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Abstract. The paper describes an automatic unsupervised
segmentation of stained histological sections, which would
be suitable for further registration of series of stained con-
secutive histological cuts. We combine some already exist-
ing methods – Gaussian Mixture model above colour his-
togram, superpixels to increase the robustness and speed and
the Graph Cut method to obtain compact segmentation. We
show the experimental results and segmentation precision on
both synthetic and real histological images. For synthetic
images we reach mean classification error for 4-class seg-
mentation of about 3%. The unsupervised segmentation on
real images shows us always reasonable object, which is im-
portant for future segmentation-based registration.
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1. Introduction
The technologies for capturing microscopy images (see

Fig.1a,b,c) of nowadays machines are capable to capture
very large images with high resolution. Typically the
coloured histological images we work with have mean im-
age size of around 40.000 × 40.000 pixels. In this paper
we deal with series of stained histological images stained by
various dyes, such as H&E, Pro-SPC, CC10, Ki67, CD31,
etc.

Image segmentation as well as registration are fre-
quently used in medical imaging. For the last decades the
image registration is rapidly growing and many interesting
methods were developed [2] for various applications such as
microscopy, US, MRI and CT images. We found that the
main standard feature and intensity based registration tech-
niques fail on large stained histological images. In feature
based registration, finding the correct match between de-
tected features is hard because of repetitive texture (in de-
tail). The intensity based registration for such large images
is very time demanding without any special sampling strat-

∗ This paper is partial short-cut and extension of [1].

egy which could be more sensitive to falling into local min-
ima. In general segmentation as well as registration for such
large images is very hard to use because of time efficiency
and available computation resources.

We assume that if we are able to segment the images
into a few classes we would not lose much spatial infor-
mation comparing to the original images. Furthermore, the
registration on the segmented images would be more robust
than the state-of-the-art methods and also faster when using
simple criteria. The aim of this paper is develop a fully auto-
matic segmentation estimating a few compact classes which
could appear in whole series of histological cuts using other
segmentation techniques. We assume the biological meaning
of the segmented objects/regions is not very important.

Segmentation has been used in medical imaging for a
long time and many segmentation techniques were published
[3, 4, 5]. In the last few years several interesting articles
about semi-automatic [6] and automatic [7, 8, 9, 10] seg-
mentation of histological images were introduced.

Image segmentation models such as Bayesian classifi-
cation together with Markov Random Field (MRF) were first
introduced in [11]. This approach was recently applied on
histological images as a supervised image segmentation [6]
which uses the Metropolis algorithm. Furthermore for large
images Monaco proposed a growing region procedure to de-
crease dimensionality and extract more robust features and
then he optimised created MRF using Dhull algorithm [10].

This developed segmentation takes inspiration from
both methods [10, 6]. We use Bayesian and MRF segmen-
tation model. The proposed pipeline is: (1) SLIC superpixel
segmentaion [12] to decrease the complexity and estimate
reasonable region; (2) computing colour descriptors on ex-
tracted superpixels; (3) unsupervised learning of the prob-
abilistic models of expected classes using the Expectation-
Maximisation (EM) algorithm [13] initialised by K-means
[14] for Gaussian mixture models (GMM) [15]; (4) Graph
Cut [16] segmentation to obtain compact segmentation. An-
other reason for using superpixels is the very extreme time
complexity for applying Graph Cut segmentation [17] on
pixel grid for large images (more than 5.000.000 pixels).

For experimental evaluation we created a dataset of
synthetic images which simulates the structures and colours
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Fig. 1: Examples of stained histological sections are presented in (a,b,c). The two lesions (a,b) are coloured by dyes CD31
and H&E respectively. The Human breast (c) is stained by Cytokeratin. The bottom row (g,h,i) contains the segmentations of
images shown in the top row (a,b,c) in the same order. The optical overlap between the original image and its segmentation
is presented in middle row (d,e,f).

(a) (b) (c)

Fig. 2: Examples of synthetic image simulating real long-lesion (a) which represents the CD31 dye. For better visualisation
we used transparent overlap (b) of the original image (a) and its segmentation (c).
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measured on real lesions (see Fig.2). Further we show the
segmentation result on the real stained histological images
(see Fig.1). We create manual segmentation of this images
using a semi-automatic method - Weka segmentation [18]
implemented in ImageJ1.

The paper structure is the following: in Sec.2 we for-
mulate the segmentation problem, show the Bayesian seg-
mentation model and colour descriptors extraction on esti-
mated superpixels; in Sec.3.1 we introduce the synthetic and
real images we work with; followed by experiments on these
images in Sec.3 and finally in Sec.4 we evaluate the segmen-
tation method for registration.

2. Methodology
The input of the segmentation algorithm is a 2D colour

image of a colour histological cut. We want to segment into a
small number of compact classes where spatially close pixels
should be likely to belong to the same class.

More formally, let us define a set of integer pixel co-
ordinates Ω ⊆ Zd where d is the dimensionality. For 2D
images d = 2 and we assume that Ω is a hyperinterval,
Ω = [1, . . . , nx]× [1, . . . , ny]. The image is represented as a
function X : Ω→ Rm where each pixel is a vector with di-
mension m, typically for colour (RGB) images m = 3. We
use a superpixel segmentation (labelling) function S which
classifies pixels by colour intensities and distances between
pixels, assigning all pixels in Ω to a superpixel Ωs ∈ Ω.
We also define a finite set of labels L and a segmentation
function Ys, which assigns a label k ∈ L to each superpixel
Ys : Ωs → L. Then all pixels in a superpixel Ωs have the
same label k so the labelling function Y label also all pixels
Y : Ω→ L.

2.1. Class estimation

We estimate the class yi = Y (i) for each image pixel
xi = X(i) where the i ∈ Ω represents the pixel coordi-
nate, by calculating the maximum a posteriori (MAP) esti-
mate P (Y |X). Let us define the final class estimation (seg-
mentation) Y ∗ as

Y ∗ = arg max
Y

P (Y |X) (1)

Applying Bayes’ theorem [19] we get

Y ∗ = arg max
Y

p(X|Y ) · P (Y )
p(X)

(2)

where p(X) is the marginal probability density function
(pdf) of observation X , P (Y ) is the probability of a specific
segmentation (of all pixels) regardless of the measurement
and p(X|Y ) is the conditional density of X given Y .

1http://rsb.info.nih.gov/ij/

We can omit p(X) from the formulation because it is
constant for a given image X . To express the spatial model
dependence we propose to use Markov fields. Then the term
P (Y ) can be written as

P (Y ) =
∏

i

h(yi) ·
∏
i 6=j

d(i,j)≤1

R(yi, yj) (3)

The first term h : L → R is the prior probability of each
class independent of the position. The second termR(yi, yj)
describes the relation between classes of neighbourhood pix-
els. The pixel neighbouring is formulated by the following
rule i 6= j; d(i, j) ≤ 1 where d(i, j) is the l1 distance be-
tween two pixel coordinates i, j.

Because pixels are conditionally independent given Y ,
the equation can be then written as

Y ∗= arg max
Y

∏
i

(p(xi|yi) · h(yi)) ·
∏
i 6=j

d(i,j)≤1

R(yi, yj) (4)

We solve this problem by the Graph Cut method. We
take the negative logarithm of eq.(4) to obtain the formula

Y ∗ = arg min
Y
−
∑

i

log (p(xi|yi) · h(yi))−
∑
i6=j

d(i,j)≤1

logR(yi, yj)

(5)
For simplification we define function B as

B(k, l) = − logR(k, l) (6)

where k, l are labels, i.e.k, l ∈ L.

A commonly used Potts model corresponds to

B(k, l) = β · δk,l + C = β · Jk 6= lK + C (7)

where the Kronecker delta Jk 6= lK can be represented as
a square matrix with zeros on the main diagonal and ones
otherwise. The β is a regularisation coefficient. Because the
additive constant C does not effect Y ∗, we omit it.

Let us further define

U(xq, yq) = − log(p(xq|yq) · h(yq)) (8)

Rewriting eq.(5) we obtain the following minimisation prob-
lem

Y ∗ = arg min
Y

∑
i

U(xi, yi) +
∑
i6=j

d(i,j)≤1

B(yi, yj) (9)

The problem formulation by eq. (9) can be solved by
Graph Cut. The unary term U(xi, yi) represents the mea-
surements and an a priori class probability. The binary po-
tential B(yi, yj) leads to spatial regularisation.

http://rsb.info.nih.gov/ij/
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(a)

(b)

(c)

Fig. 3: The SLIC superpixel segmentation in detail (b)
for the original colour histological image (a) presented in
Fig.1a). The initial segmentation grid was chosen optimally,
because the estimated superpixels nicely fit to nuclei, the
smallest object we want distinguish. Then computing the
mean colour for all superpixels (c) we do not lose much spa-
tial information comparing to the original image (a).

2.2. Superpixels and descriptors

We have to specify the probability model p(xi|yi) used
in eq.(8). In the previous section we defined a colour de-
scriptor for each superpixel si formed by RGB colour com-
ponents. We can use these colour descriptors to create the
probability model p(xi|yi).

For the SLIC segmentation the most sensitive parame-
ter is the initial grid size for these estimated superpixels. Ac-
cording to [16] the size of this grid has to be smaller than the
size of the smallest detail in image that we want discriminate.
The resolution level that we are interested in segmentation of
the real images is equal to separating individual nuclei in the
histological images.

After the images are segmented using SLIC superpix-
els, we compute descriptors for each superpixel. Other state-
of-the-art methods frequently use colour [10] and texture
[20, 6] descriptors or both [15]. We found that the colour
descriptors are sufficient, because relatively small superpix-
els do not cover much texture information. We compute the
superpixel colour descriptors as a mean colour intensity over
all pixels belongs to the superpixel

sj =
1
‖Ωj‖

·
∑
i∈Ωj

xi (10)

and then we create the probability model p(si|yi) from these
extracted features.

2.3. Multi-class modeling

We define a set of models with parameters Θ =
(θ1, . . . , θ‖L‖) of the class densities p(si|yi = k). The
model of a class k is characterised by parameters θk where
k ∈ L. For simplification we choose a Gaussian model so
the model parameters are θk = (µk,Σk), where µ ∈ Rm is
a vector of means and Σ ∈ Rm×m is a covariance matrix.
The pdf is

p(si|θk) = N(si,µk,Σk) (11)

We estimate µk and Σk using the EM algorithm[13]
which also estimates the a priori probability h(k) of each
class. The EM algorithmconverges only to local minima, so
the convergence to the global optimum also depends on the
initialisation. For initialisation we take randomly ‖L‖ sam-
ples from the whole set. Then to avoid initialisation leading
to local minima we compute a minimal number W of ran-
dom initialisations to have at least one initialisation close to
the expected true estimation. The W is defined as the num-
ber of randomly taken initial samples from same expected
clusters

W = 1 +
∑
i∈L

(M − i+ 1) · M !
i! · (M − i)!

∣∣∣∣∣
M=‖L‖

(12)
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(a) (b) (c) (d)
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Fig. 4: Illustration of how the chosen Graph Cut regularisation influence the segmentation compactness and also the level of
detail. We estimated one classification model and segmented this model by Graph Cut with various regularisation constants
[1000, 10000, 30000, 100000] shown in rows (a,b,c,d) and (e,f,g,h) respectively. The two different stained lesions (CD31 in
the top row and H&E in bottom row) for the same regularisation constant containa similar amount of detail.

3. Experiments
In this section, we introduce both, the created synthetic

and the real images we work with (see Fig.1). Then we
present the experimentally measured precision of our seg-
mentation method and illustrate the dependency of chosen
regulation constant in Graph Cut to the segmentation consis-
tency (see Fig.4).

According to the biological meaning of the real his-
tological images we fix the number of estimated classes
M = ‖L‖ = 4 for all images.

3.1. Material

We will evaluate both algorithm on synthetic images
and also real histological cuts of lesion. First we present four
synthetic datasets each consisting of 99 image pairs with var-
ious transformations between them. Then we introduce two
consecutive sequences of the lesions coloured by 5 different
stains each.

Synthetic images. We create a compact 4-class segmen-
tation. Then, we assign to each class a colour such that all
created images X have the same colours representation as
one of possible stains in real histological images. To get tex-
ture pattern we add 5% white Gaussian noise. The size of
these images are 1600× 1600 pixels.

Real images. We have used material extracted from long-
term urethane. For now, two nodules (adenoma or adeno-

carcinomas) were acquired with a Zeiss Axio Imager M1
microscope with a 40x dry objective. Consecutive sections
were stained with: H&E (Hematoxylin and Eosin), Pro-SPC
(pulmonary pro-surfactant protein C segregated by type 2
pneumocytes), CC10 (Clara Cells 10 protein), Ki67 (cancer
antign that is found in growing dividing cells but is absent in
the resting phase of cell growth), CD31 (Platelet endothelial
cell adhesion molecule-1. It is a protein expressed at high
levels on early and mature endothelial cells, platelets, and
most leukocyte sub-populations).

For evaluation, an expert created reference segmenta-
tions by Weka segmentation plugin [18] implemented in Im-
ageJ. He segmented 4 biological structures in each image.
Because of implementation and resources limitation we were
not able to segment whole images but only individual parts
and then we compose them together.

3.2. Assignment problem

The segmentation of each image is made independently
so that identical objects in two different images might be
denoted by different labels k. To evaluate our segmentation
we need to find a correspondence between the class labels in
both reference and estimated segmentation.

Let us define the consistency error

E(a, b) =
1
‖Ω‖

·
∑
i∈Ω

Jya
i 6= yb

i K (13)

where the a, b ∈ L are classes in two different images A and
B respectively. We use the Hungarian algorithm [21] which
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dataset relative error
mean std

Synthetic 3.19% 4.88%
Lesions 24.6% 5.8%

Tab. 1: Relative classification error for both synthetic and
real images. For the synthetic images where the structures
were quite clearly given segmentation works nice. The sec-
ond case - real images, the segmentation does not much well
section by a biological meaning.

using the defined criterion E(a, b) finds one-to-one assign-
ment between two segmented images A and B. Then we
define a classification error ε as the relative number of un-
equally labelled pixels in both reference and estimated seg-
mentations

ε =
1
‖Ω‖

·
∑
i∈Ω

JyR
i 6= y∗i K (14)

where the Y R and Y ∗ are reference and estimated segmen-
tation respectively.

3.3. Synthetic images

Firstly we validate our segmentation on synthetic im-
ages (see Fig.2) described in Sec.3.1. These images have a
precise given number and mean colour of all classes by the
structure they simulate. We run the segmentation on all 99
images in the dataset. The mean error of misclassified pixels
between reference and obtain segmentation was 3.19% (see
Tab.1).

3.4. Real images

We have the manual segmentation of several lung-
lesion, each coloured by 5 different dyes presented in
Sec.3.1. We ran our segmentation on the real images. The
results for both sets of real images are presented in Tab.1.
We consider this comparison only as illustrative because our
method does not aim to segment sections with an specific
biological meaning as the expert did. Moreover we do not
specify the structures our segmentation should look for.

According to the segmentation for registration we de-
mand estimation of compact reasonable segments. Moreover
we would like to influence number of detail in the segmented
images. We show in Fig.4 two segmentations of consecutive
cuts (they are supposed to be the same) coloured by different
dyes. Both segmentations are very similar by using the same
regularisation constant (Graph Cut).

4. Conclusion and discussion
We have presented a method for segmentation large

images of colour histological sections using superpixel seg-
mentation, colour descriptors, Gaussian model, EM and K-
means algorithm and Graph Cut. We are able to segment
really large images (size of around 40.000 × 40.000 pix-
els) while some other nowadays segmentations cannot do
because of implementation and resources limitations.

Using synthetic images we proved the precision of our
segmentation method. When segmenting real images with-
out any a priori knowledge about segmenting images we
can not expect equal segmentation as the expert does with
a semi-automatic tool. On the other hand we show that
our segmentation method does segmentation which would
be very useful for the registration of stained histological sec-
tions. We also compare to other segmentation tools and con-
clude that we are able to segment whole large images.
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