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ABSTRACT

Measuring object size is fast and a standard part of many ra-
diological evaluation procedures. We describe a deep learn-
ing segmentation method that can be trained on a small num-
ber of pixel-wise reference segmentation and then fine-tuned
from the weak annotations of the object thickness. The diffi-
culty is in the non-differentiability of the thickness function
defined using the pixel-wise distance transform. We over-
come it by optimizing the expected value of the loss function
after the injection of a virtual random noise. Further speed-
up is possible using the properties of the distance transform.
We demonstrate the benefit of the proposed method on ultra-
sound images of the carotid artery. The fine-tuning improves
the performance by about 10% IoU.

Index Terms— weakly-supervised learning, semantic
segmentation, deep learning

1. INTRODUCTION

Deep learning is currently the best method for semantic
segmentation [1]. The models can be best trained using so-
called strong, pixel-wise annotations, which are very time-
consuming to obtain, especially in the medical domain. An
alternative is to use weak annotations. Here we focus on the
size of the object of interest, which is often measured for
diagnostic purposes in medicine [2, 3].

We propose a method for learning deep segmentation
models from the object thickness provided for each training
image. In particular, we attempt to segment the athero-
sclerotic plaque (see Fig. 3) in US images [4] by providing
a few images with a ground-truth (GT) segmentation and the
rest annotated by the plaque thickness.

The distance function is not differentiable with respect
to pixel segmentation values, preventing the employment of
standard gradient descent. To overcome this issue, we insert
a random noise into the model and optimize the expected loss.

1.1. Related work

Many forms of weak supervision have been considered, such
as bounding boxes [5, 6] or object class labels [7]. The closest
work to ours is learning from the foreground area [8]. Finally,
compared to our proof-of-concept [9], the method presented
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Fig. 1. The object thickness (See Fig. 1) is defined as 2δi,
where δi is the maximum of the distance function.

here is much faster, can handle larger images, and is applied
to real data.

2. METHOD

Let x be an input image with V pixels xi. The correspond-
ing ground-truth binary segmentation is y∗ ∈ {±1}V and the
object thickness s∗ ∈ R+

0 . A segmentation network fθ pa-
rameterized by θ produces a real score âi ∈ R, â = fθ(x),
for every pixel i, which is then thresholded,

ŷi = sign âi. (1)

Given a labeling y, the distance function δi measures the
distance to the background for a pixel i,

δi(y) = min
j,yj=−1

d(i, j). (2)

The object thickness is then the double of the maximum δi,

g(y) = 2max
i

δi(y). (3)

For computational reasons, we use the ℓ∞ distance.

2.1. Network architecture and initial training

We employed the U-Net architecture [10] with a ResNet-18
encoder [11] and a mirroring decoder as the network fθ.

We start by training the neural network fθ on the pixel-
wise annotated images, minimizing the standard binary cross-
entropy loss function Lf with respect to θ,

Lf(y
∗, fθ(x)︸ ︷︷ ︸

â

) = −
V∑
i=1

1 + y∗i
2

log σ(âi)+

+
1− y∗i

2
log(1− σ(âi)),

(4)

where σ(·) denotes the sigmoid activation function.
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Loss Lw
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Fig. 2. Diagram of the weak learning approach. The noise Z is only inserted virtually and during training.

2.2. Weakly-supervised learning

We continue learning from the weakly-annotated data to im-
prove the network’s performance further.

Given an image x annotated by the object thickness s∗,
the network predicts a binary segmentation ŷ (1). We shall
minimize the following regularized quadratic loss:

Lw(s
∗, sign fθ(x)︸ ︷︷ ︸

ŷ

) =
1

R
(s∗ − g(ŷ))2 + α∥ŷ∥1, (5)

where R is a normalization constant (that we set to the mean
image size) and α controls regularization to encourage sparse
segmentations [8]. In our experiments, we used α = 10−3.

Since the prediction function (1) is not differentiable, gra-
dient descent cannot be used directly. We solve this opti-
mization problem by a technique from the field of binary net-
works [12].

We virtually subtract i.i.d. random noise Zi at each pixel
i before applying the signum function (see Fig. 2),

Ŷi = sign(âi − Zi), (6)

obtaining a binary segmentation Ŷ = (Ŷ1, . . . , ŶV ), which is
now a collection of V independent Bernoulli variables with
probabilities

Pr(Ŷi = +1;θ) = Pr(Zi ≤ âi) = FZi
(âi), (7)

where FZi
is the cumulative distribution function (CDF) of

the noise Zi. (We omit the dependency on x and θ in our
equations for conciseness.)

We can now minimize the expected loss Ew,

Ew(s
∗) = EŶ ∼Pr(Ŷ ;θ)

[
Lw(s

∗, Ŷ )
]
, (8)

which is differentiable, assuming a smooth FZi
. We draw

Zi from the logistic distribution with zero mean and unit
scale [12] since it provides a smooth and simple CDF

FZi
(âi) =

1

1 + exp(−âi)
. (9)

2.3. Gradient sampling

To employ the standard back-propagation algorithm and gra-
dient descent, we need to evaluate the partial derivatives

∂Ew(s
∗)

∂FZi
(ai)

=
∑

ŷ∈{±1}V

Pr(Ŷ = ŷ)

Pr(Ŷi = ŷi)
Lw(s

∗, ŷ)ŷi (10)

However, the exact computation of (10) involves a sum
over all 2V label configurations, which is therefore infeasible
even for moderately sized images. We instead resort to the
single-sample unbiased estimate of (10) [9, 12],

∂Ew(s
∗)

∂FZi(ai)
≈ ŷi (Lw(s

∗, ŷ)− Lw(s
∗, ŷ↓i)) (11)

where ŷ = (ŷ1, . . . , ŷV ) and each ŷi is a sample drawn from
(7), and ŷ↓i = (ŷ1, . . . , ŷi−1,−ŷi, ŷi+1, . . . , ŷV ) denotes
a labeling with a flipped label at the pixel i [9, 12].

2.4. Optimized evaluation

Note that the estimator (11) requires evaluating the “flipped”
loss, Lw(s

∗, ŷ↓i), which involves calculating the distance
function for each i = 1, . . . , V . Although this is already
better than the exact computation, the naive approach would
still be too time-consuming for bigger images (see Sec. 3.5).
The following proposition shows that (11) does not have to
be evaluated for pixels far from an object center.

Proposition 1. Given a labeling y ∈ {±1}V , denote q =
maxi δi(y). Consider a pixel k for which yk = +1. If there
is j s.t. l∞(k, j) > q and δj(y) = q, then g(y) = g(y↓k).

Proof. If there is j s.t. l∞(k, j) > q, then δj(y↓k) = q. Flip-
ping yk = +1 to −1 never increases the derived thickness.
Hence, maxi δi(y↓k) = q, and thus g(y) = g(y↓k).

Moreover, the evaluation of Lw(s
∗, ŷ↓i) for each pixel i

entails repetitive computation of the distances (2). However,
flipping the label at one pixel affects the distance function
only in a small neighborhood of that pixel. The next proposi-
tion determines this neighborhood.

Proposition 2. Given a labeling y ∈ {±1}V and a pixel k,
it holds that δj(y) = δj(y↓k) for all j s.t. l∞(k, j) > δj(y).

Proof. Since δj(y) < l∞(k, j), there is a background pixel
which is closer to j than k is. Consequently, flipping yk does
not influence the distance at j, and δj(y) = δj(y↓k).

Following Proposition 2, we can reuse the distances δj(ŷ)
computed for the sample ŷ and, for each i, update a small
neighborhood, which saves a lot of computation. A similar
observation has been made in [13] for a more general case of
moving objects.
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Fig. 3. Two examples of ultrasound images of carotid artery
with an atherosclerotic plaque delineated in red.

3. EXPERIMENTS

3.1. Data

Our dataset consists of transversal ultrasound images of
carotid artery occluded by atherosclerotic plaque [4]. There
are 151 images of size 512× 448 pixels (see Fig. 3). We use
pixel-wise annotations for 71 images, while for the remaining
80, we only use the thickness annotations.

The thickness annotations were derived from lines manu-
ally drawn by a human annotator to denote the widest cross-
section of the plaque.

We used 51 pixel-annotated and 70 weakly-annotated im-
ages for training and 10 from both groups for validation. For
testing, we used the remaining 10 images with pixel-wise an-
notations. We created five such splits, shuffling the data ran-
domly each time.

3.2. Training

During training, we augment the images via horizontal and
vertical flipping and brightness and contrast adjustments to
combat overfitting. The object thickness is invariant to all of
these image operations. We used the learning rate for each
method that led to the best validation performance for one
fold. Every training run continued until the validation perfor-
mance stopped improving, and the best model was kept for
testing. As a result, the number of epochs varied across meth-
ods and experiments.

3.3. Evaluation metric

To asses the quality of the predicted segmentation, we com-
puted the Intersection over Union (IoU),

IoU(y∗, ŷ) =

∑V
i=1[[(y

∗
i = +1) ∧ (ŷi = +1)]]∑V

i=1[[(y
∗
i = +1) ∨ (ŷi = +1)]]

, (12)

where [[·]] is the Iverson bracket.
We evaluated every experiment five times using five dif-

ferent folds. We report the mean and standard error.
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Fig. 4. IoU segmentation performance for models trained us-
ing different proportions of the fully-annotated training im-
ages before and after fine-tuning, (in solid red and dashed
blue lines, respectively). The error bars indicate one standard
error.

Fig. 5. Input ultrasound image (left), segmentation output
produced by training on 40% of the fully-annotated images
(middle) and after fine-tuning using the proposed approach
(right). The red lines outline the GT segmentation, and the
white pixels represent the predicted objects. The images were
cropped, focusing on the region of interest.

3.4. Contribution of the weakly-supervised learning

This experiment examines the contribution of the proposed
weakly-supervised fine-tuning. First, we train the segmenta-
tion model in the fully-supervised way using different pro-
portions of the training images with pixel-wise annotations.
Then, we fine-tune these models using all weakly annotated
data. In Fig. 4, we plot the segmentation performance of the
original and refined models in terms of the IoU. An example
segmentation is shown in Fig. 5.

Applying the weak-annotation-based fine-tuning on mod-
els trained on very few or very many images did not lead to
a significant improvement. However, in the range between 30
and 50% of the fully annotated dataset, our method boosted
the testing IoU by up to 10%. As a result, the performance
of the refined model trained using only 50% of the pixel-
annotated images achieved the same performance as if trained
on the complete fully-supervised dataset.
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applied proposition

image size [px] naive 1 2 1 & 2

32× 28 1.00 (0.1s) 0.99 0.49 0.50
64× 56 1.00 (0.3s) 0.98 0.17 0.17
128× 112 1.00 (5.1s) 0.98 0.06 0.05
256× 224 1.00 (78.8s) 0.97 0.03 0.02

Table 1. Relative computation time of the gradient sampling
algorithm. The numbers represent the mean time of process-
ing one image using different optimizations in proportion to
the naive approach, for which we also give the absolute time.

3.5. Computational speed

Sec. 2.4 introduces two propositions, both of which bring up
a form of optimization applicable to our sampling procedure.
Here, we analyze how each optimization improves the com-
putation time.

We randomly selected 64 images at multiple scales and
measured the run times for the gradient computation using the
single sample approximation (11) via the naive and optimized
approaches. Table 1 shows the average time for each scale.

The proposed optimizations have a higher impact on big-
ger images. A considerable speed-up can be achieved through
Proposition 2. The contribution of Proposition 1 is less sig-
nificant here due to the small object sizes in our data.

4. CONCLUSION

We presented a weakly-supervised learning method capable
of training a segmentation model from images annotated by
the object thickness. The task involves a thickness function
that is not differentiable with respect to the pixel segmentation
values. We manage to optimize the non-differentiable loss
function by virtually injecting random noise into the network,
transforming the gradient calculation task into evaluating the
effect of individual pixel changes on the output estimate. This
method is further optimized for speed taking advantage of the
distance function properties.

Given a segmentation model trained on a small fully-
annotated dataset, we showed that our method could improve
the model performance using training on an additional weakly
annotated dataset to match the performance of a model trained
on a dataset twice as large.

The method is suitable for simple, compact objects such
as organs. We demonstrated that on segmentation of the ather-
osclerotic plaque in ultrasound images of the carotid artery.
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[9] D. Baručić and J. Kybic, “Learning to segment from ob-
ject sizes,” in ITAT: Information Technologies – Applications
and Theory. 2022, vol. 3226 of CEUR Workshop Proceedings,
CEUR-WS.org.

[10] O. Ronneberger et al., “U-net: Convolutional networks for
biomedical image segmentation,” in MICCAI: Medical Im-
age Computing and Computer-Assisted Intervention. Springer,
2015, pp. 234–241.

[11] K. He et al., “Deep residual learning for image recognition,”
in CVPR: IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 770–778.

[12] A. Shekhovtsov et al., “Path sample-analytic gradient estima-
tors for stochastic binary networks,” NIPS: Advances in Neu-
ral Information Processing Systems, vol. 33, pp. 12884–12894,
2020.

[13] T. E. Boult, “Updating distance maps when objects move,” in
Mobile Robots II. SPIE, 1987, vol. 852, pp. 232–239.

4


