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Abstract
This study aims to develop a fully automated imaging protocol independent system for pituitary adenoma segmentation 
from magnetic resonance imaging (MRI) scans that can work without user interaction and evaluate its accuracy and utility 
for clinical applications. We trained two independent artificial neural networks on MRI scans of 394 patients. The scans 
were acquired according to various imaging protocols over the course of 11 years on 1.5T and 3T MRI systems. The seg‑
mentation model assigned a class label to each input pixel (pituitary adenoma, internal carotid artery, normal pituitary 
gland, background). The slice segmentation model classified slices as clinically relevant (structures of interest in slice) or 
irrelevant (anterior or posterior to sella turcica). We used MRI data of another 99 patients to evaluate the performance of the 
model during training. We validated the model on a prospective cohort of 28 patients, Dice coefficients of 0.910, 0.719, and 
0.240 for tumour, internal carotid artery, and normal gland labels, respectively, were achieved. The slice selection model 
achieved 82.5% accuracy, 88.7% sensitivity, 76.7% specificity, and an AUC of 0.904. A human expert rated 71.4% of the 
segmentation results as accurate, 21.4% as slightly inaccurate, and 7.1% as coarsely inaccurate. Our model achieved good 
results comparable with recent works of other authors on the largest dataset to date and generalized well for various imaging 
protocols. We discussed future clinical applications, and their considerations. Models and frameworks for clinical use have 
yet to be developed and evaluated.
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Introduction

Pituitary adenomas (PAs) are the most common 
tumours of the sellar region, accounting for 10–15% 
of all intracranial neoplasms [1]. PAs are benign 
lesions; however, they can sometimes manifest clini‑
cally by compression of the optic chiasm or dysregu‑
lated hormonal production. In some patients, surgi‑
cal removal is performed using a minimally invasive 
transsphenoidal endoscopic approach [2].

Several experimental and clinical applications of machine 
learning have been recently introduced into neurosurgery [3], 
particularly in pituitary adenomas [4]. Different models were 
proposed for automatic segmentation [5–8], outcome predic‑
tion [9, 10], consistency prediction [11–13], or acromegaly 
diagnosis from facial pictures [14, 15].

Our work presents a fully automated system for pitui‑
tary adenoma segmentation. We aim to offer a simple, 
ready‑to‑use system for clinical researchers without 
extensive technical knowledge. We also explore the 
possibility of training the model on sparsely annotated 
data because collecting segmentations for all slices 
in the training dataset would be very time‑consuming 
and impractical. The complete source code, the trained 
model, and example data are provided online along with 
the article.

Medical professionals can benefit from automatic 
segmentation in multiple ways. Radiosurgical planning 
relies on high‑precision 3D segmentations, which must 
be manually delineated by trained professionals [16]. 
Augmented reality technology can improve the preci‑
sion in endoscopic skull base surgery by overlaying 3D 
anatomical models generated from preoperative medi‑
cal images onto endoscope images [17]. Tumour volume 
can also be used for progression and treatment response 
tracking [18]. The spatial relationship of the tumour and 
its surrounding structures can serve as a good predictor 
of surgical outcome [19–23]. Automated and assisted 
image analysis can significantly increase efficiency and 
enable high throughput workflows and cost savings [24].

Multiple automatic and semi‑automatic PA segmentation 
attempts have been attempted in recent years. First, local image 
pattern‑based methods requiring a manual seed point initializa‑
tion and parameter setting were proposed [6, 7, 25]. Although 
user interaction was still needed, they significantly reduced 
segmentation time. More recently, deep learning methods were 
applied to this problem [5, 8], enabling further advances in 
segmentation accuracy and time savings. We aimed to further 
develop this field by proposing an end‑to‑end system with no 
user interaction requirements and examining the utility of and 
multimodal imaging data and.

Methods

Patients

Preoperative contrast–enhanced T1‑weighted (CE‑T1) cor‑
onal magnetic resonance imaging (MRI) scans of patients 
who underwent primary surgery for pituitary adenoma 
between 2007 and 2018 were retrospectively included. 
T2‑weighted (T2) scans were also used if available for the 
same patient. The scans were acquired according to vari‑
ous imaging protocols on multiple 1.5T and 3T devices 
used over 11 years. Patients were randomly assigned to 
training (80%) and validation (20%) datasets.

A test dataset from MRI scans of patients who under‑
went primary surgery for PA between January 2022 and 
June 2022 and consented to publish their anonymised 
imaging data was created prospectively. CE‑T1, non‑con‑
trast T1 and T2 coronal MRI scans were acquired for each 
patient using a 3T MR system (GE Discovery MR750w, 
GE Healthcare, Chicago, ILL, USA) with a standard 
32‑channel head coil. The facial part of the image was 
manually erased to prevent reconstruction of the patient’s 
appearance. All metadata regarding patient personal infor‑
mation were removed.

Data annotations

All coronal CE‑T1 scans were manually segmented in 
ITKSnap v3.8.0 [26] by the principal author, a neurosur‑
gery resident (MČ), and reviewed and corrected if nec‑
essary by a board‑certified neurosurgeon with 10 years 
of experience in endoscopic pituitary surgery (MM). 
First, clinically relevant slices were identified. Clini‑
cal relevance was defined as the presence of four cross 
sections of intracavernous and supraclinoid segments 
of the internal carotid artery, allowing for good assess‑
ment of cavernous sinus invasion. Regions of interest 
(ROIs) were placed in three labels for the tumour, inter‑
nal carotid artery (ICA), and normal gland on all of the 
clinically relevant slices and none of the clinically irrel‑
evant slices. The tumour label was placed over all tumour 
pixels in clinically relevant slices including cystic parts. 
If a tangential cross section through a ICA segment was 
encountered, a circular cross section approximation ROI 
was placed. If the cross section through carotid syphon 
was encountered or one of the four cross sections could 
not be identified, the slice was not considered clinically 
relevant. Normal gland was only marked if identifiable 
in the slice. Figure 1 shows examples of different slice 
types and their annotations.
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Software

All data processing was performed in Python v3.8.8 [27]. 
Medical imaging data were processed using the Sim‑
pleITK library v2.1.0 [28–30], and the machine learning 
model was written in Keras v2.4.3 [31] with Tensorflow 
v2.3.0 [32] backend. The source code, test dataset, and 
trained model are available from the author’s GitHub 
repository [33].

Data preprocessing

If available, non‑contrast T1 and T2 scans were co‑registered 
and transformed into a CE‑T1 coordinate space to achieve 
voxelwise spatial correspondence. Scans were then cropped 
to 194 × 194 pixels in the coronal plane to ensure uniform 
input dimensions. Because MRI scans for sellar lesions are 
routinely centred on the sella, we could simply crop the mid‑
dle part of the image. The original FOV was 14.9 × 14.9 ± 
2.2 cm in the training dataset; cropped images had a size of 
5.8 × 5.8 ± 1.6 cm.

Intensity normalisation was performed to ensure a per 
subject pixel intensity mean of 0 and a standard deviation 
of 1. Subsequently, all annotated slices were extracted with 

one preceding and one following slice with channels corre‑
sponding to each patient’s three pulse sequences (channels‑
last). If a pulse sequence was unavailable for the patient, all 
pixels were replaced with 0 for the missing channel. The 
same number of randomly selected unannotated slices was 
extracted for the training of the slice relevance classifier. 
Some 1264 and 330 annotated and 1259 and 330 unanno‑
tated slices were extracted in the training and validation 
datasets, respectively. Figure  2 summarises the dataset 
extraction pipeline.

Segmentation model architecture

Our baseline model uses the U‑Net architecture proposed by 
Ronnenberger [34], a convolutional neural network (CNN) 
variant, and accepts CE‑T1 images as input. Figure 3 a pre‑
sents an overview of the model architecture. Model variants 
accepting combinations of channels for non‑contrast T1 and 
T2 images were also tested.

First, a 3D convolution layer with a kernel shape of 3 × 3 
× 3 integrated the data from adjacent slices, creating a latent 
shape embedding (192, 192, 32). Then, five downsampling 
layers were applied, each comprising two 2D convolutional 
layers with leaky ReLU [35] activation followed by a max 

Fig. 1  Examples of annotations of different slice types in the dataset: 
a slice with four ICA cross sections; b a slice with tangential sec‑
tions through supraclinoid ICA segments; c cross section through the 
carotid siphon; d a slice that does not allow for identification of the 
supraclinoid cross section of the left ICA. Slices a and b were anno‑

tated and considered clinically relevant, slices c and d were left unan‑
notated as they do not allow for proper assessment of lateral inva‑
sion. Coloured areas mark the segmentations for tumour (green), ICA 
(red), and normal gland (blue)

a) Co-registration b) Cropping c) Standardization d) Slice extraction

Fig. 2  Dataset extraction pipeline
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pooling layer achieving a final shape of (12, 12, 256). Mod‑
els with different numbers of downsampling layers were also 
tested.

An upsampling stack with skip connections restored the 
resolution of (192, 192, 4) with four logits for the respective 
label classes. Each upsampling layer consisted of a 2D con‑
volutional layer, batch normalisation, dropout, and a dense 
layer with a leaky ReLU activation. A categorical cross‑
entropy loss function was applied during model training.

Slice selection model architecture

An additional model was trained for relevant slice selection. 
The model employed a downsampling stack described in 
the previous section, followed by two fully connected lay‑
ers. The first fully connected layer was followed by a leaky 
ReLU activation layer. The slice relevance is defined as the 
probability that the slice was annotated in the dataset and 
therefore deemed clinically relevant by the annotator. To 
estimate the slice relevance, the second fully connected layer 
was followed by a sigmoid activation layer returning the 
slice relevance probability between 0 and 1 (Fig. 3b). Binary 
cross‑entropy loss function was applied to the model.

Architecture optimization

We performed a five‑fold cross‑validation testing to deter‑
mine the optimal model configuration. We examined the 
effect of adding input channels and different numbers of 
downsampling layers. Models were trained for 50 epochs. 
The tumour Dice coefficient score (DCS) on the validation 
dataset was used as comparison metrics. We performed an 
unpaired t‑test to compare model variants with the baseline 

model and to pick the best variant to be used for all further 
experiments in this study.

Model training

Data augmentation [36] was performed by randomly crop‑
ping the input using small random shifts. For slice relevance, 
the model was tasked with predicting whether the slice 
comes from the annotated or unannotated part of the dataset. 
The model parameters were randomly initialised and tuned 
using the Adam (adaptive moment estimation) optimizer 
[37]. Both models were trained independently. All training 
was performed on a C2 series Compute Engine instance on 
the Google Cloud platform with 4 vCPU and 16 GB RAM.

Model performance evaluation

For the segmentation model, a total Dice coefficient score 
[38] and per label Dice coefficient scores for tumour, ICA, 
and normal gland were recorded over training time. DSC is 
a quantitative assessment of overlap of two areas commonly 
used in segmentation studies and can be denoted as

where X is the ground truth and Y is the predicted 
segmentation.

For the slice selection model, classification accuracy was 
recorded over training time while sensitivity, specificity, and 
AUC were calculated for the best model iteration.

To assess the applicability in clinical settings, an inde‑
pendent neurosurgeon from outside our institution (EM), 
unfamiliar with the details of this study, was asked to review 

DCS = 2 ∗ |X ∩ Y||X| + |Y|
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Fig. 3  a Schematic depiction of the segmentation model, where grey 
boxes signify model layers with layer type and layer output dimen‑
sions; the output of the model is a segmentation map with four labels; 

b schematic depiction of the slice selection model. The model returns 
a probability between 0 and 1 of the slice being a relevant slice
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all segmentations in the validation and test datasets and to 
rate them as accurate, slightly inaccurate and coarsely inac‑
curate. The rater was provided with no further instructions.

Results

Dataset

Total of 493 patients were included in the study: 13 (2.6%) 
only had CE‑T1W scans, 295 (59.8%) had CE‑T1W and non‑
contrast T1W scans, 15 (3%) had CE‑T1W and T2W scans, 
and 170 (34.5%) had all three sequences available. Table 1 
summarises patient baseline characteristics. For CE‑T1 scans, 
both 2D and 3D (navigation) series were routinely available, 
while for the other pulse sequences, only 2D series were usu‑
ally available. Table 2 presents an overview of imaging data 
properties. 394 (80%) patients were randomly assigned to the 
training dataset and 99 (20%) to the validation dataset. Total 
of 28 patients enrolled in the prospective test cohort.

Architecture optimization

A five‑fold cross‑validation ablation study was performed on 
different model configurations. No configuration significantly (p 
< 0.05) outperformed the baseline model in total DCS. Adding 
input channels for non‑contrast T1 and T2 images did not result 
in more accurate results (p = 0.707 and p = 0.96). Limiting our 

Table 1  Baseline characteristics of the patient dataset

Train Validation Test

N 394 99 28
Extracted slices 1264 330 103
Age, years ± SD 53.2 ± 15.6 54.2 ± 14.8 56.8 ± 14.6
Male sex, n (%) 179 (45.4) 57 (57.6) 18 (64.3)
Tumour type, n (%)
 Non‑functioning 242 (61.4) 59 (60) 25 (89.3)
 GH‑secreting 99 (25.1) 21 (21) 1 (3.6)
 Prolactin‑secreting 12 (3) 5 (5) 1 (3.6)
 ACTH‑secreting 39 (9.9) 14 (14) 1 (3.6)
 Plurihormonal 2 (0.5) 0 (0) 0 (0)
Imaging data availability, n (%)
 CE‑T1 only 12 (3) 1 (1) 0 (0)
 CE‑T1 + T1 238 (60.4) 57 (56) 0 (0)
 CE‑T1 + T2 10 (2.5) 5 (5) 0 (0)
 CE‑T1 + T1 + T2 134 (34) 36 (36) 28 (100)

Table 2  Imaging data 
characteristics

Train Validation Test

n CE‑T1 394 99 28
T1 372 93 28
T2 144 41 28

Sequence type Spin echo Spin echo Spin echo
TR
ms (± SD)

CE‑T1 539.67 ± 112.2 550.15 ± 1.5 400
T1 554.64 ± 105.66 557.27 ± 104.0 440
T2 3819.86 ± 973.96 4218.42 ± 985.84 4000.78 ± 426.34

TE
ms (± SD)

CE‑T1 12.26 ± 1.44 12.38 ± 1.5 14
T1 12.44 ± 1.04 12.62 ± 1.0 13
T2 102.15 ± 11.8 100.56 ± 9.47 90.96 ± 4.03

FOV
cm (± SD)

CE‑T1 14.86 ± 2.19 14.6 ± 1.79 16
T1 14.55 ± 1.61 14.32 ± 1.13 16
T2 18.02 ± 3.37 18.32 ± 2.9 16

N of averages
n (± SD)

CE‑T1 1.98 ± 0.38 1.98 ± 0.36 1.5
T1 2.01 ± 0.33 2.02 ± 0.29 1.5
T2 3.21 ± 1.74 2.96 ± 1.07 1

Pixel bandwidth
Hz (± SD)

CE‑T1 101.2 ± 19.71 105.15 ± 41.12 97.66
T1 100.17 ± 16.38 102.48 ± 33.94 97.66
T2 144.87 ± 41.77 153.64 ± 50.7 122.07

Slice thickness
mm (± SD)

CE‑T1 2.26 ± 0.49 2.18 ± 0.35 2.5
T1 2.21 ± 0.37 2.15 ± 0.31 2.5
T2 2.95 ± 0.87 2.89 ± 0.84 2.5

Slice spacing
mm (± SD)

CE‑T1 0.73 ± 0.53 2.63 ± 0.33 2.8
T1 2.67 ± 0.36 2.61 ± 0.29 2.8
T2 3.33 ± 1.21 3.28 ± 1.15 2.8

Cropped area
cm (± SD)

5.8 ± 1.6 5.69 ± 1.29 6.0
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dataset to only the subset with both CE‑T1 and non‑contrast 
T1 images available (n = 295) did not improve the results (p 
= 0.459). We observed a significant drop in total DCS when 
decreasing the number of downsampling layers of the U‑Net 
network from 5 to 4 and 3 (p = 0.001 and p < 0.001); however, 
there was no improvement when adding a 6th downsampling 
layer (p = 0.68). Similar results were observed for model loss, 
tumour DCS, ICA DCS, and normal gland DCS. Figure 4 shows 
the comparisons of five‑fold cross‑validation results for differ‑
ent models. Detailed results of the five‑fold cross‑validation are 
summarised in Table 3.

Segmentation

The segmentation model was trained for 100 epochs. The train‑
ing took 8.2 h. The minimum total validation loss was reached 

after 18 epochs. The model achieved per class Dice coeffi‑
cients of 0.889 for tumour, 0.802 for ICA, and 0.316 for normal 
gland labels. Dice coefficients of 0.910, 0.719, and 0.240 for 
the respective labels were achieved on the test dataset. Figure 5 
depicts the course of the Dice coefficient during the training. 
Figure 6 displays ground truth and predicted segmentations in 
eight slices from the test dataset.

Slice selection

The slice selection model was trained for 50 epochs. The train‑
ing took 5.3 h. The minimum total validation loss was reached 
after 10 epochs. For the validation dataset, 88.8% accuracy, 
87.6% sensitivity, 90.0% specificity, and an AUC of 0.944 were 
achieved, and for the test dataset, 82.5% accuracy, 88.7% sensi‑
tivity, 676.9% specificity, and an AUC of 0.907 (Fig. 7).

Reviewer satisfaction

To assess the applicability in clinical settings, an independent 
neurosurgeon from outside of our institution (EM) and unfamil‑
iar with the details of this study was asked to review all results in 
the validation and test dataset and to rate them on a three‑point 
scale (accurate, slightly inaccurate, and coarsely inaccurate). Our 
model performed both slice selection and segmentation in the 
reviewed images. In the validation dataset, 63 (63.7%) segmen‑
tations were marked as accurate, 28 (28.3%) as slightly inaccu‑
rate, and 8 (8.1%) as coarsely inaccurate. In the test dataset, 20 
(71.4%) segmentations were marked as accurate, 6 (21.4%) as 
slightly inaccurate, and 2 (7.1%) as coarsely inaccurate.

Discussion

MRI segmentation has multiple applications in medicine 
and neurosurgery in particular. However, manually creat‑
ing a segmentation mask is time‑consuming and tedious, 

Fig. 4  Comparison of the five‑fold cross‑validation ablation study 
results of different models scored by DCS for tumour, ICA, and nor‑
mal gland. The baseline model is in green, with models with insig‑
nificantly (p > 0.05) different results in blue and with significantly 
worse results in red

Table 3  The five‑fold cross‑validation of different modes, values for 
total DCS, tumour DCS, ICA DCS, and normal gland DCS on the 
validation dataset are given as mean (±SD). The p‑value represents 

the significance of the difference with the baseline model. An asterisk 
marks significant entries

Model Tumour DCS ICA DCS Normal gland DCS

Mean (SD) p Mean (SD) p Mean (SD) p

Baseline
5 downsampling layers, CE + T1 input

0.934 (0.003) 0.843 (0.002) 0.611 (0.014)

  CE‑T1 + T1 input 0.933 (0.002) 0,696 0.845 (0.003) 0,258 0.616 (0.012) 0,631
  CE‑T1 + T1 input (only non‑zero) 0.933 (0.003) 0,74 0.846 (0.005) 0,272 0.623 (0.009) 0,208
  CE‑T1 + T1 + T2 input 0.934 (0.002) 0,945 0.846 (0.002) 0,071 0.62 (0.019) 0,477
  6 downsampling layers 0.935 (0.003) 0,53 0.845 (0.004) 0,538 0.632 (0.014) 0,069
  4 downsampling layers 0.923 (0.003) 0,001* 0.84 (0.005) 0,236 0.593 (0.013) 0,105
  3 downsampling layers 0.877 (0.005) <0.001* 0.823 (0.003) <0.001* 0.513 (0.011) <0.001*
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especially when working with thin‑slice 3D data, which is 
common in many navigation and radiosurgical protocols. A 
reliable and accurate automatic or semi‑automatic segmenta‑
tion tool would benefit clinical practice.

Multiple automatic and semi‑automatic PA segmentation 
attempts have been attempted in recent years. The first con‑
tribution by Egger [25] in 2011 used a directed 3D graph 
from a user‑defined seed point, sending rays through the sur‑
face points of a polyhedron and sampling the graph’s nodes 
along every ray [39]. This method achieved an average DCS 
of 0.775. In their follow‑up work, Egger [7] examined the 

competitive region‑growing method [40], achieving an aver‑
age DSC of 0.820. The subsequent work by Egger [6] com‑
pares their previously developed graph‑based method [25] to 
a balloon inflation method [41], yielding an average DSC of 
0.775 and 0.759, respectively. All these methods required a 
manual seed point initialization and parameter setting; how‑
ever, segmentation time was significantly reduced.

Wang [5] proposed a deep learning‑based model classify‑
ing image voxels into eight classes (background, PA, normal 
pituitary, right ICA, right cavernous sinus, left ICA, left cav‑
ernous sinus, and optic chiasm). On clinically relevant slices, 

Fig. 5  Train and validation Dice coefficients over training time for the tumour, ICA, and normal gland (a–c). The grey vertical line marks the 
epoch of the best performing model for the validation loss

Fig. 6  Eight examples of ground truth (outline) and predicted (coloured area) segmentations for tumour (green), ICA (red), and normal gland 
(blue)
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they achieved a DCS of 0.940, 0.824, 0.847, and 0.721 for 
PA, right ICA, left ICA, and normal gland, respectively. 
Their model called GSU‑net was a form of a U‑net [35] with 
elements of a gated‑shape convolutional network [42]. Their 
inputs consisted of CE‑T1, non‑contrast T1 and T2 scans 
concatenated with the results of an edge detector. Shu [8] 
used nnU‑net [43], a self‑configuring U‑net framework, and 
achieved a PA DCS of 0.803 and 0.853 on their two datasets. 
They noticed poor performance of their model (DCS < 0.5) 
for tumours with a volume < 1000  mm3.

Although all authors gave quantitative results, they cannot 
be directly compared, as their input data and target labels 
varied. We propose using our publicly available test data‑
set as a benchmark to compare the accuracy of pituitary 
adenoma segmentation models.

Machine learning models generalise poorly when pro‑
cessing inputs dissimilar to what they have been trained 
on [44]. Because it is unrealistic to provide annotations for 
training data for all the slices, we only focused on the clini‑
cally relevant slices, providing only sparse annotations [45, 
46]. However, such a model might produce nonsense results 
for slices anterior or posterior to the region of clinical inter‑
est unseen during the training. Wang [5] also reported better 
results on relevant slices compared to all slices (PA DCS 
0.940 vs. 0.898). In such settings, the user would have to 
select relevant slices manually. We successfully overcame 
this issue by training a classifier to distinguish relevant 
(annotated) and irrelevant (unannotated) slices with over 
90% accuracy on the test dataset. It should also be noted 
that we trained our model on scans acquired according to 
various imaging protocols on 1.5T and 3T systems used over 
an 11‑year period. This approach contributes to higher input 
data variance, leading to better generalisation. In contrast, 
previous studies used scans acquired according to a defined 
imaging protocol.

We were surprised that adding more pulse sequences 
to the input did not improve the segmentation results. 

Intuitively, we expected the model to benefit from comple‑
mentary information. In clinical practice, surgeons often 
look into different pulse sequences and image planes to 
better understand the complex anatomical situation. For 
example, comparing non‑contrast and CE images, primar‑
ily acquired in the venous phase, helps to identify structures 
with a high contrast enhancement ratio, i.e. the cavernous 
sinus. Similarly, examining the T2‑weighted image can help 
identify the tumour’s cystic parts.

In our work, however, adding these inputs as additional 
channels did not increase total DCS (p > 0.05). In contrast, 
several studies outside the domain of PA [47–49] demon‑
strated improved segmentation results using multimodal 
inputs. Generally, there are three strategies for combining 
multimodal inputs: fusion at the input level, intermediate 
layer level, and decision level [50]. There is no consensus 
about which of these strategies is superior. Because of its 
simplicity, most authors merge the inputs directly before 
entering the model [51–59]. Fusing the modalities halfway 
through the model is supposed to allow the network to 
process low‑level features independently and high‑level 
features combined [60–63]. Decision level fusion means 
training separate classifiers for individual modalities and 
weighting their outputs (“voting”) [64]. Guo [47] per‑
formed a comparison study proving that input and layer 
level fusion outperformed decision layer fusion and sin‑
gle‑modality models in soft‑tissue sarcoma segmentation 
from PET, CT, T1, and T2 images. Le [58] examined two 
methods of layer level fusion which outperformed input 
level fusion and single modality models in the diagnosis 
of prostate cancer from T2‑weighted and ADC images.

Our model uses input level fusion. Pixelwise correspond‑
ence of the mask with CE‑T1 images is ensured, as these 
were used to draw the ground truth segmentation masks. 
The relevance of other modalities for the segmentation mask 
can be adversely affected when a misalignment with CE‑T1 
occurs. Further research is needed to clarify the effect of 

Fig. 7  a Train and validation 
slice selection accuracy over 
training time. The grey vertical 
line marks the epoch of the 
best performing model for total 
validation loss; b ROC for slice 
selection on validation and test 
datasets
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misalignment on the model performance. Feature‑level 
fusion could also compensate for the misalignment in that 
the images are being fused at a higher level of their recep‑
tive fields, where the images suffer less from small shifts 
between channels.

The proposed model achieved accurate (71.4%) or slightly 
inaccurate (21.4%) results in the majority of cases, as judged 
by an expert human rater. We noted that the model often 
confused tumour for normal pituitary gland and vice versa, 
which is sometimes difficult to differentiate even for human 
experts.

In further work, this model should be modified for clini‑
cal use. Radiosurgical planning is a direct application of 
automated segmentation [19]; however, there are more con‑
siderations than achieving anatomically precise contouring. 
The model has to account for a safe border zone around the 
lesson [65]. Also, damage to important radiosensitive struc‑
tures (such as the optic chiasm) has to be avoided [66]. Cases 
referred for radiosurgical treatment are usually partially 
resected tumours or tumour recurrences, which can exhibit 
radiological features such as eccentric position within the 
sella turcica unaccounted for in our dataset. Further research 
directly on radiosurgical cases would be needed to assess our 
model’s clinical utility or to propose new models directly for 
this clinical application. Different workflows would have to 
be tested including a semi‑automated mode with the models 
suggesting a segmentation and a clinical expert correcting 
it if necessary. Such workflow would allow for faster case 
processing and higher throughput while keeping control over 
the quality of radiosurgical plans. Other application fields 
would be progression and treatment response tracking [21] 
and augmented reality endoscopic surgery [20].

We aimed to present a simple, ready‑to‑use system for 
clinical researchers without extensive technical knowledge 
and to enable further development in automatic segmen‑
tation applications not limited to the domain of pituitary 
adenomas. By replacing the training data, the model can be 
directly used on other types of medical images. Our open 
source code can also be modified by any researchers and 
serve as a starting point for their segmentation projects. We 
encourage further research in this field.

Conclusions

We developed and evaluated a fully automated segmenta‑
tion system for pituitary adenomas. Our model achieved 
good results comparable to recent works of other authors, 
with DCS > 0.9 for tumour and DCS > 0.7 for ICA on 
the largest pituitary adenoma segmentation dataset to 
date. The model also generalised well for various imag‑
ing protocols. We found that the model often confused 
tumour for normal pituitary gland and vice versa, which 

is sometimes difficult to discriminate even for human 
experts. The model also achieved a relevant slice identifi‑
cation accuracy of 82.5%. Further development is needed 
for successful adaptation in clinical practice. We discussed 
some future applications and their considerations. Mod‑
els and frameworks for these applications have yet to be 
developed and evaluated.
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