttMask-High improves iBOT by +3% on k-NN and +1.5% on linear probing

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022

: default iBOT masking stra	ategy from BEiT	‡: ag	gressive ra	ndom maskir	ng strategy from I
IBOT MASKING	RATIO (%)	IMAGI	eNet-1k	CIFAR10	CIFAR100
		k-NN	LINEAR	Fine-	ΓUNING
Random Block-Wise [†]	10-50	46.7	56.4	98.0	86.0
Random [‡]	75	47.3	55.5	97.7	85.5
Random	10-50	47.8	56.7	98.0	86.1
AttMask-Low (ours)	10-50	44.0	53.4	97.6	84.6
AttMask-Hint (ours)	10-50	49.5	57.5	98.1	86.6
AttMask-High (ours)	10-50	49.7	57.9	98.2	86.6

Top-1 accuracy for k-NN and linear probing

✓ AttMask-High improves iBOT by +3% on k-NN and +1.5% on linear probing

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022

default iBOT masking stra	‡: ag	gressive ra	ndom maskir	ng strategy from N	
IBOT MASKING	Ratio (%)	IMAGI	eNet-1k	CIFAR10	CIFAR100
		k-NN	LINEAR	Fine-	ΓUNING
Random Block-Wise [†]	10-50	46.7	56.4	98.0	86.0
Random [‡]	75	47.3	55.5	97.7	85.5
Random	10-50	47.8	56.7	98.0	86.1
AttMask-Low (ours)	10-50	44.0	53.4	97.6	84.6
AttMask-Hint (ours)	10-50	49.5	57.5	98.1	86.6
AttMask-High (ours)	10-50	49.7	57.9	98.2	86.6

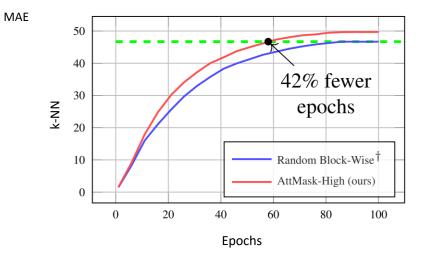
Top-1 accuracy for k-NN and linear probing

✓ AttMask-High improves iBOT by +3% on k-NN and +1.5% on linear probing

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022

: default iBOT masking stra	ategy from BEiT	‡: ag	gressive ra	ndom maskir	ng strategy fron
IBOT MASKING	Ratio (%)	IMAGI	ENET-1K	CIFAR10	CIFAR100
		k-NN	LINEAR	Fine-	ΓUNING
Random Block-Wise [†]	10-50	46.7	56.4	98.0	86.0
Random [‡]	75	47.3	55.5	97.7	85.5
Random	10-50	47.8	56.7	98.0	86.1
AttMask-Low (ours)	10-50	44.0	53.4	97.6	84.6
AttMask-Hint (ours)	10-50	49.5	57.5	98.1	86.6
AttMask-High (ours)	10-50	49.7	57.9	98.2	86.6

Top-1 accuracy for k-NN and linear probing



✓ AttMask-High improves iBOT by +3% on k-NN and +1.5% on linear probing

✓ AttMask-High accelerates the learning process

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022

47th PRCVC

Evaluating token masking strategies (different % of ImageNet-1k)

†: default iBOT masking strategy from BEiT

% ImageNet-1k	5	10	20	100
Random Block-Wise [†]	15.7	31.9	46.7	71.5
AttMask-High (ours)	17.5	33.8	49.7	72.5

Top-1 k-NN accuracy for pre-training on different percentages of ImageNet-1k

Improved performance when:

✓ Pre-training with fewer data

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022

Evaluating token masking strategies (different % of ImageNet-1k)

†: default iBOT masking strategy from BEiT

% ImageNet-1k	5			100
Random Block-Wise [†] AttMask-High (ours)	15.7	31.9	46.7	71.5
AttMask-High (ours)	17.5	33.8	49. 7	72.5

Top-1 k-NN accuracy for pre-training on different percentages of ImageNet-1k

Method	F	ULL	FEW EXAMPLES				
	k-NN	LINEAR	$\nu = 1$	5	10	20	
DINO	70.9	74.6					
MST	72.1	75.0					
iBOT	71.5	74.4	32.9	47.6	52.5	56.4	
iBOT+AttMask-High	72.5	75.7	32.9 37.1	51.3	55.7	59.1	
iBOT+AttMask-Hint	72.8	76.1	37.6	52.2	56.4	59.6	

Top-1 accuracy for pre-training on 100% of ImageNet-1k

(a) k-NN and linear probing

(b) k-NN using only few examples per class

Improved performance when:

- Pre-training with fewer data
- Pre-training on the full ImageNet-1k (+1.3% on k-NN and +1.5% on linear probing)

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022

47th PRCVC

Property: Low-shot performance

% ImageNet-1k	5	10	20	100
Random Block-Wise [†]	15.7	31.9	46.7	71.5
AttMask-High (ours)	17.5	33.8	49.7	72.5

Top-1 k-NN accuracy for pre-training on different percentages of ImageNet-1k

Method	F	ULL	Few Examples				
	k-NN	LINEAR	$\nu = 1$	5	10	20	
DINO	70.9	74.6					
MST	72.1	75.0					
iBOT	71.5	74.4	32.9	47.6	52.5	56.4	
iBOT+AttMask-High	72.5	75.7	37.1	51.3	55.7	59.1	
iBOT+AttMask-Hint	72.8	76.1	32.9 37.1 37.6	52.2	56.4	59.6	

Top-1 accuracy for pre-training on 100% of ImageNet-1k

(a) k-NN and linear probing

(b) k-NN using only few examples per class

Improved performance when:

- Pre-training with fewer data
- ✓ Pre-training on the full ImageNet-1k (+1.3% on k-NN and +1.5% on linear probing)
- ✓ Evaluating using only 1, 5, 10 or 20 samples per class for the k-NN classifier (more than +3% on low shot k-NN)

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022

47th PRCVC

Property: Background robustness

IBOT MASKING	RATIO (%)	OF	MS	MR	MN	NF	OBB	OBT	IN-9
Random Block-wise [†]	10-50	72.4	74.3	59.4	56.8	36.3	14.4	15.0	89.1
Random [‡]	75	73.1	73.8	58.8	55.9	35.6	13.7	14.5	87.9
Random	10-50	72.8	75.3	60.4	57.5	34.9	10.3	14.4	89.3
AttMask-Low (ours)	10-50	66.0	71.1	55.2	52.2	32.4	12.5	14.0	86.6
AttMask-Hint (ours)	10-50	74.4	75.9	61.7	58.3	39.6	16.7	15.7	89.6
AttMask-High (ours)	10-50	75.2	76.2	62.3	59.4	40.6	15.2	15.3	89.8

Classification robustness against background changes Classification accuracy of linear probe on IN-9 and its variations

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022

Method	COCOADE20K AP^b AP^m mIoUM		$\mathcal{R}OXF$	ORD	\mathcal{R} PAI	RIS	DAVIS	S 2017	1	
			Medium	HARD	MEDIUM	HARD	$(\mathcal{J}\&\mathcal{F})_m$	\mathcal{J}_m	\mathcal{F}_m	
iBOT	48.2	41.8	44.9	31.0	11.7	56.2	28.9	60.5	59.5	61.4
iBOT+AttMask	48.8	42.0	45.3	33.5	12.1	59.0	31.5	62.1	60.6	63.5

Object detection (COCO) and semantic segmentation (ADE20K) with fine-tuning Image Retrieval (ROXFORD and RPARIS) and video object segmentation (DAVIS) without fine-tuning

Improved performance on downstream tasks with or without fine-tuning

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022

Property: High-quality features

Method	COCO		ADE20K	$\mathcal{R}O$ xford		\mathcal{R} Paris		DAVIS 2017		
	AP^b	AP^m	mIoU	Medium	HARD	MEDIUM	HARD	$(\mathcal{J}\&\mathcal{F})_m$	\mathcal{J}_m	\mathcal{F}_m
iBOT iBOT+AttMask			44.9 45.3	31.0 33.5	11.7 12.1		28.9 31.5	60.5 62.1		61.4 63.5

Object detection (COCO) and semantic segmentation (ADE20K) with fine-tuning Image Retrieval (ROXFORD and RPARIS) and video object segmentation (DAVIS) without fine-tuning

Improved performance on downstream tasks with or without fine-tuning

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022

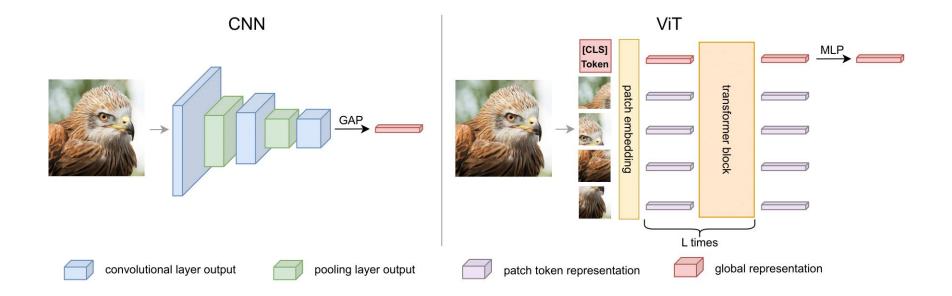
Conclusion

AttMask:

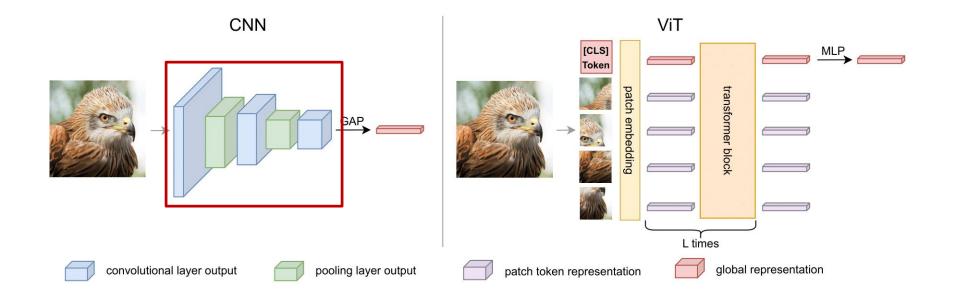
- ✓ Zero additional cost
- ✓ Faster convergence
- ✓ Benefits over random masking
- ✓ Outperforms the other self-supervised distillation-based MIM methods
- Major improvements in challenging tasks; i.e., using features without any fine-tuning, or working with limited data.

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022

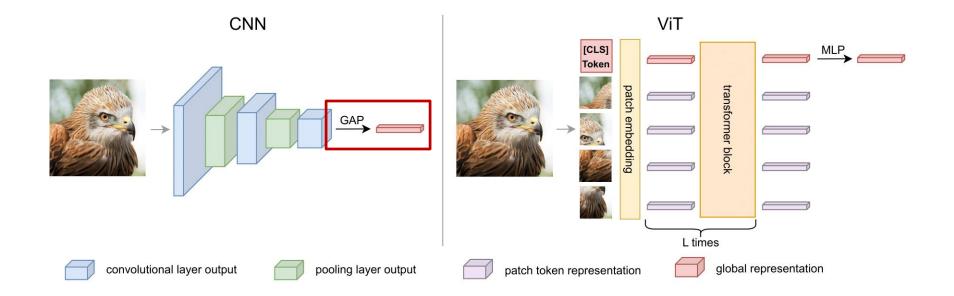
Leveraging Attention in Pooling

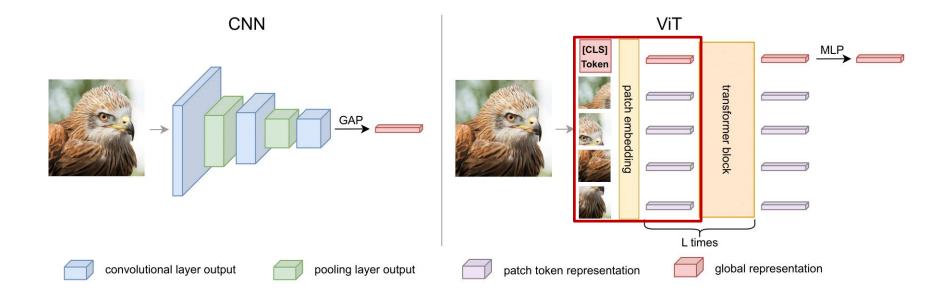


51

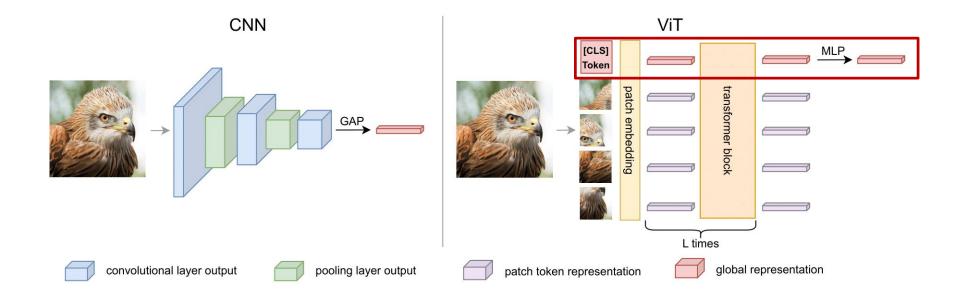


52



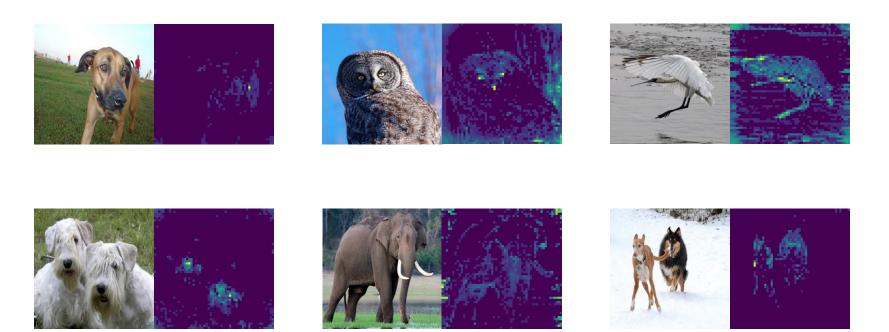


54



55

Supervised ViTs: low-quality attention



ViT-S on Imagenet-1k; mean attention map of the [CLS]; final block

Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023

47th PRCVC

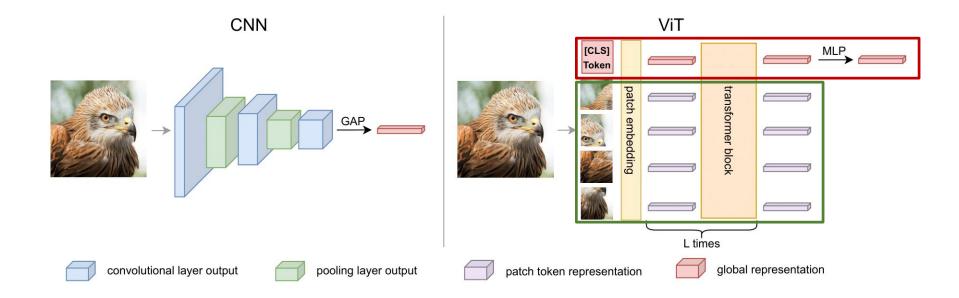
Is supervision the problem?

Supervised Self-supervised w/ DINO

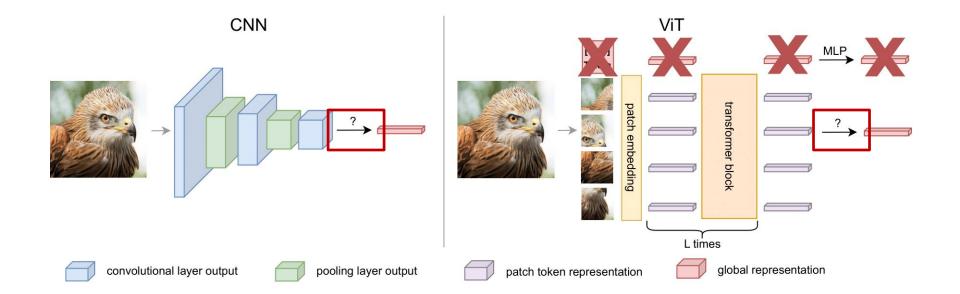
ViT-S on Imagenet-1k; images from COCO val set; attention maps of the [CLS] for 3 different heads; final block

Caron et al., Emerging Properties in Self-Supervised Vision Transformers, ICCV 2021

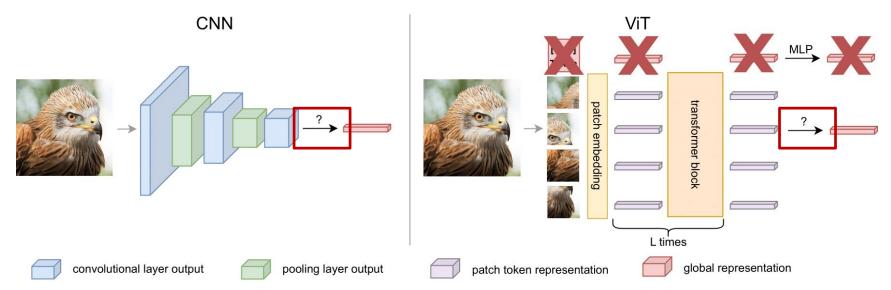
47th PRCVC



"Universal" Pooling



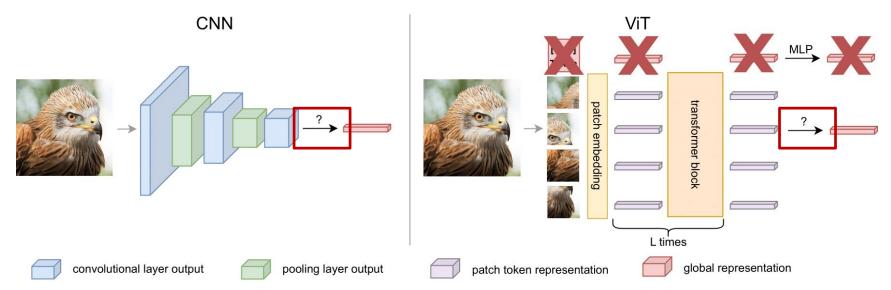
Focus



- Pooling at the very last step of both network types improving over default?

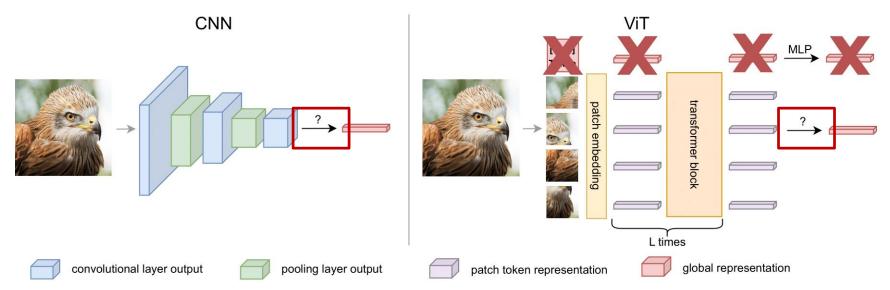
60

Focus



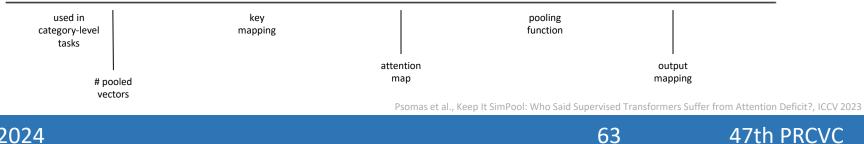
- Pooling at the very last step of both network types improving over default?
- Pooling for high-quality spatial attention?

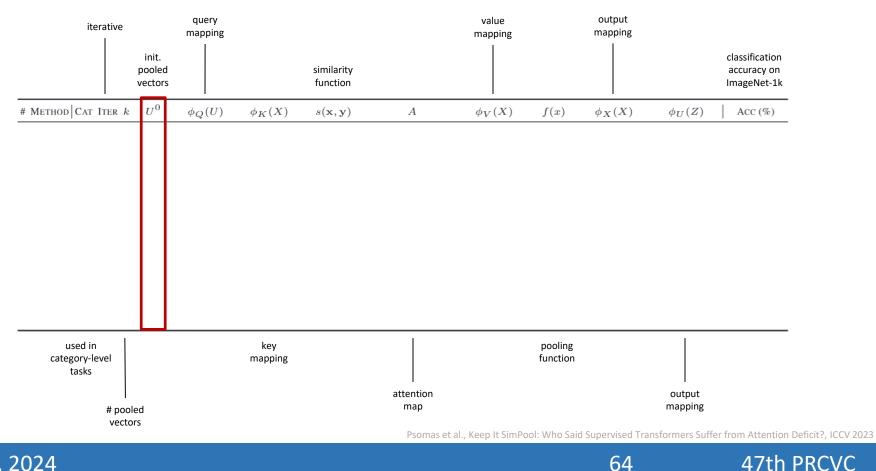
Focus



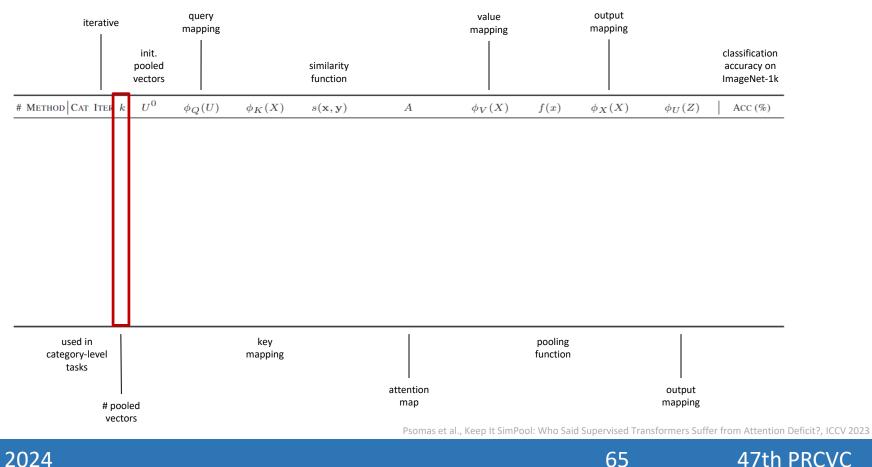
- Pooling at the very last step of both network types improving over default?
- Pooling for high-quality spatial attention?
- Validity in both supervised and self-supervised settings?

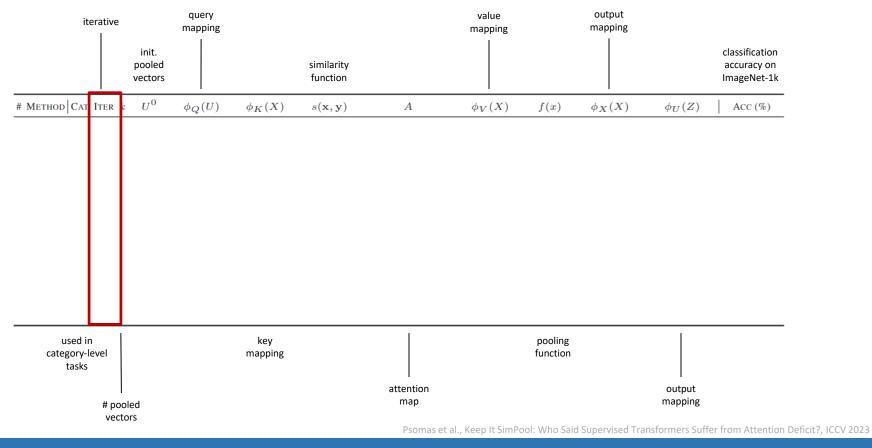
itera	ative	query mapping				value mapping		output mapping		
	init. pooled vectors			similarity function						classification accuracy on ImageNet-1k
# Method Cat I	TER $k U^0$	$\phi_Q(U)$	$\phi_K(X)$	$s(\mathbf{x}, \mathbf{y})$	Α	$\phi_V(X)$	f(x)	$\phi_X(X)$	$\phi_U(Z)$	ACC (%)





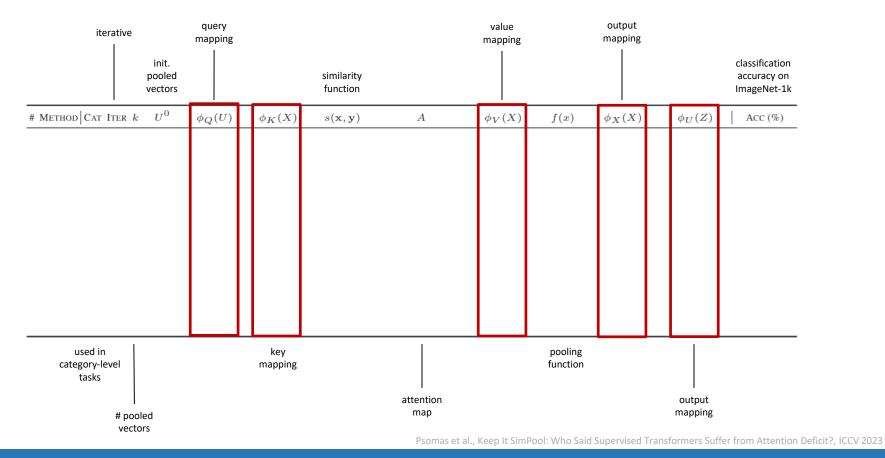
64





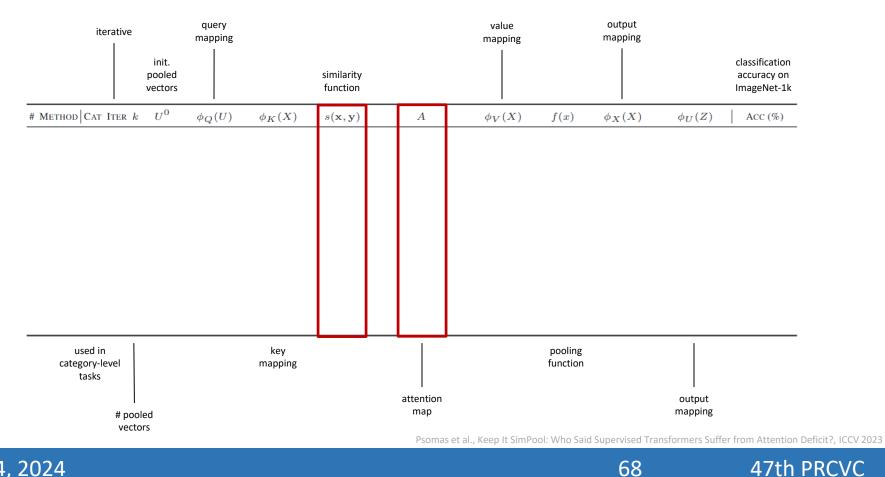
47th PRCVC

66

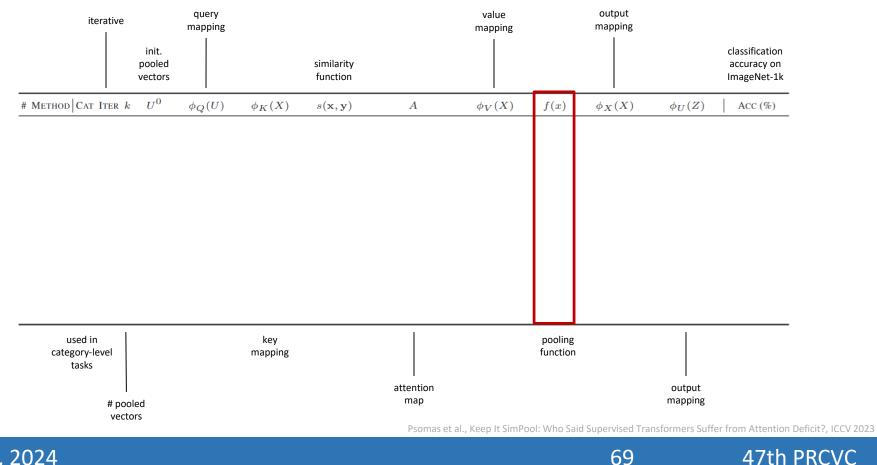


April 4, 2024

67



68



69

Formulate methods as instantiations

		ite	rative		query mapping				value mapping		output mapping		
				init. poole vecto			similarity function						classification accuracy on ImageNet-1k
	# Method	CAT	ITER	$k U^0$	$\phi_Q(U)$	$\phi_K(X)$	$s(\mathbf{x},\mathbf{y})$	A	$\phi_V(X)$	f(x)	$\phi_X(X)$	$\phi_U(Z)$	ACC (%)
simple, k=1, non-attention	GAP max 1 GeM LSE HOW	 ✓ ✓ 		1 1 1 1 1				$\begin{array}{c} 1_p/p\\ 1_p\\ 1_p/p\\ 1_p/p\\ \mathrm{diag}(X^\top X) \end{array}$	$\begin{array}{c} X \\ X \\ X \\ X \\ FC(\operatorname{avg}_3(X)) \end{array}$	$\begin{array}{c} f_{-1}(x) \\ f_{-\infty}(x) \\ f_{\alpha}(x) \\ e^{\tau x} \\ f_{-1}(x) \end{array}$		Z Z Z Z Z	
	OTK 2 <i>k</i> -means Slot*	✓ ✓	\checkmark	k U k rando k U	m U $W_Q U$	$egin{array}{c} X \ X \ W_K X \end{array}$		Sinkhorn($e^{S/\epsilon}$) $\eta_2(\arg\max_1(S))$ $\sigma_2(S/\sqrt{d})$	$\psi(X) \ X \ W_V X$	$f_{-1}(x) \\ f_{-1}(x) \\ f_{-1}(x)$	X X	$Z \ Z$ mlp(gru(Z))	
	3 SE CBAM*	✓ ✓			() $\sigma(MLP(U))$ () $\sigma(MLP(U))$		$\mathbf{x}^{ op}\mathbf{y}$	$\sigma(\operatorname{conv}_7(S))$	$\frac{\operatorname{diag}(\mathbf{q})X}{\operatorname{diag}(\mathbf{q})X}$		$V \\ V \operatorname{diag}(\mathbf{a})$		_
	4 ViT* CaiT*	✓ ✓		1 U 1 U		$g_m(W_K X)$ $g_m(W_K X)$					MLP(MSA(X)) X	$\substack{\operatorname{MLP}(g_m^{-1}(Z))\\\operatorname{MLP}(g_m^{-1}(Z))}$	
		sed in				key mapping				pooling function			

category-level mapping TUNCTION tasks attention output mapping map # pooled vectors

Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023

70

Formulate methods as instantiations

		iterative	init.	query mapping				value mapping		output mapping		classification
			pooled vectors			similarity function						accuracy on ImageNet-1k
	# METHOD C	at Iter /	$k U^0$	$\phi_Q(U)$	$\phi_K(X)$	$s(\mathbf{x},\mathbf{y})$	Α	$\phi_V(X)$	f(x)	$\phi_X(X)$	$\phi_U(Z)$	Acc (%)
simple, k=1, non-attention	GAP ↓ max 1 GeM LSE ↓ HOW	1	1 1 1 1				$\begin{array}{c} 1_p/p\\ 1_p\\ 1_p/p\\ 1_p/p\\ \operatorname{diag}(X^\top X) \end{array}$	$egin{array}{c} X & X & X & X & X & X & X & X & X & FC(\operatorname{avg}_3(X)) & \end{array}$	$\begin{array}{c} f_{-1}(x) \\ f_{-\infty}(x) \\ f_{\alpha}(x) \\ e^{\tau x} \\ f_{-1}(x) \end{array}$		Z Z Z Z Z	
k>1	$\begin{array}{c c} OTK \\ 2 & k \text{-means} \\ Slot^* & \checkmark \end{array}$	V P	k U k random k U	$egin{array}{c} U \ U \ W_Q U \end{array}$	$egin{array}{c} X \\ X \\ W_K X \end{array}$	$\begin{array}{c} -\ \mathbf{x}-\mathbf{y}\ ^2\\ -\ \mathbf{x}-\mathbf{y}\ ^2\\ \mathbf{x}^\top\mathbf{y} \end{array}$	$\begin{aligned} & \text{Sinkhorn}(e^{S/\epsilon}) \\ & \eta_2(\arg\max_1(S)) \\ & \sigma_2(S/\sqrt{d}) \end{aligned}$	$\psi(X) \\ X \\ W_V X$	$f_{-1}(x) \ f_{-1}(x) \ f_{-1}(x) \ f_{-1}(x)$	X X	$Z \ Z$ mlp(gru(Z))	
	³ SE CBAM*			$\sigma(extsf{MLP}(U)) \ \sigma(extsf{MLP}(U))$	Х	$\mathbf{x}^{\top}\mathbf{y}$	$\sigma(\operatorname{conv}_7(S))$	$\frac{\mathrm{diag}(\mathbf{q})X}{\mathrm{diag}(\mathbf{q})X}$		$V \ V \ diag(\mathbf{a})$		
	4 ViT [*] √ CaiT [*] √		1 U 1 U	$g_m(W_Q U)$ $g_m(W_Q U)$			$ \sigma_2(S_i/\sqrt{d})_{i=1}^m \\ \sigma_2(S_i/\sqrt{d})_{i=1}^m $	$g_m(W_V X) g_m(W_V X)$	$f_{-1}(x) \\ f_{-1}(x)$	MLP(MSA(X)) X	$\substack{\operatorname{MLP}(g_m^{-1}(Z))\\\operatorname{MLP}(g_m^{-1}(Z))}$	
	used categor tasl	y-level			key mapping				pooling function			

attention output mapping map # pooled vectors Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023

47th PRCVC

71

Formulate methods as instantiations

		iterativ	e init. pooleo vector			similarity function		value mapping		output mapping		classification accuracy on ImageNet-1k
	# Method	Cat Iter	$k U^0$	$\phi_Q(U)$	$\phi_K(X)$	$s(\mathbf{x},\mathbf{y})$	A	$\phi_V(X)$	f(x)	$\phi_X(X)$	$\phi_U(Z)$	ACC (%)
simple, k=1, non-attention	GAP max 1 GeM LSE HOW	√ √	1 1 1 1				$\begin{array}{c} 1_p/p\\ 1_p\\ 1_p/p\\ 1_p/p\\ \operatorname{diag}(X^\top X) \end{array}$	$\begin{array}{c} X\\ X\\ X\\ X\\ FC(\operatorname{avg}_3(X)) \end{array}$	$\begin{array}{c} f_{-1}(x) \\ f_{-\infty}(x) \\ f_{\alpha}(x) \\ e^{\tau x} \\ f_{-1}(x) \end{array}$		Z Z Z Z Z	
k>1	OTK 2 k-means Slot*	✓ ✓ ✓ ✓	k U k randon k U	$egin{array}{c} U \ U \ W_Q U \end{array}$	$egin{array}{c} X \\ X \\ W_K X \end{array}$	$\frac{-\ \mathbf{x} - \mathbf{y}\ ^2}{-\ \mathbf{x} - \mathbf{y}\ ^2}$ $\frac{\mathbf{x}^\top \mathbf{y}}{\mathbf{x}^\top \mathbf{y}}$	$\begin{aligned} & \operatorname{Sinkhorn}(e^{S/\epsilon}) \\ & \eta_2(\arg\max_1(S)) \\ & \sigma_2(S/\sqrt{d}) \end{aligned}$	$\psi(X) \ X \ W_V X$	$f_{-1}(x) \ f_{-1}(x) \ f_{-1}(x) \ f_{-1}(x)$	X X	$Z \ Z$ mlp(gru(Z))	
modules within arch.	3 SE CBAM*	√ √) $\sigma(MLP(U))$) $\sigma(MLP(U))$	X	$\mathbf{x}^{ op}\mathbf{y}$	$\sigma(\operatorname{conv}_7(S))$	$\frac{\operatorname{diag}(\mathbf{q})X}{\operatorname{diag}(\mathbf{q})X}$		$V \\ V \operatorname{diag}(\mathbf{a})$		
	4 ViT* CaiT*			$g_m(W_Q U) \ g_m(W_Q U)$			$\sigma_2(S_i/\sqrt{d})_{i=1}^m \\ \sigma_2(S_i/\sqrt{d})_{i=1}^m$	$g_m(W_V X) g_m(W_V X)$	$f_{-1}(x) \\ f_{-1}(x)$	MLP(MSA(X)) X	$\substack{\operatorname{MLP}(g_m^{-1}(Z))\\\operatorname{MLP}(g_m^{-1}(Z))}$	
	catego	ed in pry-level isks # r	pooled		key mapping		attention		pooling function		output mapping	

Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023

72

47th PRCVC

April 4, 2024

vectors

Formulate methods as instantiations

			ite	erativ		init. pooled vectors	query mapping		similarity function		value mapping		output mapping		classification accuracy on ImageNet-1k
	#	Method	CAT	ITER	t k	U^0	$\phi_Q(U)$	$\phi_K(X)$	$s(\mathbf{x},\mathbf{y})$	Α	$\phi_V(X)$	f(x)	$\phi_X(X)$	$\phi_U(Z)$	Acc (%)
simple, k=1, non-attention	1	GAP max GeM LSE HOW	 ✓ ✓ 		$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} $					$\begin{array}{c} 1_p/p\\ 1_p\\ 1_p/p\\ 1_p/p\\ \mathrm{diag}(X^\top X) \end{array}$	$\begin{array}{c} X\\ X\\ X\\ X\\ FC(\operatorname{avg}_3(X))\end{array}$	$\begin{array}{c} f_{-1}(x) \\ f_{-\infty}(x) \\ f_{\alpha}(x) \\ e^{\tau x} \\ f_{-1}(x) \end{array}$		Z Z Z Z Z	_
k>1	2	OTK <i>k</i> -means Slot*	✓✓	✓ ✓		U random U	$egin{array}{c} U \ U \ W_Q U \end{array}$	$egin{array}{c} X \ X \ W_K X \end{array}$	$\frac{-\ \mathbf{x} - \mathbf{y}\ ^2}{\ \mathbf{x} - \mathbf{y}\ ^2}$	$\begin{aligned} & \operatorname{Sinkhorn}(e^{S/\epsilon}) \\ & \eta_2(\arg\max_1(S)) \\ & \sigma_2(S/\sqrt{d}) \end{aligned}$	$\psi(X) \\ X \\ W_V X$	$f_{-1}(x) \ f_{-1}(x) \ f_{-1}(x) \ f_{-1}(x)$	X X	$egin{array}{c} Z \\ Z \\ MLP(GRU(Z)) \end{array}$	_
modules within arch.	3	SE CBAM*	\				$\sigma(\operatorname{MLP}(U)) \ \sigma(\operatorname{MLP}(U))$	Х	$\mathbf{x}^{ op}\mathbf{y}$	$\sigma(\operatorname{conv}_7(S))$	$\frac{\operatorname{diag}(\mathbf{q})X}{\operatorname{diag}(\mathbf{q})X}$		$V \\ V \operatorname{diag}(\mathbf{a})$		-
vision transformers	4	ViT* CaiT*	✓ ✓	√ √	11	$egin{array}{c} U \ U \end{array}$		$g_m(W_K X) g_m(W_K X)$	$\mathbf{x}^{ op}\mathbf{y}$ $\mathbf{x}^{ op}\mathbf{y}$	$\sigma_2(S_i/\sqrt{d})_{i=1}^m \\ \sigma_2(S_i/\sqrt{d})_{i=1}^m$	$g_m(W_V X) g_m(W_V X)$	$f_{-1}(x) \\ f_{-1}(x)$	MLP(MSA(X)) X	$ \left. \substack{ \operatorname{MLP}(g_m^{-1}(Z)) \\ \operatorname{MLP}(g_m^{-1}(Z)) } \right $	
	_	categ	sed in gory-le tasks					key mapping				pooling function			
					 poole ector					attention map				output mapping	
										Psomas et a	l., Keep It SimPo	ol: Who Said	d Supervised Tra	nsformers Suffer	from Attention

73

47th PRCVC

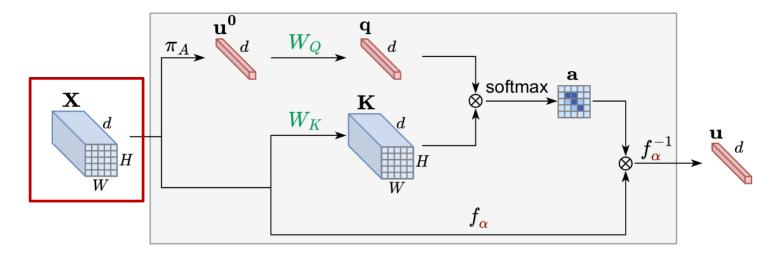
Discuss and derive

		it	erative		init. pooled vectors	query mapping		similarity function		value mapping		output mapping		classification accuracy on ImageNet-1k
	# МЕТНО	D CAT	ITER	k	U^0	$\phi_Q(U)$	$\phi_K(X)$	$s(\mathbf{x},\mathbf{y})$	A	$\phi_V(X)$	f(x)	$\phi_X(X)$	$\phi_U(Z)$	ACC (%)
simple, k=1, non-attention	GAP max 1 GeM LSE HOW	✓ ✓		1 1 1 1 1					$\begin{array}{c} 1_p/p\\ 1_p\\ 1_p/p\\ 1_p/p\\ \mathrm{diag}(X^\top X) \end{array}$	$\begin{array}{c} X\\ X\\ X\\ X\\ X\\ FC(\operatorname{avg}_3(X))\end{array}$	$f_{-1}(x)$ $f_{-\infty}(x)$ $f_{\alpha}(x)$ $e^{\tau x}$ $f_{-1}(x)$		Z Z Z Z Z	
k>1	OTK 2 k-mean Slot*	s 🗸	\$ \$	$k \\ k \\ k \\ k$	U random U	U U $W_Q U$	$egin{array}{c} X \\ X \\ W_K X \end{array}$	$\frac{-\ \mathbf{x} - \mathbf{y}\ ^2}{-\ \mathbf{x} - \mathbf{y}\ ^2} \\ \frac{\mathbf{x}^\top \mathbf{y}}{\mathbf{x}^\top \mathbf{y}}$	SINKHORN $(e^{S/\epsilon})$ $\eta_2(\arg \max_1(S))$ $\sigma_2(S/\sqrt{d})$	$\psi(X) \ X \ W_V X$	$f_{-1}(x) \ f_{-1}(x) \ f_{-1}(x) \ f_{-1}(x)$	X X	$egin{array}{c} Z \ Z \ MLP({ ext{gru}}(Z)) \end{array}$	
modules within arch.	3 SE CBAM*	* 1				$\sigma(\operatorname{MLP}(U)) \ \sigma(\operatorname{MLP}(U))$	X	$\mathbf{x}^{ op}\mathbf{y}$	$\sigma(\operatorname{conv}_7(S))$	$\frac{\mathrm{diag}(\mathbf{q})X}{\mathrm{diag}(\mathbf{q})X}$		$V \\ V \operatorname{diag}(\mathbf{a})$		
vision transformers	4 ViT* CaiT*	v		1 1	$U \\ U$		$g_m(W_K X) \\ g_m(W_K X)$	$\mathbf{x}^{ op}\mathbf{y} \\ \mathbf{x}^{ op}\mathbf{y}$	$\sigma_2(S_i/\sqrt{d})_{i=1}^m \\ \sigma_2(S_i/\sqrt{d})_{i=1}^m$	$g_m(W_V X)$ $g_m(W_V X)$		MLP(MSA(X)) X	$\begin{array}{c} \mathrm{MLP}(g_m^{-1}(Z)) \\ \mathrm{MLP}(g_m^{-1}(Z)) \end{array}$	
	5 SimPoo	1 ✓		1	$\pi_A(X)$	$W_Q U$	$W_K X$	$\mathbf{x}^\top \mathbf{y}$	$\sigma_2(S/\sqrt{d})$	$X - \min X$	$f_{\alpha}(x)$		Ζ	
		used ir egory-l tasks	evel				key mapping				pooling function			
				oole ctor					attention map	L Koore It Cire Do			output mapping	from Attention D.C.

Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023

74

47th PRCVC



- Initial representation: $\mathbf{u}^0 = \pi_A$ by GAP.
- \mathbf{u}^0 (**X**) mapped by W_Q (W_K) to form \mathbf{q} (**K**).

• Attention map:
$$\mathbf{a} = \boldsymbol{\sigma}_2 \left(K^\top \mathbf{q} / \sqrt{d} \right)$$
.

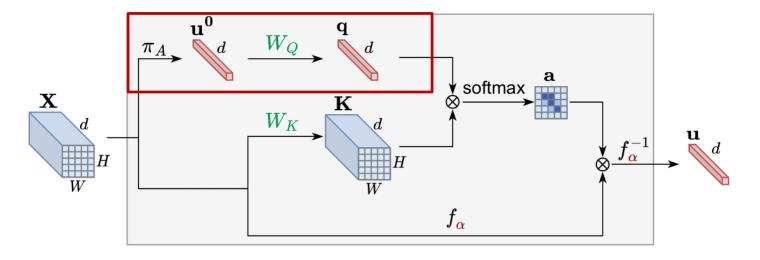
• Global representation: $\mathbf{u} = \pi_{SP}(X) := f_{\alpha}^{-1}(f_{\alpha}(V)\mathbf{a}),$ where:

$$f_{\alpha}(x) := \begin{cases} x^{\frac{1-\alpha}{2}}, & \text{if } \alpha \neq 1, \\ \ln x, & \text{if } \alpha = 1. \end{cases}$$

Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023

47th PRCVC

75



- Initial representation: $\mathbf{u}^0 = \pi_A$ by GAP.
- \mathbf{u}^0 (**X**) mapped by W_Q (W_K) to form \mathbf{q} (**K**).

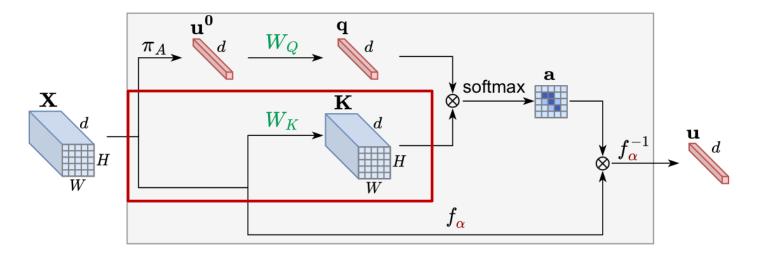
• Attention map:
$$\mathbf{a} = \boldsymbol{\sigma}_2 \left(K^{\top} \mathbf{q} / \sqrt{d} \right).$$

• Global representation: $\mathbf{u} = \pi_{SP}(X) := f_{\alpha}^{-1}(f_{\alpha}(V)\mathbf{a}),$ where:

$$f_{\alpha}(x) := \begin{cases} x^{\frac{1-\alpha}{2}}, & \text{if } \alpha \neq 1, \\ \ln x, & \text{if } \alpha = 1. \end{cases}$$

Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023

76



- Initial representation: $\mathbf{u}^0 = \pi_A$ by GAP.
- \mathbf{u}^0 (**X**) mapped by W_Q (W_K) to form \mathbf{q} (**K**).

• Attention map:
$$\mathbf{a} = \boldsymbol{\sigma}_2 \left(K^{\top} \mathbf{q} / \sqrt{d} \right).$$

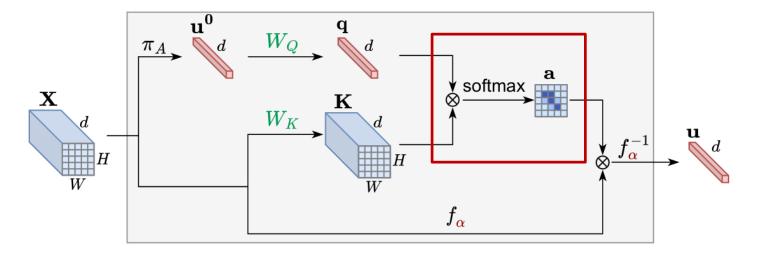
• Global representation: $\mathbf{u} = \pi_{SP}(X) := f_{\alpha}^{-1}(f_{\alpha}(V)\mathbf{a}),$ where:

$$f_{\alpha}(x) := \begin{cases} x^{\frac{1-\alpha}{2}}, & \text{if } \alpha \neq 1, \\ \ln x, & \text{if } \alpha = 1. \end{cases}$$

Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023

47th PRCVC

77



- Initial representation: $\mathbf{u}^0 = \pi_A$ by GAP.
- \mathbf{u}^0 (**X**) mapped by W_Q (W_K) to form \mathbf{q} (**K**).

• Attention map:
$$\mathbf{a} = \boldsymbol{\sigma}_2 \left(K^{\top} \mathbf{q} / \sqrt{d} \right).$$

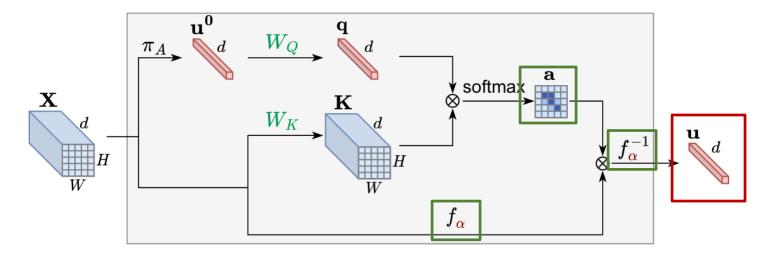
• Global representation: $\mathbf{u} = \pi_{SP}(X) := f_{\alpha}^{-1}(f_{\alpha}(V)\mathbf{a}),$ where:

$$f_{\alpha}(x) := \begin{cases} x^{\frac{1-\alpha}{2}}, & \text{if } \alpha \neq 1, \\ \ln x, & \text{if } \alpha = 1. \end{cases}$$

Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023

47th PRCVC

78



- Initial representation: $\mathbf{u}^0 = \pi_A$ by GAP.
- \mathbf{u}^0 (**X**) mapped by W_Q (W_K) to form \mathbf{q} (**K**).

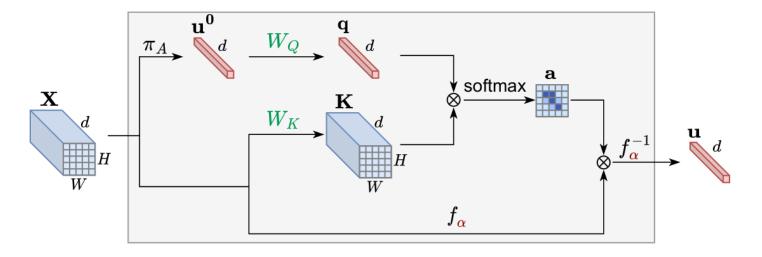
• Attention map:
$$\mathbf{a} = \boldsymbol{\sigma}_2 \left(K^{\top} \mathbf{q} / \sqrt{d} \right).$$

• Global representation: $\mathbf{u} = \pi_{SP}(X) := f_{\alpha}^{-1}(f_{\alpha}(V)\mathbf{a}),$ where:

$$f_{\alpha}(x) := \begin{cases} x^{\frac{1-\alpha}{2}}, & \text{if } \alpha \neq 1, \\ \ln x, & \text{if } \alpha = 1. \end{cases}$$

Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023

79

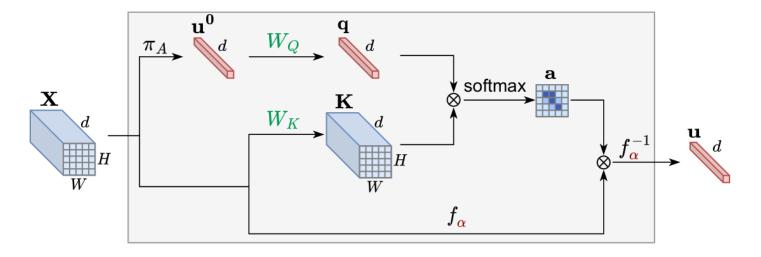


- Initial representation: $\mathbf{u}^0 = \pi_A$ by GAP.
- \mathbf{u}^0 (**X**) mapped by W_Q (W_K) to form \mathbf{q} (**K**).

• Attention map:
$$\mathbf{a} = \boldsymbol{\sigma}_2 \left(K^{\top} \mathbf{q} / \sqrt{d} \right).$$

• Global representation: $\mathbf{u} = \pi_{SP}(X) := f_{\alpha}^{-1}(f_{\alpha}(V)\mathbf{a}),$ where: $f_{\alpha}(x) := \begin{cases} x^{\frac{1-\alpha}{2}}, & \text{if } \alpha \neq 1, \\ \ln x, & \text{if } \alpha = 1. \end{cases}$

Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023



- Initial representation: $\mathbf{u}^0 = \pi_A$ by GAP.
- \mathbf{u}^0 (**X**) mapped by W_Q (W_K) to form \mathbf{q} (**K**).

• Attention map:
$$\mathbf{a} = \boldsymbol{\sigma}_2 \left(K^\top \mathbf{q} / \sqrt{d} \right)$$
.

• Global representation: $\mathbf{u} = \pi_{SP}(X) := f_{\alpha}^{-1}(f_{\alpha}(V)\mathbf{a}),$ where:

$$f_{\alpha}(x) := \begin{cases} x^{\frac{1-\alpha}{2}} & \text{if } \alpha \neq 1, \\ \ln x, & \text{if } \alpha = 1. \end{cases}$$

Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023

81

Benchmark

		ite	rative	init. pooled vectors	query mapping		similarity function		value mapping		output mapping		classification accuracy on ImageNet-1k
	# Method	Сат	ITER	$k U^0$	$\phi_Q(U)$	$\phi_K(X)$	$s(\mathbf{x},\mathbf{y})$	A	$\phi_V(X)$	f(x)	$\phi_X(X)$	$\phi_U(Z)$	ACC (%)
simple, k=1, non-attention	GAP max 1 GeM LSE HOW	√ √		1 1 1 1				$\begin{array}{c} 1_p/p \\ 1_p \\ 1_p/p \\ 1_p/p \\ \text{diag}(X^\top X) \end{array}$	$\begin{array}{c} X\\ X\\ X\\ X\\ FC(\operatorname{avg}_3(X))\end{array}$	$f_{-1}(x) \ f_{-\infty}(x) \ f_{\alpha}(x) \ e^{ au x} \ f_{-1}(x)$		Z Z Z Z Z	55.0 53.9 55.9 55.3 54.8
k>1	OTK 2 <i>k</i> -means Slot*	√ √	\checkmark	k U k random k U	$egin{array}{c} U \ U \ W_Q U \end{array}$	$egin{array}{c} X \\ X \\ W_K X \end{array}$	$\frac{-\ \mathbf{x} - \mathbf{y}\ ^2}{\ \mathbf{x} - \mathbf{y}\ ^2}$ $\frac{\mathbf{x}^\top \mathbf{y}}{\mathbf{y}}$	$ \begin{aligned} & \operatorname{Sinkhorn}(e^{S/\epsilon}) \\ & \eta_2(\arg\max_1(S)) \\ & \sigma_2(S/\sqrt{d}) \end{aligned} $	$\psi(X) \ X \ W_V X$	$f_{-1}(x) \ f_{-1}(x) \ f_{-1}(x) \ f_{-1}(x)$	X X	$Z \ Z$ mlp(gru(Z))	55.9 55.4 56.7
modules within arch.	3 SE CBAM*	\checkmark			$\sigma(\operatorname{MLP}(U)) \ \sigma(\operatorname{MLP}(U))$	Х	$\mathbf{x}^{ op}\mathbf{y}$	$\sigma(\operatorname{conv}_7(S))$	$\frac{\operatorname{diag}(\mathbf{q})X}{\operatorname{diag}(\mathbf{q})X}$		$V \\ V \operatorname{diag}(\mathbf{a})$		55.7 55.6
vision transformers	4 ViT* CaiT*	\checkmark	✓ ✓			$g_m(W_K X) g_m(W_K X)$	$\mathbf{x}^{ op}\mathbf{y} \\ \mathbf{x}^{ op}\mathbf{y}$	$\sigma_2(S_i/\sqrt{d})_{i=1}^m \\ \sigma_2(S_i/\sqrt{d})_{i=1}^m$	$g_m(W_V X)$ $g_m(W_V X)$		MLP(MSA(X)) X	$\substack{\operatorname{MLP}(g_m^{-1}(Z))\\\operatorname{MLP}(g_m^{-1}(Z))}$	56.1 56.7
	5 SimPool	\checkmark		$1 \pi_A(X)$	$W_Q U$	$W_K X$	$\mathbf{x}^{ op}\mathbf{y}$	$\sigma_2(S/\sqrt{d})$	$X - \min X$	$f_{\alpha}(x)$		Z	57.1
	categ	sed in gory-le tasks	evel			key mapping				pooling function			
			# po vec					attention map	l Koon It Sim Do			output mapping	from Attention Defi

Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023

82

47th PRCVC

METHOD	Ер	ResNet-50	CONVNEXT-S	VIT-S	VIT-B
Baseline	100	77.4	81.1	72.7	74.1
CaiT	100	77.3	81.2	72.6	-
Slot	100	77.3	80.9	72.9	-
GE	100	77.6	81.3	72.6	-
SimPool	100	78.0	81.7	74.3	75.1
Baseline	300	78.1^{\dagger}	83.1	77.9	-
SimPool	300	78.7^{\dagger}	83.5	78. 7	-

Classification accuracy on ImageNet-1k; Supervised training; Baseline: GAP for convolutional, [CLS] for transformers.

Method	Ер	ResNet-50	CONVNEXT-S	VIT-S	VIT-B
Baseline	100	77.4	81.1	72.7	74.1
CaiT	100	77.3	81.2	72.6	-
Slot	100	77.3	80.9	72.9	-
GE	100	77.6	81.3	72.6	-
SimPool	100	78.0	81.7	74.3	75.1
Baseline	300	78.1^{\dagger}	83.1	77.9	-
SimPool	300	78.7^{\dagger}	83.5	78. 7	-

Classification accuracy on ImageNet-1k;

Supervised training; Baseline: GAP for convolutional, [CLS] for transformers.

Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023

Method	Ер	ResNet-50	CONVNEXT-S	VIT-S	VIT-B
Baseline	100	77.4	81.1	72.7	74.1
CaiT	100	77.3	81.2	72.6	-
Slot	100	77.3	80.9	72.9	-
GE	100	77.6	81.3	72.6	-
SimPool	100	78.0	81.7	74.3	75.1
Baseline	300	78.1^{\dagger}	83.1	77.9	-
SimPool	300	78.7^{\dagger}	83.5	78. 7	-

Classification accuracy on ImageNet-1k; Supervised training;

Baseline: GAP for convolutional, [CLS] for transformers.

Method	Eр	RESNET-50		CONV	NEXT-S	VIT-S	
		k-NN	Prob	k-NN	Prob	k-NN	Prob
Baseline	100	61.8	63.0	65.1	68.2	68.9	71.5
SimPool	100	63.8	64.4	68.8	72.2	69.8	72.8

Classification accuracy on ImageNet-1k;

Self-supervised pre-training w/ DINO;

Baseline: GAP for convolutional, [CLS] for transformers.

Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023

Method	Ер	ResNet-50	CONVNEXT-S	VIT-S	VIT-B
Baseline	100	77.4	81.1	72.7	74.1
CaiT	100	77.3	81.2	72.6	-
Slot	100	77.3	80.9	72.9	-
GE	100	77.6	81.3	72.6	-
SimPool	100	78.0	81.7	74.3	75.1
Baseline	300	78.1^{\dagger}	83.1	77.9	-
SimPool	300	78.7 [†]	83.5	78.7	-

Classification accuracy on ImageNet-1k;

Supervised training; Baseline: GAP for convolutional, [CLS] for transformers.

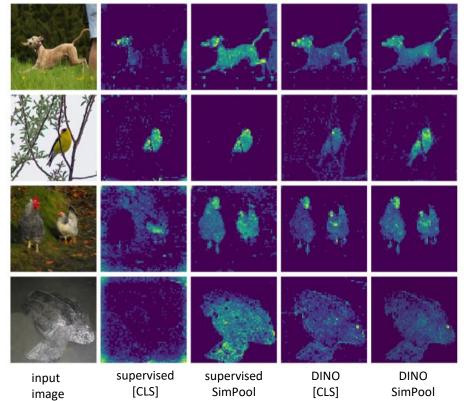
Method	Ер	RESNET-50		CONV	NEXT-S	VIT-S		
	21				Prob			
Baseline	100	61.8	63.0	65.1	68.2	68.9	71.5	
SimPool	100	63.8	64.4	68.8	72.2	69.8	72.8	

Classification accuracy on ImageNet-1k;

Self-supervised pre-training w/ DINO;

Baseline: GAP for convolutional, [CLS] for transformers.

Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023

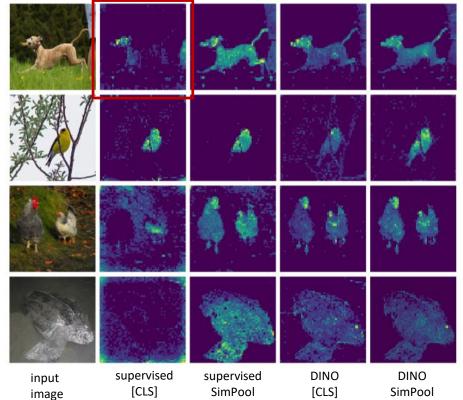


ViT-S on Imagenet-1k; mean attention map of the [CLS] vs. SimPool attention map

Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023

47th PRCVC

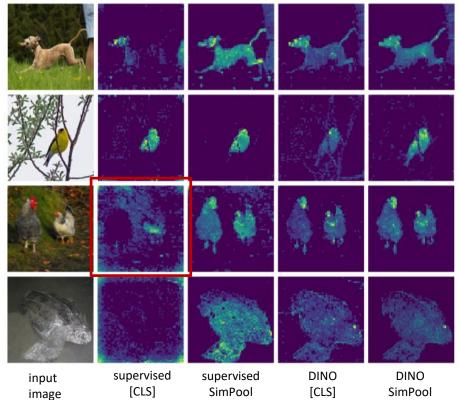
87



ViT-S on Imagenet-1k; mean attention map of the [CLS] vs. SimPool attention map

Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023

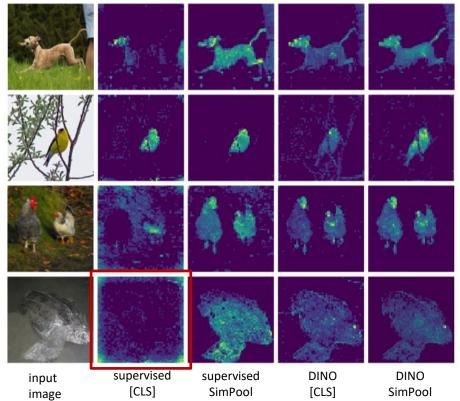
47th PRCVC



ViT-S on Imagenet-1k; mean attention map of the [CLS] vs. SimPool attention map

Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023

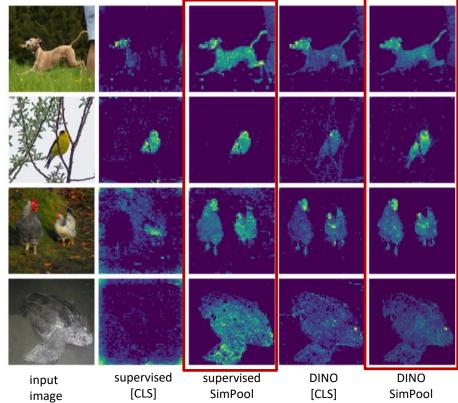
47th PRCVC



ViT-S on Imagenet-1k; mean attention map of the [CLS] vs. SimPool attention map

Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023

47th PRCVC



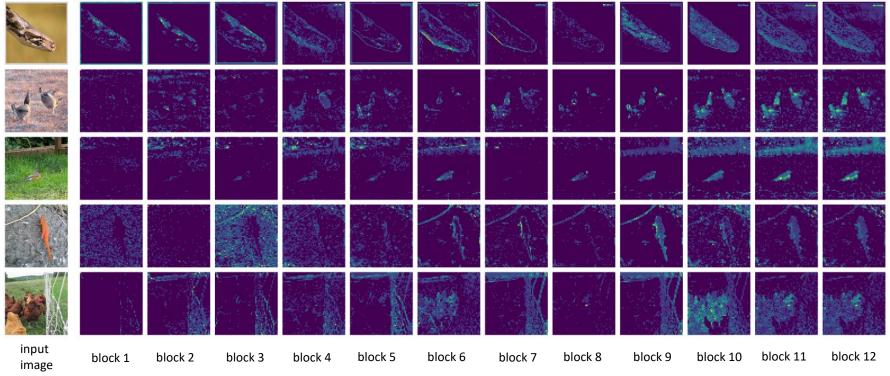
ViT-S on Imagenet-1k; mean attention map of the [CLS] vs. SimPool attention map

Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023

47th PRCVC

91

Property: Resolving the attention "deficit"



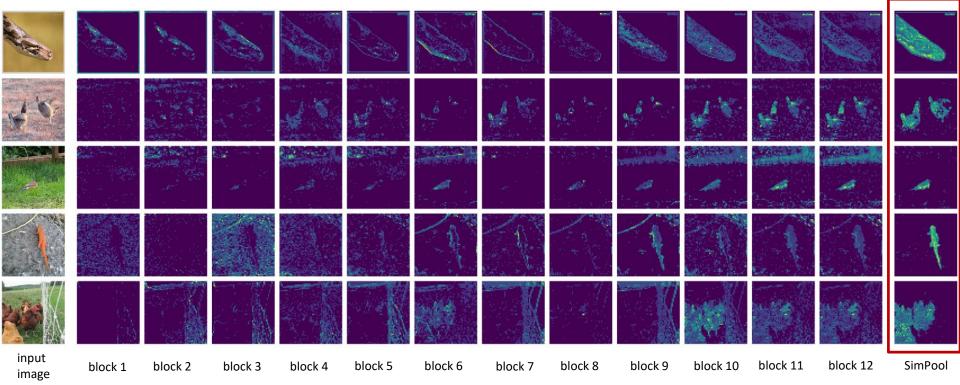
ViT-S on Imagenet-1k; supervised training;

mean attention map of the [CLS]

Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023

47th PRCVC

Property: Resolving the attention "deficit"



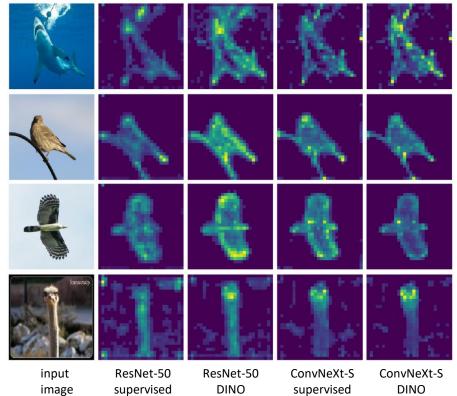
ViT-S on Imagenet-1k; supervised training;

mean attention map of the [CLS] vs. SimPool attention map

Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023

47th PRCVC

Property: High-quality attention maps from CNNs



ResNet-50, ConvNeXt-S on Imagenet-1k; supervised training; SimPool attention map

Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023

47th PRCVC

Method	SU	PERVISED	SELF-SUPERVISED		
	CUB	IMAGENET	CUB	IMAGENET	
Baseline	63.1	53.6	82.7	62.0	
SimPool	77.9	64.4	86.1	66.1	
Baseline@20	62.4	50.5	65.5	52.5	
SimPool@20	74.0	62.6	72.5	58.7	

Object localization MaxBoxAccV2 with ViT-S; Baseline: mean attention map of the [CLS]; SimPool attention map; @20: at epoch 20

> Caron et al., Emerging Properties in Self-Supervised Vision Transformers, ICCV 2021 Simeoni et al., Localizing Objects with Self-Supervised Transformers and no Labels, BMVC 2021

Choe et al., Evaluating weakly supervised object localization methods right, CVPR 2020

Method	SU	PERVISED	SELF-SUPERVISED		
	CUB	IMAGENET	CUB	IMAGENET	
Baseline	63.1	53.6	82.7	62.0	
SimPool	77.9	64.4	86.1	66.1	
Baseline@20	62.4	50.5	65.5	52.5	
SimPool@20	74.0	62.6	72.5	58.7	

Method	DIN		
	VOC07	VOC12	COCO
Baseline	30.8	31.0	36.7
SimPool	53.2	56.2	43.4
Baseline@20	14.9	14.8	19.9
SimPool@20	49.2	54.8	37.9

Object localization MaxBoxAccV2 with ViT-S; Baseline: mean attention map of the [CLS]; SimPool attention map; @20: at epoch 20 Unsupervised object discovery CorLoc with ViT-S; DINO-SEG uses attention maps; @20: at epoch 20

Caron et al., Emerging Properties in Self-Supervised Vision Transformers, ICCV 2021 Simeoni et al., Localizing Objects with Self-Supervised Transformers and no Labels, BMVC 2021

47th PRCVC

Choe et al., Evaluating weakly supervised object localization methods right, CVPR 2020

Method	SU	PERVISED	Self-Supervised		
	CUB	IMAGENET	CUB	IMAGENET	
Baseline	63.1	53.6	82.7	62.0	
SimPool	77.9	64.4	86.1	66.1	
Baseline@20	62.4	50.5	65.5	52.5	
SimPool@20	74.0	62.6	72.5	58.7	

Method	DIN	D-seg		L	OST	
	VOC07	VOC12	COCO	VOC07	VOC12	COCO
Baseline	30.8	31.0	36.7	55.5	59.4	46.6
SimPool	53.2	56.2	43.4	59.8	65.0	49.4
Baseline@20	14.9	14.8	19.9	50.7	56.6	40.9
SimPool@20	49.2	54.8	37.9	53.9	58.8	46.1

Object localization MaxBoxAccV2 with ViT-S; Baseline: mean attention map of the [CLS]; SimPool attention map; @20: at epoch 20 Unsupervised object discovery CorLoc with ViT-S; DINO-seg uses attention maps; LOST uses raw features; @20: at epoch 20

Caron et al., Emerging Properties in Self-Supervised Vision Transformers, ICCV 2021 Simeoni et al., Localizing Objects with Self-Supervised Transformers and no Labels, BMVC 2021

Choe et al., Evaluating weakly supervised object localization methods right, CVPR 2020

Method	SU	PERVISED	Self-Supervised		
	CUB	IMAGENET	CUB	IMAGENET	
Baseline	63.1	53.6	82.7	62.0	
SimPool	77.9	64.4	86.1	66.1	
Baseline@20	62.4	50.5	65.5	52.5	
SimPool@20	74.0	62.6	72.5	58.7	

Method	DIN	O-seg		L	OST	
	VOC07	VOC12	COCO	VOC07	VOC12	COCO
Baseline	30.8	31.0	36.7	55.5	59.4	46.6
SimPool	53.2	56.2	43.4	59.8	65.0	49.4
Baseline@20	14.9	14.8	19.9	50.7	56.6	40.9
SimPool@20	49.2	54.8	37.9	53.9	58.8	46.1

Object localization MaxBoxAccV2 with ViT-S; Baseline: mean attention map of the [CLS]; SimPool attention map; @20: at epoch 20

✓ Up to +14% when supervised and up to +7% when self-supervised

Choe et al., Evaluating weakly supervised object localization methods right, CVPR 2020

April 4, 2024

Unsupervised object discovery CorLoc with ViT-S; DINO-SEG uses attention maps; LOST uses raw features; @20: at epoch 20

> Caron et al., Emerging Properties in Self-Supervised Vision Transformers, ICCV 2021 Simeoni et al., Localizing Objects with Self-Supervised Transformers and no Labels, BMVC 2021

Method	SU	PERVISED	Self-Supervised		
	CUB	IMAGENET CUB		IMAGENET	
Baseline	63.1	53.6	82.7	62.0	
SimPool	77.9	64.4	86.1	66.1	
Baseline@20	62.4	50.5	65.5	52.5	
SimPool@20	74.0	62.6	72.5	58.7	

Method	DIN	O-seg		L	OST	
	VOC07	VOC12	COCO	VOC07	VOC12	COCO
Baseline	30.8	31.0	36.7	55.5	59.4	46.6
SimPool	53.2	56.2	43.4	59.8	65.0	49.4
Baseline@20	14.9	14.8	19.9	50.7	56.6	40.9
SimPool@20	49.2	54.8	37.9	53.9	58.8	46.1

Object localization MaxBoxAccV2 with ViT-S; Baseline: mean attention map of the [CLS]; SimPool attention map; @20: at epoch 20

✓ Up to +14% when supervised and up to +7% when self-supervised

Choe et al., Evaluating weakly supervised object localization methods right, CVPR 2020

April 4, 2024

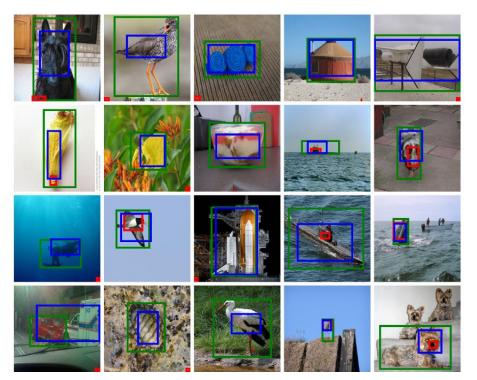
Unsupervised object discovery CorLoc with ViT-S; DINO-SEG uses attention maps; LOST uses raw features; @20: at epoch 20

✓ Up to +25% for DINO-seg and up to +6% for LOST

Caron et al., Emerging Properties in Self-Supervised Vision Transformers, ICCV 2021 Simeoni et al., Localizing Objects with Self-Supervised Transformers and no Labels, BMVC 2021

Method	SU	PERVISED	Self-Supervised		
	CUB	IMAGENET	CUB	IMAGENET	
Baseline	63.1	53.6	82.7	62.0	
SimPool	77.9	64.4	86.1	66.1	
Baseline@20	62.4	50.5	65.5	52.5	
SimPool@20	74.0	62.6	72.5	58.7	

Object localization MaxBoxAccV2 with ViT-S; Baseline: mean attention map of the [CLS]; SimPool attention map; @20: at epoch 20



Object localization on ImageNet-1k; green: ground-truth; red: baseline; blue: SimPool

Choe et al., Evaluating weakly supervised object localization methods right, CVPR 2020

Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023

47th PRCVC

Property: Background robustness

METHOD	OF	MS	MR	MN	NF	OBB	OBT	IN-9
			SUPE	RVISE	D			
Baseline SimPool	00.	1211	011.	00.0	<i>e i i</i> =		10.2	/
	Self-	SUPER	VISED) + LII	NEAR	PROBIN	IG	
Baseline SimPool					47.9 48.2	20.0 17.8	16.9 16.7	95.3 95.6

Background robustness Classification accuracy on IN-9 with ViT-S

Only-FG

instrument

bird

Mixed-Same

insect

Only-BG-T

bird Mixed-Next

<u>Č</u>.

No-FG

instrument

47th PRCVC

Classification robustness against background changes

Xiao et al., Noise or Signal: The Role of Image backgrounds in Object Recognition; ICLR 2021

Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023

NETWORK	POOLING	Depth	Init	ACCURACY	#PARAMS
BASE	GAP	12	12	73.3	22.1M
BASE		12	0	72.7	22.1M
BASE + 1		13	0	73.2	23.8M
BASE + 2	CLC	14	0	73.7	25.6M
BASE + 3	CLS	15	0	73.8	27.4M
BASE + 4		16	0	73.9	29.2M
BASE + 5		17	0	74.6	30.9M
BASE		12	12	74.3	22.3M
BASE - 1	SimPool	11	11	73.9	20.6M
BASE - 2	SIIIF001	10	10	73.6	18.7M
BASE - 3		9	9	72.5	17.0M

Classification accuracy of ViT-S on ImageNet-1k; Supervised training;

Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023

	NETWORK	POOLING	Depth	Init	ACCURACY	#PARAMS
	BASE	GAP	12	12	73.3	22.1M
	BASE		12	0	72.7	22.1M
	BASE + 1		13	0	73.2	23.8M
Add ViT blocks	BASE + 2	CLS	14	0	73.7	25.6M
when using [CLS]	\blacksquare BASE + 3		15	0	73.8	27.4M
	BASE + 4		16	0	73.9	29.2M
	BASE + 5		17	0	74.6	30.9M
	BASE		12	12	74.3	22.3M
	BASE - 1	SimPool	11	11	73.9	20.6M
	BASE - 2	SIIIPOOI	10	10	73.6	18.7M
	BASE - 3		9	9	72.5	17.0M

Classification accuracy of ViT-S on ImageNet-1k; Supervised training;

Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023

	Network	POOLING	Depth	Init	ACCURACY	#PARAMS
	BASE	GAP	12	12	73.3	22.1M
	BASE		12	0	72.7	22.1M
	BASE + 1		13	0	73.2	23.8M
Add ViT blocks	BASE + 2	CI C	14	0	73.7	25.6M
when using [CLS]	BASE + 3	CLS	15	0	73.8	27.4M
	BASE + 4		16	0	73.9	29.2M
	BASE + 5		17	0	74.6	30.9M
	BASE		12	12	74.3	22.3M
	BASE - 1	SimPool	11	11	73.9	20.6M
	BASE - 2	SIIIF001	10	10	73.6	18.7M
	BASE - 3		9	9	72.5	17.0M

Classification accuracy of ViT-S on ImageNet-1k; Supervised training;

Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023

	NETWORK	POOLING	Depth	Init	ACCURACY	#PARAMS
	BASE	GAP	12	12	73.3	22.1M
	BASE		12	0	72.7	22.1M
	BASE + 1		13	0	73.2	23.8M
Add ViT blocks	BASE + 2		14	0	73.7	25.6M
when using [CLS]	BASE + 3	CLS	15	0	73.8	27.4M
	BASE + 4		16	0	73.9	29.2M
	BASE + 5		17	0	74.6	30.9M
	BASE		12	12	74.3	22.3M
	BASE - 1	SimPool	11	11	73.9	20.6M
	BASE - 2	511117 001	10	10	73.6	18.7M
	BASE - 3		9	9	72.5	17.0M

Classification accuracy of ViT-S on ImageNet-1k; Supervised training;

Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023

	Network	POOLING	Depth	Init	ACCURACY	#PARAMS
	BASE	GAP	12	12	73.3	22.1M
	BASE		12	0	72.7	22.1M
	BASE + 1		13	0	73.2	23.8M
Add ViT blocks	BASE + 2	CLC	14	0	73.7	25.6M
when using [CLS]	 BASE + 3	CLS	15	0	73.8	27.4M
01-1	BASE + 4		16	0	73.9	29.2M
	BASE + 5		17	0	74.6	30.9M
	BASE		12	12	74.3	22.3M
	BASE - 1	SimPool	11	11	73.9	20.6M
	BASE - 2	SIIIPOOI	10	10	73.6	18.7M
	BASE - 3		9	9	72.5	17.0M

Classification accuracy of ViT-S on ImageNet-1k; Supervised training;

Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023

	NETWORK	POOLING	Depth	Init	ACCURACY	#PARAMS	
	BASE	GAP	12	12	73.3	22.1M	
	BASE		12	0	72.7	22.1M	
	BASE + 1		13	0	73.2	23.8M	5 extra blocks or
Add ViT blocks	BASE + 2	CI C	14	0	73.7	25.6M	
when using [CLS]	 BASE + 3	CLS	15	0	73.8	27.4M	>8M more parameters
	BASE + 4		16	0	73.9	29.2M	to exceed!
	BASE + 5		17	0	74.6	30.9M	
	BASE		12	12	74.3	22.3M	
	BASE - 1	SimPool	11	11	73.9	20.6M	
	BASE - 2	SIIIPOOI	10	10	73.6	18.7M	
	BASE - 3		9	9	72.5	17.0M	

Classification accuracy of ViT-S on ImageNet-1k; Supervised training;

Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023

47th PRCVC

NETWORK	POOLING	Depth	Init	ACCURACY	#PARAMS
BASE	GAP	12	12	73.3	22.1M
BASE		12	0	72.7	22.1M
BASE + 1		13	0	73.2	23.8M
BASE + 2	CI C	14	0	73.7	25.6M
BASE + 3	CLS	15	0	73.8	27.4M
BASE + 4		16	0	73.9	29.2M
BASE + 5		17	0	74.6	30.9M
BASE		12	12	74.3	22.3M
BASE - 1	SimPool	11	11	73.9	20.6M
BASE - 2	SIIIP001	10	10	73.6	18.7M
BASE - 3		9	9	72.5	17.0M

Classification accuracy of ViT-S on ImageNet-1k; Supervised training;

Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023

	NETWORK	POOLING	Depth	Init	ACCURACY	#PARAMS
	BASE	GAP	12	12	73.3	22.1M
	BASE		12	0	72.7	22.1M
	BASE + 1		13	0	73.2	23.8M
	BASE + 2	CLS	14	0	73.7	25.6M
	BASE + 3	CLS	15	0	73.8	27.4M
	BASE + 4		16	0	73.9	29.2M
	BASE + 5		17	0	74.6	30.9M
	BASE		12	12	74.3	22.3M
Remove ViT blocks	BASE - 1	Cim De al	11	11	73.9	20.6M
when using SimPool	BASE -2	51111 001	10	10	73.6	18.7M
	BASE - 3		9	9	72.5	17.0M

Classification accuracy of ViT-S on ImageNet-1k; Supervised training;

Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023

		NETWORK	POOLING	Depth	Init	ACCURACY	#PARAMS
		BASE	GAP	12	12	73.3	22.1M
		BASE		12	0	72.7	22.1M
	-	BASE + 1		13	0	73.2	23.8M
		BASE + 2	CLC	14	0	73.7	25.6M
		BASE + 3	CLS	15	0	73.8	27.4M
		BASE + 4		16	0	73.9	29.2M
		BASE + 5		17	0	74.6	30.9M
		BASE		12	12	74.3	22.3M
Remove ViT blocks	_	BASE - 1	Circ De al	11	11	73.9	20.6M
when using SimPool	→	BASE - 2	Sinn Oor	10	10	73.6	18.7M
		BASE - 3		9	9	72.5	17.0M

Classification accuracy of ViT-S on ImageNet-1k; Supervised training;

Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023

	NETWORK	POOLING	Depth	Init	ACCURACY	#PARAMS
	BASE	GAP	12	12	73.3	22.1M
	BASE		12	0	72.7	22.1M
	BASE + 1		13	0	73.2	23.8M
	BASE + 2	CLS	14	0	73.7	25.6M
	BASE + 3		15	0	73.8	27.4M
	BASE + 4		16	0	73.9	29.2M
	BASE + 5		17	0	74.6	30.9M
	BASE		12	12	74.3	22.3M
Remove ViT blocks when using SimPool	BASE - 1	SimPool	11	11	73.9	20.6M
	BASE - 2	SIIIP001	10	10	73.6	18.7M
	BASE - 3		9	9	72.5	17.0M

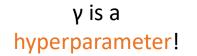
3 less blocks or 5M less parameters to be on par!

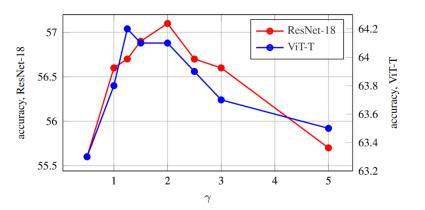
47th PRCVC

Classification accuracy of ViT-S on ImageNet-1k; Supervised training;

Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023

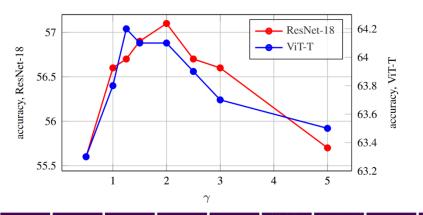
The effect of $\boldsymbol{\gamma}$

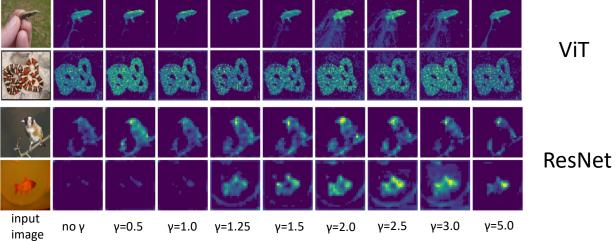




The effect of γ

 γ is a hyperparameter!





113

47th PRCVC

Conclusion

SimPool:

- Improves performance of convolutional networks and transformers under supervised or self-supervised setting
- ✓ Outperforms the other pooling methods
- ✓ Incurs low additional cost
- Produces high-quality attention maps that delineate object boundaries
- ✓ Presents strong localization properties

Psomas et al., Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?, ICCV 2023

Collaborators

loannis Kakogeorgiou

Spyros Gidaris

Andrei Bursuc

Konstantinos Karantzalos

Yannis Avrithis

Nikos Komodakis

