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ABSTRACT

Multiple instance learning (MIL) is a specific form of weakly-supervised learning where instances with hidden labels
are grouped into bags, and only bag labels are observed. MIL models generally fall into one of two classes, focusing
on instance or bag classification. Blurring the line between the two classes, an existing attention-based MIL
method classifies bags accurately while indicating key instances. We build upon this method and propose to jointly
learn a bag and instance classifier, essentially removing the distinction between bag-centric and instance-centric
approaches. We performed experiments on the CAMELYON16 dataset of histopathological images and two other
image datasets. The experiments showed that our method achieves high bag-level performance, comparable to
other competing MIL methods. At the same time, our method outperforms other MIL methods in instance-level
classification and, when provided with enough data, achieves results comparable to supervised learning using
instance labels.
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1. INTRODUCTION

Standard supervised learning assumes a training set of annotated instances. However, instance annotations are
not always readily available, leading to weakly-supervised learning, in which annotations of groups of instances
are provided instead. A form of weakly-supervised learning is multiple instance learning (MIL). In MIL, the
learner is given training instances divided into groups called bags. The goal is to produce a bag classifier or an
instance classifier (or both), having access only to binary bag labels. While hidden, the instance labels determine
the bag labels: a bag is positive if and only if it contains at least one positive instance.

MIL was first introduced in the context of predicting drug activity1,2 and has been an active research topic
ever since. MIL applications range from predicting gene binding sites in RNA3 through text sentiment analysis4

to image classification,5 object detection,6 and more. A notable application is classification of whole-slide images
of tissue for histopathology.7

1.1 MIL approaches

Assume a bag X = {x1, . . . ,xn} of n instances, where each instance is associated with a hidden label yi ∈ {0, 1}.
The bag is annotated with a bag label Y ∈ {0, 1} such that

Y = max
i

yi. (1)

An instance is called key (or witness) if yi = Y or non-key if yi ≠ Y . We define a binary vector t ∈ {0, 1}n that
indicates the key instances:

ti =

{
1 if yi = Y,

0 if yi ̸= Y.
(2)

MIL models generally take one of the two approaches: instance-level or embedding-level. In both cases, the
classifier can be written as

g
(
A
{
f(x1), . . . , f(xn)

})
, (3)
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where f and g are suitable transformations, and A is a permutation-invariant operator such as mean or maximum.
In the instance-level approach, f is an instance classifier that produces a score for each instance, A aggregates the
individual scores, and g is identity. In contrast, the embedding-level approach employs f to project each instance
into a low-dimensional feature space. A then aggregates the vectors to form a bag embedding, which is finally
classified by a bag classifier g. When A is permutation-invariant, the general form in (3) is a set function,8,9

which is suitable for MIL as MIL assumes no ordering of instances within bags. Compared to instance-level
approaches, embedding-level approaches generally promise better bag-level performance. On the other hand,
instance-level approaches can be directly used to classify instances.10

Combining both aforementioned approaches, Ilse et al.10 proposed a method that follows the embedding-level
approach but also assigns a relevance score to each instance via an attention mechanism. Due to the employment
of the attention mechanism, the method is called Attention-based MIL (AMIL).

AMIL achieves high bag-level classification performance but cannot be directly applied to instances. In this
paper, we propose an extension of AMIL that maintains the same model but employs a different learning objective,
focusing on both bag and instance classification. We hypothesize that bag- and instance-level classification
complement each other, so we expect our changes to improve instance classification performance while maintaining
the performance on bags. We show empirically that this is indeed the case.

2. METHOD

We first describe AMIL’s model and learning objective10 since our method is an extension thereof. Then, we
propose a loss function that explicitly focuses on instance classification. Finally, we present the final learning
criterion that combines the bag-level loss from AMIL and the proposed instance-level loss.

2.1 Attention-based MIL

Given a bag X = {x1, . . . ,xn}, AMIL encodes the instances as D-dimensional feature vectors,

hi = f(xi) ∈ RD, i = 1, . . . , n, (4)

where f is a deep network with D outputs in the last layer. The feature vectors are then aggregated via a weighted
average to obtain a bag embedding,

z =

n∑
i=1

ai hi. (5)

The weights ai ∈ [0, 1] control the contribution of each instance in a bag and can, therefore, be used to identify
the key instances that influence the bag label the most. They are obtained through softmax normalization,

ai =
exp(ri)∑n
j=1 exp(rj)

, (6)

applied on the output of a two-layer neural network∗,

ri = w⊤ tanh(Vhi), (7)

where w ∈ RL and V ∈ RL×D are learnable parameters. The bag embedding z is passed to a classifier g : RD → R
that predicts a bag-level score, which is then transformed using the sigmoid function σ to obtain a probability
that the bag is positive,

p =
1

1 + exp(−g(z))
= σ(g(z)). (8)

Classifier g can be any differentiable function. We used a single linear layer, which is a common choice.10 A bag
label prediction is obtained by thresholding the probability, e.g., p ≥ 0.5. The model is trained end-to-end by
minimizing the bag-level logarithmic loss on the training data,

ℓbag(p, Y ) = −Y log(p)− (1− Y ) log(1− p) (9)

where Y ∈ {0, 1} is the ground-truth bag label.

∗A more complex network was also proposed, but we do not consider it here since it achieved comparable results.



AMILours

Figure 1. AMIL identifies key instances (◦) in the bag by assigning them non-zero attention. On the other hand, non-key
instances (•) are assigned (almost) zero attention. The bag embedding (□) thus lies somewhere in the convex hull of
the key instances (gray area). AMIL then aims to set its decision boundary (solid line) to classify the bag embedding
as positive. Our method shares that goal but also tries to classify the individual key instances as positive, leading to
a decision boundary with an improved margin (dashed line).

2.2 Instance classification

Let us consider the task of learning an instance classifier. The bag representation z (5) is a convex combination
of the instance feature vectors hi. It is, therefore, reasonable to consider employing the same classifier g to
classify not only bags but also instances (see Figure 1). We denote the instance-level probability predictions of
the instances being positive

qi = σ(g(hi)), i = 1, . . . , n. (10)

Since optimizing the bag-level loss alone does not necessarily yield good instance-level predictions (as shown later
in Section 4.1), one possible strategy is to focus on instance classification during learning. If the instance labels
yi were available, the standard, supervised way of learning would be to minimize the instance-level loss,

ℓγinst(q,y) =
1

n

n∑
i=1

ℓγlog(qi, yi), (11)

where

ℓγlog(qi, yi) = − γ

1 + γ
yi log(qi)−

1

1 + γ
(1− yi) log(1− qi) (12)

is a weighted logarithmic loss function with a parameter γ ≥ 0 that controls the weight of positive instances
(see Section 2.2.1). The weights for positive and negative instances add up to one so that the magnitudes of the
instance-level loss (11) and bag-level loss (9) are comparable.

Using the indicator vector t (2), we decompose (11) into losses on the key and non-key instances,

ℓγinst(q, t, Y ) =
1

n

n∑
i=1

ti ℓ
γ
log(qi, Y ) + (1− ti) ℓ

γ
log(qi, 1− Y ). (13)

The indicator vector t is generally unknown. However, if Y = 0, then ti = 1,∀i, since negative bags consist purely
of negative instances (1). If Y = 1, we propose to approximate ti with πi(r), which is the conditional probability
that the i-th instance is key that we model as follows:

πi(r) = Pr(yi = Y | X) = exp(ri −max
j

rj), (14)

where ri is defined in (7). Note that πi(r) and ai are normalized versions of each other since πi(r) =
ai

maxj aj
and

ai =
πi(r)∑n

j=1 πj(r)
, i = 1, . . . , n (πi are normalized so that the maximum is one, while ai are normalized so that their

sum is one). With the plug-in estimate in place, we obtain the instance-level loss function

ℓγinst(q, r, Y ) =
1

n

n∑
i=1

ℓγlog(qi, Y πi(r)), (15)

where we take the liberty to abuse the notation since ℓγinst(q, r, Y ) is an approximation of ℓγinst(q, t, Y ) from (13).

In summary, we approach learning an instance classifier from weak, bag-level labels by iterative supervised
learning with instances annotated by the pseudo-labels Y πi(r). When training the network, we apply the
stop-gradient operation on r in (15) to avoid gradient propagation through the pseudo-labels.11



2.2.1 Instance weights

By the MIL assumption (1), any negative bag contains only negative instances. On the other hand, positive
bags often contain only a few positive instances. As a result, MIL datasets are often strongly imbalanced at the
instance level, which can impact the performance when training an instance classifier. To compensate for the
imbalance, we control the contribution of positive instances via the weight γ (12).

When processing a positive bag, we estimate the proportion of positive instances,

β =
1

n

n∑
i=1

πi(r), (16)

and use it to estimate the total number of positive and negative instances in the dataset,

n+ = αm · βn, (17a)

n− = αm · (1− β)n+ (1− α)m · n, (17b)

where α denotes the proportion of positive bags, and m is the number of training bags. Finally, to balance the
contribution of both classes, we set the weight γ in (12) for each bag to

γ =

{
n−

n+ = 1−αβ
αβ if Y = 1,

0 otherwise.
(18)

Note that γ is bag-specific.

2.3 Combining losses

The final learning objective is obtained by adding the bag- and instance-level losses together,

L(p, r,q, Y ) = ℓbag(p, Y ) + ξT ℓγinst(q, r, Y ), (19)

where factor ξT controls the contribution of the instance-level loss in epoch T . The accuracy of the pseudo-labels
used in the instance-level loss (15) depends on the model’s ability to identify key instances. Since the model
learns to recognize the key instances only gradually by optimizing the bag-level loss (9), we believe that the
influence of the instance-level loss on the learning objective should gradually increase in a controlled way. To this
end, we propose a simple scheduling scheme,

ξT = min{ξ0 · qT−1, ξmax}. (20)

The initial factor ξ0 > 0 is set to a small value, and q ∈ R+ is selected empirically. We used ξ0 = 10−3 and q = 2
in our experiments. The maximum factor, ξmax, can be used to shift the focus between the bag and instance level.
We use ξmax = 1 since it promises the best trade-off according to our experiments.

3. RELATED WORK

Early MIL approaches based on deep learning employed a non-learnable MIL pooling operator, e.g., maximum12

or a soft approximation thereof.13 AMIL10 brought up a learnable pooling operator, which proved very effective
and became a popular component in subsequent MIL methods.14–19

Our method is a direct extension of AMIL, focusing on instance classification. Instance classification has been
considered in several works. Namely, mi-Net20 classifies bags by aggregating instance predictions via a fixed MIL
pooling such as maximum, mean, or LogSumExp. Like us, Zhu et al.12 model instance-level probabilities and
optimize an instance-level loss. However, they assume a fixed number of key instances per bag and consider it
a hyper-parameter. Javed et al.7 proposed an adjusted pooling scheme called Additive MIL (Add-MIL), which,
in contrast to AMIL (8), predicts bags as

p = σ(

n∑
i=1

g(ai hi)). (21)

Several approaches consider instance-level optimization to refine the extracted features, employing, e.g., cluster-
ing21,22 or contrastive learning.19



(A) CAMELYON16 (B) Faces

Figure 2. Example images from two datasets with delineated patches. The black and red patches are negative and positive
instances, respectively. All patches within one image form a bag. The example (A) from CAMELYON16 is a cropped
sample from a bigger image.

4. EXPERIMENTS

We experimentally compare our method with AMIL10 and two other MIL methods suited for instance classification,
mi-Net20 and Add-MIL.7 Multiple pooling operators were proposed for mi-Net; we employed LogSumExp since
it performed the best according to our experiments. Apart from the MIL methods, we performed the same
experiments with the standard fully-supervised method trained using instance labels. The fully-supervised method
classified a bag according to (1). We considered three image datasets:

MNIST-MIL The MNIST-MIL dataset is based on the well-known dataset of hand-written digits. We create
a MIL problem:10 the MNIST images are randomly drawn with replacement to form bags of size n ∼ N (100, 20)
sampled from a Gaussian distribution (and rounded up to the nearest integer), ensuring exactly half of the
generated bags contain at least one digit nine, which is selected as the positive class. Training and testing bags are
guaranteed to share no instances. We employ LeNet-5,23 a small convolutional network, as the feature encoder f .

CAMELYON16 CAMELYON1624 is a large dataset of lymph-node-metastasis histology images of breast
tissue. Out of the total of 400 images, 159 contain tumor tissue and are considered positive. The dataset provides
tumor tissue annotations in the form of contour lines. We extract non-overlapping 256× 256 px patches from
each image at the 20× magnification level, skipping those containing only the background. As a result, we obtain
on average 8990 patches per image. A positive image yields about 900 positive patches. Employing a ResNet-50
pre-trained on ImageNet, the patches are encoded as 1024-dimensional vectors22 to be used as an input of the
network f . The network f consists of a single linear layer with 512 neurons.

Faces The last dataset consists of faces extracted from group photos.25 Every photo is provided with the eye
coordinates of all depicted faces, each annotated by an estimate of the person’s age†. Using the eye coordinates,
we extract all faces and label them based on the age estimates as juvenile (under twenty years old) or adult,
which we consider as the positive or negative class, respectively. The faces from a single image form a bag, and
each face is encoded as a vector using the same procedure as in the case of CAMELYON16. Only bags of at least
five instances are kept to make the learning problem more difficult. Ultimately, we obtain 1059 positive and 1330
negative bags with a median size of seven instances. We use the same architecture of f as for CAMELYON16.

Each experiment is repeated five times, shuffling the data each time. All methods employ the same backbone
architectures and use the same data in every experiment to ensure a fair comparison. All experiments were
performed on a computer with an Intel Xeon Scalable Gold 6150 (18 cores, 2.7 GHz), a single NVIDIA Tesla
V100 (32 GB), and 64 GB memory. Our implementation is available online‡.

†http://chenlab.ece.cornell.edu/people/Andy/ImagesOfGroups.html
‡https://github.com/barucden/mil-atic

http://chenlab.ece.cornell.edu/people/Andy/ImagesOfGroups.html
https://github.com/barucden/mil-atic


Table 1. Testing AU-ROC at the bag and instance level on three datasets. The values indicate the mean and its standard
error computed over five runs.

MNIST-MIL CAMELYON16 Faces

method bag instance bag instance bag instance

ours 100.00± 0.00 97.72± 0.16 87.87± 2.78 92.33± 1.22 87.36± 0.66 77.44± 0.38
AMIL 100.00± 0.00 96.24± 0.88 87.73± 2.31 88.84± 2.41 87.37± 0.59 76.50± 0.35
Add-MIL 99.99± 0.01 93.64± 1.62 80.96± 5.34 77.91± 6.75 87.05± 0.66 75.97± 0.48
mi-Net 100.00± 0.00 98.38± 0.13 79.79± 3.80 90.63± 1.28 86.82± 0.60 77.70± 0.22

supervised 100.00± 0.00 99.92± 0.01 85.72± 2.01 94.70± 0.99 86.09± 0.71 82.57± 0.30
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Figure 3. Testing bag-level and instance-level AU-ROC for different sizes of the training dataset. The plots show mean
values and standard errors.

4.1 Results

We compare the methods in terms of the Area under the Receiver Operating Characteristic Curve (AU-ROC)
computed at both bag and instance level (see Table 1). In general, our method improves the instance-level
performance over AMIL while maintaining AMIL’s bag-level performance, which is already relatively high. Indeed,
none of the other tested methods, including the supervised method, provided a better bag classifier than our
method or AMIL. We remark that in the original manuscript,7 Add-MIL outperformed AMIL in terms of bag-level
performance, which we could not replicate. In our experiments, our method consistently outperformed Add-MIL
in terms of both bag and instance classification. The instance AU-ROC on CAMELYON16 is generally higher
than the bag AU-ROC, which is expected since the dataset contains mostly negative instances.26

Although the instance-level performance of mi-Net on MNIST-MIL and Faces was slightly better, our method
reached superior performance on CAMELYON16. We believe that CAMELYON16 is a challenging dataset for
mi-Net due to the low rate of positive instances in the bags.

To compare their generalization ability, we trained the competing models on several subsets of the training
data and evaluated them on the original testing data. Our method was consistently among the best-performing
models in terms of both bag- and instance-level performance (see Fig. 3). In particular, on CAMELYON16,
our method exceeded the bag-level performance of the supervised method and approached its instance-level
performance when trained on 240 bags.
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Figure 4. Testing bag-level and instance-level AU-ROC for different witness rates. The plots show mean values and
standard errors.

Finally, we used the CAMELYON16 and Faces datasets to experiment with the witness rate, which is the
proportion of key instances per bag. To ensure the requested witness rate, we altered the datasets by removing
negative instances from every positive bag until the proportion of positive instances was at least the witness rate.
As a result, a witness rate of zero corresponds to the original dataset, whereas one implies that all bags contain
only key instances.

AMIL and Add-MIL behaved similarly: their bag-level performance improved as the witness rate increased,
while the instance-level performance declined (see Fig. 4). Our method followed the bag-level performance of
AMIL but maintained high performance at the instance level. Only mi-Net matched our method in terms of the
instance-level classification. However, mi-Net achieved poor results at the bag level.

5. CONCLUSIONS

We proposed a deep learning method for multiple instance learning (MIL). The method builds upon Attention-
based MIL (AMIL), a popular MIL method with a state-of-the-art performance that employs an attention
mechanism to identify key instances.10 Our method uses the same network architecture as AMIL but, unlike
AMIL, optimizes a learning objective that also explicitly considers instance classification.

Our method significantly outperforms AMIL at the instance level, especially when bags contain a high
concentration of key instances. According to our experiments, only mi-Net can match the instance-level
performance of the proposed method, but it has substantially worse performance at the bag level for high witness
rate. In contrast, our method delivers high performance at both the bag and the instance level. In fact, when
provided with enough data, our method produces an instance classifier whose performance is comparable to the
performance achieved by a classifier trained using instance labels.

The success of our method depends on the accuracy of the key instance identification, where we rely on the
attention mechanism introduced by AMIL and where there is potential for improvement.
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