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Abstract
This thesis is focused on the three separate
image recognition tasks—classification, lo-
calization, and segmentation of the ultra-
sound images of the carotid artery with
stenosis. The first problem was success-
fully solved by a ResNet50 CNN and a
created dataset with 1, 679 images. Such a
model was able to categorize four classes
of the ultrasound images (longitudinal,
transverse, Doppler, conical) with a test
accuracy of 99.22%. The region of inter-
est, the carotid artery, was localized on
the transverse and longitudinal images
by the novel Faster R-CNN. The IoU be-
tween predicted and true bounding boxes
was greater than 0.75 in 90% of the test
cases for both, the transverse and longitu-
dinal test images. Further, the area of an
artery was segmented into an artery wall
with plaque, a lumen, and surrounding tis-
sue. The U-net trained only on 75 images
achieved an average image accuracy of
86.53% on the test data for the transverse
section and 84.23% for the longitudinal
section.

Keywords: Carotid artery stenosis,
Ultrasound, Medical imaging, Deep
learning, Image classification, Object
localization, Image segmentation

Supervisor: prof. Dr. Ing. Jan Kybic
Department of Cybernetics
Faculty of Electrical Engineering
Czech Technical University in Prague

Abstrakt
Táto práca je zameraná na tri samostatné
problémy týkajúce sa spracovania obrazu
– klasifikáciu, lokalizáciu a segmentáciu ul-
trazvukových snímkov stenózy krčnej ar-
térie. Prvý zo zmienených problémov bol
úspešne vyriešený použitím neurónovej
siete ResNet50 a vytvorením datasetu so
1679 snímkami. Tento model bol schopný
klasifikovať štyri triedy ultrazvukových
snímkov (pozdĺžny, priečny, Dopplerovský,
kónický) s testovacou presnosťou 99, 22%.
Oblasť záujmu, krčná artéria, bola pomo-
cou Faster R-CNN lokalizovaná na prieč-
nych a pozdĺžnych snímkoch. IoU medzi
predpovedaným a skutočným ohraničujú-
cim boxom u oboch typov snímkov bola
vyššia ako 0, 75 u 90% testovacích prípa-
dov. Následne bola segmentovaná oblasť
artérie na stenu artérie s plakom, lumen a
okolité tkanivo. U-net natrénovaná len na
75 snímkach dosiahla priemernú testova-
ciu presnosť segmentácie snímku 86, 53%
pre priečne a 84, 23% pre pozdĺžne snímky.

Klíčová slova: Stenóza karotídy,
Ultrazvuk, Lekárske zobrazovanie,
Hlboké učenie, Klasifikácia obrazu,
Lokalizácia objektu, Segmentácia obrazu

Překlad názvu: Lokalizace a
segmentace in-vivo ultrazvukových
obrazů karotidy
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Chapter 1

Introduction

Artificial intelligence is a scientific field that aims to build intelligent systems
and understand the principles behind them [69]. Most of the researches assume
that the ability to learn is a predisposition for intelligence [40]. Machine
learning is a subfield of AI, which focuses on learning behavior from data.
It has been applied in a wide range of applications, from natural language
processing [53], finance [10], image processing [43] to medical diagnosis [50].

The use of electronic health records is increasing in the last decades, and an
important part of patients’ records consists of medical images [35]. Computed
tomography (CT), magnetic resonance imaging (MRI), medical ultrasound,
and positron emission tomography (PET) have become core tools in disease
diagnostics. The digitization of medicine, combined with the successes of deep
learning in image recognition [43, 74], led to its application in computer-aided
diagnosis [81].

Carotid artery stenosis is a disease in which blood flow in an artery is
reduced by atheromatous plaque. The symptoms of stenosis are hard to spot,
and it might be unnoticed until the disease becomes severe enough to cause
blood deprivation to the brain, transient ischemic attack, or even stroke [61].
In this work, the state-of-art image recognition deep learning models are
applied to ultrasound carotid artery images, which will be later used in the
research project “Evaluation of atherosclerotic plaque stability in carotids
using digital image analysis of ultrasound images”. This research aims to
create a software tool for analyzing ultrasound images of carotid stenosis, and
analyze visual differences in digital images of unstable (symptomatic) and
stable (asymptomatic) plaques. Another goal is to verify the hypothesis that
sonographic plaque characteristics can be associated with an increased risk of
plaque progression and stroke risk [82].
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Chapter 2

Goals

This thesis aims is to create a collection of machine learning methods for
ultrasound carotid artery images. All of them are interconnected, nevertheless,
each of them solves a different image processing task:..1. classification..2. localization..3. segmentation

The first goal is to propose and implement a model able to classify different
categories of ultrasound images, namely transversal, longitudinal, conical, and
Doppler ones. Later on, the project focuses on transversal and longitudinal
classes only. The second task is to detect the area with the carotid artery
in the image, which can be defined as a localization task. The last step
is segmentation. The developed solution needs to segment the particular
parts of an artery with stenosis—artery wall, plaque, lumen, and surrounding
tissue.
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Chapter 3

Background

3.1 Carotid Artery Stenosis

Blood to the head is transported by carotid and vertebral arteries (VA)
(Figure 3.1). Both of them are in pairs, symmetrically on both sides of the
neck. They later split into smaller arteries and arterioles, that together create
a vascular loop supplying the brain with blood. The right common carotid
artery (CCA) originates from the brachiocephalic artery and later splits into
internal (ICA) and external carotid artery (ECA). Left common carotid artery
branches of aorta directly and continues up the neck, where it is divided into
ICA and ECA as well. ECA is the main blood supplier to the meninges,
scalp, and face. ICAs and VAs deliver blood to the Central nervous system
[24]. Branches of ICA also supply eyes, extraocular muscles, and adjacent
structures (lacrimal gland, upper nose, and parts of the forehead) [5].

Figure 3.1: Anatomy of arteries in the neck and head—the right side [23]
(edited).
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3. Background .....................................
Carotid artery stenosis is a disease that can be described as a narrowing

of the carotid artery. This reduction is caused by locally collected plaque
on the interior arterial wall. The atheromatous plaque may consist of fat,
cholesterol, cellular waste products, calcium, and fibrin. As a result, the blood
flow from the heart to the brain is reduced [8]. Thrombus or another part of
the artheosclerotic plaque can break off and cause transient ischemic attack
(TIA), which is the most common cause of stroke. Stenosis is common in the
population. Some researchers suggest that more than 5% of the population
older than 65 years have asymptomatic stenosis, with at least 50% of artery
clogged by plaque [16]. This disease develops for years and might be unnoticed
for a long time. The patients are often diagnosed with CAS after the first
mini-stroke. The symptoms of stroke and TIA include numbness or weakness,
trouble speaking, trouble seeing, dizziness, and severe headache. These
problems occur suddenly since the freed parts of plaque travel quickly in the
artery [8]. The risk factors that can contribute to the development of carotid
atherosclerosis are older age, hyperlipidemia, hypertension, smoking, diabetes,
obesity, and sedentary lifestyle [56]. For asymptomatic cases of stenosis,
an intensive medicament treatment is most suitable. It includes lowering
cholesterol in the blood, treating hypertension, and diabetes screening. This
should be combined with healthy lifestyle choices as regular aerobic exercise,
a low-fat diet, and smoking cessation [45]. In more severe cases, surgery is
necessary. The less invasive option is angioplasty with stenting. During this
procedure, a catheter is pushed through the narrowed area. Then a balloon
is inflated, widening the space in the artery. Afterward, a stent is placed
to keep the artery open. The stent is a plastic or steel tube; see Figure 3.2.
During this procedure, some parts of the plaque might get free, so a small
filter on the guidewire is placed in the artery [78]. If at least 70% of the artery
is blocked, a more invasive method might be inevitable. During a carotid
endarterectomy, the artery is opened, and the plaque is surgically removed.
After the artery is stitched back together, the flow of the blood is restored.
This procedure is done under general or local anesthesia [71].

Figure 3.2: When performing carotid stenting, a catheter with a filter is deployed
(A.), then the plaque is flattened by a balloon (B.). A stent is placed to keep
the artery open (C. and D.) [30].
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................................ 3.1. Carotid Artery Stenosis

3.1.1 Diagnosis

During a physical examination, the doctor might listen to the arteries by a
stethoscope. Reduction of blood flow creates an abnormal whooshing sound.
In medicine, this condition is called a bruit. A practitioner might suggest a
test for carotid stenosis based on the patient’s medical history, examination,
or having some of the symptoms [86]. There are multiple techniques used
in image diagnosis of CAS. The most common one is the ultrasound. It
produces high-frequency sound waves above the threshold of human hearing.
During the procedure, a probe is placed on the skin covered by gel. The probe
not only emits the waves but also detect echoes reflected back. A special
ultrasound technique is a Doppler ultrasound, which uses the Doppler effect
to see and track the movement of blood cells in an artery. Medical ultrasound
is noninvasive, safe, painless, and does not produce any ionizing radiation
(which is produced by an x-ray) [57, 62]. Another method used is Carotid
Angiography. It is an x-ray of arteries and veins. Before this procedure, a
contrast dye needs to be injected [72, 77].
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Chapter 4

Existing methods

4.1 Image Classification

Image classification is one of the primary tasks in the field of image processing.
Its goal is to assign to an image one of the predefined categories. The neural
networks have achieved a breakthrough in this field, namely the ones using
convolutional layers. Later, as in many other domains, deep learning has
become state of the art in this field. One of the benchmarks for this task is the
ImageNet Large Scale Visual Recognition Challenge [68], which has begun in
2010. The task is to create a network able to classify over 1.4 million images
into one thousand categories. The size of the annotated dataset with the
reduction of training time achieved by using GPU led to deep architectures
[43]. After the initial successes of deep convolutional neural networks, they
have been widely used and applied in many fields, including medical and
biological image processing. For example, to predict breast cancer based on
histopathological images [76], to classify lung pattern for interstitial lung
diseases [2], or to detect and classify abnormalities on frontal chest radiographs
[84].

Figure 4.1: An image that would be labeled as a category “dog”.
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4. Existing methods ...................................
4.1.1 VGG

Very deep convolutional neural networks for large-scale image recognition [74]
were introduced in 2014. They achieved both, first and second places in the
Classification tracks of ImageNet Challenge [79] in the same year.

Architecture

The original paper [74] proposed six different VGG architectures, each con-
taining six blocks of convolutional layers separated by max-pooling ones. In
the convolutional layers were used filters with size 3 × 3 (in one experiment
were used filters with size 1 × 1 at the end of three convolutional blocks).
The spatial dimensionality is preserved through the whole block by stride 1
and padding. The max-pooling layer reduces dimensionality by half. This is
achieved by receptor field with size 2 × 2 and stride equal to 2. Finally, there
are three fully connected layers; the first two with 4096 neurons and the last
one with 1000 neurons, followed by a sigmoid activation function [74]. The
two best performing models with 16, respectively 19 layers are described in
Table 4.1.

VGG-16 VGG-19
Input: 224 × 224 × 3

2 × convl3-64
max-pooling2, stride 2

2 × convl3-128
max-pooling2, stride 2

3 × convl3-256 4 × convl3-256
max-pooling2, stride 2

3 × convl3-512 4 × convl3-512
max-pooling2, stride 2

3 × convl3-512 4 × convl3-512
max-pooling2, stride 2

FC-4096
FC-4096
FC-1000
soft-max

Table 4.1: Comparison of 16 and 19 layers VGG architectures [74].

4.1.2 ResNet

ResNet [29], a deep residual convolutional network, was proposed in 2015.
The depth of the network was pushed even further, up to 152 layers. This
combination of residual learning and network’s depth resulted in first place

10



..................................4.1. Image Classification

in the Categorization track of ImageNet Challenge 2015 [85] (ResNet models
can be found under MSRA team name).

Residual learning

Deep neural networks are generally harder to train [21]. ResNet targeted this
problem by introducing skip-connections. The layers through the networks
are not only connected with the preceding ones, but there are connections
that skip the layers as well. These shortcuts help to train deep networks.
They are based on the assumption that a network with these connections
should be able to fit the data as well as the shallower network without them.
Moreover, such a design solves the problem of the vanishing gradient. The
connections forward the flow in the network, where it is added to the values
transformed by multiple layers. This can be viewed in Figure 4.2, which can
be written as y = F (x,Wi)+Wsx. In this equation F , denotes transformation
by multiple layers, and Ws is either identity mapping or a linear projection if
the dimension is reduced by F [29].

Figure 4.2: The building block of residual learning [29].

Architecture

The architecture of ResNet follows principles introduced in VGG and uses
mostly convolutional layers with 3 × 3 filters, in some versions combined with
1×1 filters. ResNet takes an input of 224×224 pixels, which can be translated
into 224 × 224 × 3 matrix. This input is then processed by a convolutional
layer with filter size 7 × 7 and stride 2, which results in the reduction of the
dimension to half of the input size—112 × 112. The output of the first layer
is fed into the max-pooling layer, with receptor filed 3 × 3 and stride 2. The
following convolutional part is composed of four blocks of convolutional layers,
which structure varies with the specific network’s version. The dimensionality
between convolutional blocks is reduced by increasing stride to 2 in the first
convolutional layer of each block, instead of using max-pooling, which is used
in VGG. The result of convolutions is processed by a global average pooling
layer, which computes the average of each feature map. The network contains
only one fully connected layer, which is at the end, and it is followed by

11



4. Existing methods ...................................
the soft-max activation function, which translates the output of neurons to
probabilities of the one thousand categories. Table 4.2 describes the two most
successful architectures with 50, and 101 layers [29].

ResNet-50 ResNet-101
Input: 224 × 224 × 3
conv7-64, stride 2

max-pooling3, stride 2

3 ×

 convl1-64
convl3-64
convl1-256



4 ×

 convl1-128
convl3-128
convl1-512



6 ×

 convl1-256
convl3- − 256
convl1-1024

 23 ×

 convl1-256
convl3-256
convl1-1024



3 ×

 convl1-512
convl3-512
convl1-2048


global average pooling

FC-1000
soft-max

Table 4.2: Comparison of ResNet50 and ResNet101 architectures [29].

4.2 Object Localization

The goal of object localization is to select an area with a certain object in
an image. Usually, by surrounding its borders with a rectangle (bounding
box), see Figure 4.3 [60]. It is a simplification of a more complex task—object
detection, whose goal is to detect all objects of proposed categories in an
image. It has been applied in robot vision, security, autonomous driving,
human-computer interaction, intelligent video surveillance, augmented reality,
and more [48]. In the field of medical imaging, deep learning can be used to

12



..................................4.2. Object Localization
localize and identify vertebrae in CT images [6], localize ventricle in cardiac
MRI images [13], or detect lung nodules in CT scans [75].

Figure 4.3: Bounding box localizing the object—a dog.

Region Proposal Networks

The objective of Region Proposal Network (RPN) is to generate object
proposals, which could be processed by Fast R-CNN. An image is first
processed by a set of convolutional and pooling layers, which results in a
convolutional feature map. The RPN slides a small window with shape n× n
over this feature map and reduces its dimensionality (convolutional layer with
receptor field of size n× n and number of filters equal to reduced dimension).
This is followed by two sibling 1 × 1 convolutional layers, one for classification
and one for regression. At each position, multiple anchors are generated.
RPN aims only to distinguish between object and background in the image, so
it does not consider object categories in the classification. At every position,
multiple (k) proposals are considered, so the classification layer has 2k neurons
(two categories for each proposal), and the regression one computes 4k values
(one bounding box per proposal). Each of these predictions is relative to an
anchor—reference box with a fixed size. All anchors are centered in the center
of the sliding window and the original version uses 3 size ratios in width and
height, which creates 9 different anchors (Figure 4.4) [64].

Figure 4.4: The architecture of the region proposal network [64].
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4. Existing methods ...................................
Fast R-CNN

Fast R-CNN is a deep convolutional neural network designed to processed
regions of interest (RoI). As an input, it takes the whole image and processes
it by a set of convolutional and pooling layers. This feature map is common
for all proposals suggested for a given image, which speeds up the processing
time. One region of interest is selected from the convolutional feature map
and is then resized into a prespecified shape by max-pooling. The resized
region can be easily fed as an input into fully connected layers. These are
followed by two sibling branches. One is used to predict the probabilities of
k+1 classes and, the second one to predict the bounding boxes of objects of
k classes [18]. The whole architecture can be seen in Figure 4.5.

Figure 4.5: The architecture of Fast R-CNN [18].

4.2.1 Faster R-CNN

Faster R-CNN (R stands for “Region”) [64] was published in 2016, and it
outclassed the best models at that time on Pascal 2007, Pascal 2012 [15] and,
COCO dataset [46]. Object detection is a more complex problem than object
localization or image classification, and thus it needs a more complex approach.
Previous approaches were composed of multiple models that needed to be
trained separately [28, 19, 18]. Faster R-CNN is based on its ancestor—Fast
R-CNN [18] enriched by a Region Proposal Network (RPN), both of them
trainable in a single stage. RPN proposes regions in an image with suggested
positions of objects, and then the detection part (Fast R-CNN) locates an
object in the region (Figure 4.6) [64].
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Figure 4.6: The architecture of Faster R-CNN [64].

4.3 Segmentation

Image segmentation is a task that assigns an object class label to each pixel
of an image or can be viewed as a process of dividing an image into multiple
regions. By segmentation, an object can be localized, and furthermore, we can
detect its shape, borders, and relative size. The rise of deep learning brought
many new approaches to this field [17]. The human body contains organs
that have regular shapes that can be easily spotted. For example, the heart
has an oval shape, which is wider at the top. However, there are structures
and tissues with inhomogeneous shapes that can be hard to recognize even
for an expert. Using image segmentation in computer-aided diagnosis, a
medical practitioner may take advantage of automatically processed images,
or it can help in massive screenings to process big amounts of collected
data. Examples of image segmentation in medical imaging include lung
segmentation of volumetric CT images [31], heart segmentation in 3D images
[93], or segmentation of the brain in MRI scans [3].
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Figure 4.7: Segmentation of the dog in the image.

4.3.1 U-net

U-net [66] is a fully convolutional neural network, which was created in 2015.
This new “U”-shaped net has achieved much success in the segmentation of
biological images. The authors claim that U-Net is substantially faster and
more accurate than competing methods—indeed, it outperformed the runner-
up algorithm in the 2015 ISBI cell-tracking challenge [7]. This architecture
has been a keystone for many new approaches in image segmentation [1, 54]
and has been used even in areas outside biological imaging [91, 52].

Architecture

U-net is composed of two opposing arms, both of them built from four levels
of convolutional blocks (Figure 4.8). Each block contains two convolutional
layers. In the contracting part (the left arm), the number of filters is increased
in every block, and the dimensionality between the levels is reduced by
max-pooling. Symmetrically, in the expanding path (the right arm), the
number of filters is decreasing, and the dimensionality is increased with the
up-convolution. Moreover, the net contains residual connections between
convolutional blocks on the same levels. The output from the left level is
concatenated with the input of the right level. In the convolutional layers are
used filters with size 3 × 3 and stride one. In the proposed version, padding
is not used, thus the size is reduced by every convolutional layer by 1 for
height and width. Due to this, the dimension of output (segmentation mask)
is smaller than the input. The last layer contains k filters, where k represents
a number of classes to segment. This is followed by a pixel wise soft-max
activation function [66].
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Figure 4.8: The architecture of U-net. There are two arms connected with
residual connections. The left one reduces the dimensionality, and the opposite
arm increases it almost to the input size [66].
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Chapter 5

Data

The data are an essential part of machine learning. Although they are present
in almost every aspect of human lives, creating a dataset suitable for more
complex tasks might still be difficult. In the field of medical imaging, a doctor
with a specialized machine is needed in order to examine a patient. Such data
themselves are not suitable for the image processing tasks directly; they need
to be properly annotated and transformed into a dataset. The annotations
vary in difficulty, and in many cases, experienced professionals are required.
This chapter discusses two image databases used in this work. The primary
one is the ANTIQUE dataset (Section 5.1), and the best from proposed neural
networks will be used on these data. To improve the performance, a SPLab
dataset (Section 5.2) was used in some of the experiments.

5.1 ANTIQUE dataset

The ANTIQUE dataset was created during the study “Atherosclerotic Plaque
Characteristics Associated With a Progression Rate of the Plaque in Carotids
and a Risk of Stroke” [96], between 2015 and 2020. A group of 413 patients
was selected and observed at the University Hospital Ostrava and Military
University Hospital in Prague. The examined patients were between 30
and 90 years old, and all of them were diagnosed with stenosis > 30%.
The ultrasound scans of atherosclerotic plaque in the carotid bifurcation
and ICA have sufficient image quality. Clinical examination was repeated
every six months for three years, and it consisted of physical and neurological
examinations, and examinations of carotid arteries by duplex sonography. The
dataset in the raw form consists of the images taken in a single examination of
a patient. Overall, there are 1, 322 examinations available, together containing
28, 178 ultrasound scans. There are no annotations regarding how the image
was made (orientation of the ultrasound probe, Doppler ultrasound, etc.),
nor the position of an artery or the severeness of the stenosis. A raw image
does not contain only an ultrasound scan, but some additional information
irrelevant for this work (Figure 6.1). Thus only the scan area is used.
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5. Data ........................................
5.2 SPLab dataset

Two databases were used to enlarge the sizes of the annotated data, the
Artery database, and the Ultrasound image database from the Signal processing
laboratory at the Brno University of Technology [9]. The Artery database
contains ultrasound images of the CCA transverse section. It is composed of
two sets, each taken by a machine from a different ultrasound manufacturer.
The first set was created by an Ultrasonic device, and it contains 849 images.
The second set was taken by a Toshiba device, and it consists of 433 images,
which are noisier [65]. Samples from both devices can be seen in Figure 5.1.
The Artery database has been used exhaustively in the research at the BUT
[70, 4, 95]. The Ultrasound image database contains 84 images of the CCA in
the longitudinal section. This database was created by a Sonix OP ultrasound
scanner [94].

(a) : SPLab longitudinal image (b) : SPLab Toshiba transverse image

(c) : SPLab Ultrasonic transverse
image

Figure 5.1: Examples of images from the SPLab dataset.
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Chapter 6

Classification of ultrasound carotid artery
images

The target dataset contains patient’s images from a single examination, and
those need to be categorized to be processed further. The ultrasound images
classify into four main categories—longitudinal, transverse, conical, and
Doppler (Figure 6.1). For this, an annotated data set had to be created.

(a) : ANTIQUE longitudinal image (b) : ANTIQUE transverse image

(c) : ANTIQUE Doppler image (d) : ANTIQUE conical image

Figure 6.1: Examples of different categories in the ANTIQUE dataset.
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6.1 Dataset

The annotations for the ANTIQUE dataset had to be created to train the
neural network. The data was captured in sequences, and images from the
same angle might appear similar. If such cases were present across the
training, validation, or test set, it might have resulted in overfitting. Based
on this assumption, files from one examination were sorted into either test,
training, or validation group. The distribution of classes in each set follows
the distribution of raw data. In some cases, the transverse images strongly
remind the longitudinal one, especially when they show the part where CCA
bifurcates into ECA and ICA, as can be seen in Figure 6.2. Thus the selection
of examination records is not purely random but synthetically enlarged by
such problematic samples. Overall, 1679 images from the ANTIQUE dataset
were sorted into four categories (transverse, longitudinal, Doppler, conical)
and three sets (training, validation, test), described in Table 6.1. In some
of the experiments, the transverse and longitudinal classes in the training
set were combined with SPLab data, which are already sorted. The training
set without the SPLab database will be denoted as Training set 1 and the
training set with SPLab database as Training set 2.

Image class Training set 1 Training set 2 Validation set Test set
Longitudinal 263 347 100 119
Transverse 514 1728 144 306
Conical 80 80 30 54
Doppler 64 64 36 35

Table 6.1: The number of images in both training, validation, and test set.

(a) : Transverse class (b) : Longitudinal class

Figure 6.2: Left image shows a carotid bifurcation (transverse class) and the
right one a longitudinal image.
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6.1.1 Data augmentation

Every image needs to be processed when used in machine learning. The
necessary set of training transformations consists of resizing to the size
predefined by the particular architecture and normalizing values to the 0–1
range. This combination will be denoted as Simple transformation. Data
augmentation is an easy way how to create robust models and artificially
create bigger datasets. A simple example can be seen in Figure 6.3, where
the transverse section image would be categorized the same, regardless of
how flipped it is. Complex data transformation will be denoted as Complex
transformation, and it is described in Table 6.2, together with the Simple
transformation.

(a) : Original image (b) : Horizontal flip

(c) : Vertical flip

Figure 6.3: Examples of image transformations used in classification.
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Simple transformation Complex transformation

Resize Resize
Normalize Normalize

Random Horizontal flip, p = 0.5
Random Vertical flip, p = 0.5

Table 6.2: Transformations used to augment the training set.

6.2 CNN Architectures

Three different architectures were compared, from the relatively small one to
the deep VGG-16 with over 130 million trainable parameters. The simplest
from the proposed networks had 82, 000 times fewer parameters than VGG-16
and 14, 000 times less than ResNet50 (Table 6.3).

Model Number of trainable parameters
Small CNN 1, 628
VGG-16 134.2 millions
ResNet50 23.5 millions

Table 6.3: Comparison of the number of trainable parameters of the classification
models.

6.2.1 Small CNN

A small convolutional net was created as a baseline. It consists of five layers—
two convolutional, two max-pooling, and one fully connected. This network,
with a relatively small number of learnable parameters, takes an input with a
small resolution—28×28 pixels. Afterward, a convolutional layer with 4 filters
and 5×5 kernels is used. Dimensionality is halved by a max-pooling layer with
receptor field 2 × 2 and stride 2. Followed by another block composed of the
convolutional layer, with a number of filters increased to 8 and a max-pooling
layer. Convolutional layers do not use padding, thus every application reduces
the dimension by 2 from every side. The last, fully connected layer contains
four neurons. The output of this layer can be translated into probabilities by
a soft-max activation function.
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.................................. 6.2. CNN Architectures

Small CNN
Input: 28 × 28 × 3

convl5-4
max-pooling2, stride 2

convl5-8
max-pooling2, stride 2

FC-4
soft-max

Table 6.4: The architecture of Small CNN.

6.2.2 VGG-16

Several VGG architectures were proposed. The sixteen layers version was
selected; its performance was not significantly worse than VGG-19 on the
ImageNet dataset, but contained 6 million fewer parameters than the deeper
version [74]. The VGG-16 was used with weights pretrained on the ImageNet
dataset, and only the last fully connected layer was removed and substituted
with a newly initialized one containing 4 neurons. Since the goal is to train
on ultrasound images, which are very different from those in the ImageNet,
all layers are fine-tuned.

6.2.3 ResNet50

The following selected architecture is ResNet, which has surpassed VGG on
multiple classification tasks with five times fewer parameters [29]. As in the
previous case, the deepest architecture from the initially proposed ones was
not used. In the tradeoff between performance and size, the ResNet50 was
chosen. The model was pretrained on the ImageNet dataset, and the last and
only fully connected layer was replaced with a new one containing 4 neurons.

6.2.4 Training

Transfer learning has shown to improve and speed up the training of deep
neural networks [83]. The use of weights that are pretrained on a different
dataset (for example, Image Net) has become a standard practice in computer
vision [32, 73]. The weights that have not been pretrained are initialized by
He initialization [26]. Since we were dealing with classification, a cross-entropy
loss function was used. All of the models were trained by stochastic gradient
descent with Nesterov momentum [20]. During this process, all the weights
were adjusted. The momentum was set to 0.95, and the learning rate started
at 10−4. The learning rate was decayed by a multiplicative factor equal to
0.1, when the training loss did not significantly improve for 3 epochs. The

25



6. Classification of ultrasound carotid artery images .....................
whole training lasted for 30 epochs, and the model with the lowest validation
loss was selected.

6.3 Experiments and results

All of the proposed architectures were trained on both datasets, each time
with a different set of transformations. Overall, each model was trained four
times. Table 6.5 contains the lowest training and validation losses, as well as
the percentage of accuracy, which gives a more straightforward description
of how the model performs. As expected, the worst train and validation
results had Small CNN. The combination which gave the best validation
loss was Train set 1 and Complex transformation. The Small CNN gave
worse results when the SPLab data enlarged the ANTIQUE dataset. Such
a small model was not able to generalize and learn from images taken by
different machines. That changed when it came to deeper architectures,
such as VGG-16. Both transformations achieved better results when using
Train set 2. This training set combined with Simple transformation achieved
the best validation results—0.08103 loss and accuracy 97.419%. The model
expected to provide the best results was ResNet50. It was able to converge
to train accuracy 100% in three out of four cases. Nevertheless, this did
not reflect in validation metrics by overfitting. Validation losses overcame
VGG-16 in every setting.

Small CNN
Data Transformations Tr. loss Tr. accuracy Val. loss Val. accuracy

Train set 1 Simple tr. 0.16071 95.005% 0.77715 79.355%
Train set 1 Complex tr. 0.36838 85.993% 0.77499 72.581%
Train set 2 Simple tr. 0.03718 98.828% 0.87961 72.903%
Train set 2 Complex tr. 0.14238 94.953% 0.82445 75.806%

VGG-16
Data Transformations Tr. loss Tr. accuracy Val. loss Val. accuracy

Train set 1 Simple tr. 0.00154 100% 0.08250 96.774%
Train set 1 Complex tr. 0.02608 99.240% 0.17101 93.548%
Train set 2 Simple tr. 0.00046 100% 0.08103 97.419%
Train set 2 Complex tr. 0.01316 99.504% 0.11784 94.839%

ResNet50
Data Transformations Tr. loss Tr. accuracy Val. loss Val. accuracy

Train set 1 Simple tr. 0.00064 100% 0.06046 98.710%
Train set 1 Complex tr. 0.00352 99.891% 0.05755 97.419%
Train set 2 Simple tr. 0.00053 100% 0.07633 97.097%
Train set 2 Complex tr. 0.00023 100% 0.04064 98.710%

Table 6.5: The best training and validation losses of classification models. The
best validation loss for every architecture is highlighted.
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Every model was evaluated on the test set in order to select the best one,
see Table 6.6. These results mostly copied the validation one. The ResNet50
trained on the Train set 2 with Complex transformation achieved the best
test results from all of the experiments. The test loss of this net was 0.01342,
with an accuracy of 99.222%. It made only four mistakes.

Small CNN
Data Transformations Test loss Test accuracy

Train set 1 Simple tr. 0.47997 82.101%
Train set 1 Complex tr. 0.52131 79.961%
Train set 2 Simple tr. 0.59333 77.626%
Train set 2 Complex tr. 0.40255 85.019%

VGG-16
Data Transformations Test loss Test accuracy

Train set 1 Simple tr. 0.06093 98.638%
Train set 1 Complex tr. 0.07469 96.693%
Train set 2 Simple tr. 0.03246 99.027%
Train set 2 Complex tr. 0.05183 98.638%

ResNet50
Data Transformations Test loss Test accuracy

Train set 1 Simple tr. 0.09188 98.444%
Train set 1 Complex tr. 0.05930 98.054%
Train set 2 Simple tr. 0.01699 99.222%
Train set 2 Complex tr. 0.01342 99.222%

Table 6.6: The test losses and accuracies of classification models. The lowest
test loss for every architecture is highlighted.

These are described in the confusion matrix shown in Table 6.7. Some of
these mistakes were caused by switching transverse and longitudinal classes
or vice versa. One time the conical image was classified as a Doppler one.
Figure 6.4 shows examples of these mistakes, together with the probabilities
predicted by the model for each class.

Predicted class / Ground truth Longitudinal Transverse Conical Doppler
Longitudinal 117 2 0 0
Transverse 1 305 0 0
Conical 0 0 53 1
Doppler 0 0 0 35

Table 6.7: Mistakes made by the best classification model on the test set.
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(a) : Longitudinal image, pre-
dicted probabilities of classes: Long
42.3%, Trans. 57.7%, Conical 0.0%,
Doppler 0.0%

(b) : Transverse image, predicted
probabilities of classes: Long 86.0%,
Trans. 14.0%, Conical 0.0%, Doppler
0.0%

(c) : Conical image, predicted
probabilities of classes: Long 0.0%,
Trans. 0.0%, Conical 22.2%,
Doppler 77.8%

Figure 6.4: Three different mistakes made by the best classification neural
network. The probabilities of classes predicted by the network are shown along
with the true category.
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(a) : Longitudinal image, pre-
dicted probabilities of classes: Long
100.0%, Trans. 0.0%, Conical 0.0%,
Doppler 0.0%

(b) : Transverse image, predicted
probabilities of classes: Long 0.0%,
Trans. 100.0%, Conical 0.0%,
Doppler 0.0%

(c) : Conical image, predicted
probabilities of classes: Long 0.0%,
Trans. 0.0%, Conical 100.0%,
Doppler 0.0%

(d) : Doppler image, predicted
probabilities of classes: Long 0.0%,
Trans. 0.0%, Conical 0.0%, Doppler
100.0%

Figure 6.5: Four different images classified correctly by the best classification
neural network. The probabilities of classes predicted by the network are shown
along with the true category.
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Chapter 7

Localization of CCA and ICA in ultrasound
images

The area scanned by ultrasound is bigger than the region of interest—the
carotid artery. This can be solved by localization. In this work, the goal is to
detect CCA or ICA if the image contains both ECA and ICA. ICA is chosen
over ECA since stenosis in the external carotid artery may cause more severe
damage. A bounding box should surround all parts of an artery—a lumen, a
plaque, and a wall. For this purpose were created two annotated datasets
(one for transverse and one for longitudinal images). Multiple experiments
were proposed in order to maximize the performance of the Faster R-CNN.

7.1 Dataset

Since the original dataset did not contain any information about the location
of a carotid, such references needed to be created. Precisely 150 representative
examinations were selected from the stable and progressive group, 75 from
each. From these was handpicked one transverse and one longitudinal image
with good visibility of the artery per patient. As a result, two datasets
were created. CCA or ICA was localized on every image by a bounding
box (Figure 7.1a). Creating such labels might be particularly difficult, for
example, to distinguish ECA from ICA on the transverse section images.
These annotations were checked by medical students from the Faculty of
Medicine and Dentistry of the Palacký University, who have the corresponding
domain knowledge to distinguish the carotid arteries or to correctly recognize
the border of an artery wall from the surrounding tissue. These data were
divided into three groups—training, validation, and test one (Table 7.1).
Artery database from the SPLab dataset already contains bounding boxes.
Each one localizes a CCA in the transverse section ultrasound image. Two
splits were created, training (80%) and validation (20%). The test group of
SPLab images was not created because the target dataset was the ANTIQUE
one.
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Image class Longitudinal Transverse
Training set 75 75

SPLab training set – 972
SPLab validation set – 242

Validation set 25 25
Test set 50 50

Table 7.1: The number of images used in training and evaluation of the local-
ization models.

7.1.1 Data augmentation

As well as in the previous chapter, all images were normalized to 0–1 range and
then standardized with mean and standard deviation of ImageNet dataset
(mean= (0.485, 0.456, 0.406), std= (0.229, 0.224, 0.225)). Creating an an-
notated dataset is not only time consuming, but in this case, it requires
knowledge of human anatomy and medical ultrasound. To be maximally
efficient with the data, multiple methods for data augmentation were cre-
ated. In the localization, the bounding box needs to be transformed with
the image. Horizontal and vertical flips were used again. Moreover, the
Faster R-CNN takes an input of non-fixed shaped images, so a transformation
was created that rescaled the image with the label. The lower and upper
bound of the scaling ratio was set to 0.8 and 1.2. The main assumption
behind this procedure is to make the model more robust to the carotids of
different sizes since they can vary in the population. Another augmentation
was random cropping. The tissue surrounding the carotid was randomly
cropped, which influences the feature map produced by the RPN. Table 7.2
describes Simple transformation and Complex transformation, which are used
during the training in the experiments. Figure 7.1 compares all the mentioned
transformations.

Simple transformation Complex transformation
Normalize Normalize

Standardization Standardization
Random Horizontal flip, p = 0.5
Random Vertical flip, p = 0.5

Random Crop, p = 0.1
Random Reshape, p = 0.25, l = 0.8, u = 1.2

Table 7.2: The comparison of transformations used in the localization task.
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(a) : Original image (b) : Horizontal flip

(c) : Vertical flip (d) : Resize

(e) : Crop

Figure 7.1: Transformations used in localization.
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7.2 Faster R-CNN

There are only small adjustments in the originally proposed model. The
ResNet architecture was selected as the backbone of the network. This part
converts the input to the feature map by multiple convolutional layers. It
consists of five convolutional blocks that were pretrained on the ImageNet.
The head of the network was newly initialized, and its architecture stayed
without a change. During the training, all of the parameters in the architecture
were optimized.

Figure 7.2: Multiple objects detected by transverse Faster R-CNN. The blue
bounding box has pcarotid = 0.9957 and the yellow one pcarotid = 0.0698. The
blue box correctly detects the carotid artery.

7.2.1 Training

In the case of Faster R-CNN, the objective function of the detection network
is composed of two metrics—a classification loss and a localization loss. The
classification loss (Lcls) computes the negative logarithm of the true class
probability predicted by the model. The localization loss (Lloc) computes
the difference between the bounding-box regression targets and the predicted
coordinates [18]. The object localization can be evaluated not only in the
term of losses, but also in the Intersection over Union (IoU). IoU computes
the overlap between true and predicted bounding boxes divided by the union
of these two boxes. The best possible score is 1.0, and the worst is 0.0
(Figures 7.4 and 7.5). Since the Faster R-CNN is a network designed for
object detection, it can predict multiple boxes for a single category in an
image. All of these boxes are paired with a class probability. This can be seen
in Figure 7.2. The bounding box with the highest probability was selected,
since in every image, there is only one CCA or ICA. To optimize the training
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loss was used Adam [38]. The initial learning rate was 10−4, and it was
decayed 3 times after preselected epochs. The whole training of a single
network took 40 epochs. The Faster R-CNN with the lowest validation loss
on the ANTIQUE dataset was selected.

7.3 Experiments and results

A separate Faster R-CNN was developed for each image category. In the case
of the transverse Faster R-CNN, the SPLab dataset was used in multiple
ways in order to maximize the localization ability. As a baseline, only the
ANTIQUE dataset was used during the training. There were no significant
differences in the test losses between Simple and Complex transformations.
When both networks were evaluated on the test set by IoU, the model trained
with the Complex transformations was able to predict 60% of the bounding
boxes with IoU bigger than 0.85 (Table 7.3).

ANTIQUE data
Transformations Simple transformation Complex transformation
Training Lcls 0.00817 0.01288
Training Lloc 0.00943 0.02168
Validation Lcls 0.00817 0.01395
Validation Lloc 0.00943 0.02270

Test Lcls 0.02685 0.02331
Test Lloc 0.04502 0.04505

Test IoU >= 0.6 94% 92%
Test IoU >= 0.75 86% 84%
Test IoU >= 0.85 48% 60%

Table 7.3: The comparison of two transverse Faster R-CNNs trained on the
ANTIQUE dataset. Each network was trained with different set of transforma-
tions.

SPLab training set later enlarged the ANTIQUE training set. This step
improved test Lloc, but other metrics did not show rapid improvement,
moreover many of them were even worse (Table 7.4). Taking into account the
fact that to the training set was enlarged by 972 samples, this experiment
was truly a disappointment.
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ANTIQUE + SPLab data

Transformations Simple transformations Complex tr.
Training Lcls 0.00194 0.00785
Training Lloc 0.00158 0.01820

SPLab validation Lcls 0.00819 0.00973
SPLab validation Lloc 0.02182 0.02960

ANTIQUE validation Lcls 0.00217 0.01223
ANTIQUE validation Lloc 0.00213 0.02427

Test Lcls 0.03074 0.02675
Test Lloc 0.03502 0.04183

Test IoU >= 0.6 90% 92%
Test IoU >= 0.75 88% 82%
Test IoU >= 0.85 64% 54%

Table 7.4: The losses of Faster R-CNNs trained on the combination of the
ANTIQUE and the SPLab dataset.

The SPLab and the ANTIQUE data contain the same type of data, but
the images themselves look different. When the datasets were combined,
the network was trained to fit the SPLab data, although it will never be
used on them. To use the information from the SPLab data, a network
was firstly fitted on the SPLab training set. These models were able to
detect 86% (Simple transformation) and 92% (Complex transformation) of
the test bounding-boxes with IoU higher than 0.6 (Table 7.6), but as the IoU
threshold got bigger, the percentage of correctly predicted bounding boxes
decreased. Then, the Faster R-CNN with the lowest SPLab validation loss
was fine-tuned on the ANTIQUE training set. Such an approach achieved
the best results. The network trained using the Complex transformation was
the best performing one. From the bounding boxes generated by this Faster
R-CNN, 90% had IoU greater than 0.75 with the references. In one of the
fifty training samples, the network did not predict any bounding box; this
image is shown in Figure 7.3. Thus if an object was found on a test image,
the IoU with the ground truth was at least 0.6. The network detected more
than one carotid artery in seven cases, and only one object was found in the
remaining 42 images (Table 7.5). Figure 7.4 shows four test images with the
predicted bounding boxes.

Model Zero One Many
The best transverse Faster R-CNN 1 42 7
The best longitudinal Faster R-CNN 0 33 17

Table 7.5: The number of detected arteries in the test images. The Faster
R-CNN either found none, one or many objects classified as an artery.
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Figure 7.3: The only test sample in which the best transverse Faster R-CNN
was not able to classify any region as an artery. The red bounding box shows
the true position of the unnoticed artery.

SPLab data
Transformations Simple tr. Complex tr.

SPLab training Lcls 0.00232 0.00713
SPLab training Lloc 0.00248 0.023814
SPLab validation Lcls 0.00589 0.00999
SPLab validation Lloc 0.02119 0.03048

Test Lcls 0.03346 0.03199
Test Lloc 0.03968 0.04961

Test IoU >= 0.6 86% 92%
Test IoU >= 0.75 64% 84%
Test IoU >= 0.85 34% 36%

ANTIQUE data
Transformations Simple tr. Complex tr.
Training Lcls 0.00343 0.00626
Training Lloc 0.00245 0.01060
Validation Lcls 0.00328 0.00626
Validation Lloc 0.00270 0.01257

Test Lcls 0.02667 0.01873
Test Lloc 0.03533 0.03253

Test IoU >= 0.6 94% 98%
Test IoU >= 0.75 84% 90%
Test IoU >= 0.85 66% 68%

Table 7.6: The upper part of the Table describes training and evaluation of the
Faster R-CNN trained on the SPLab dataset. The lower part holds the data
from the fine-tuning on the ANTIQUE dataset.
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(a) : IoU= 0.83417 (b) : IoU= 0.95150

(c) : IoU= 0.85391 (d) : IoU= 0.96344

Figure 7.4: The blue boxes were generated by the best transverse Faster R-CNN
from the experiments. The yellow bounding boxes are true positions of the
carotid arteries.

Only the 150 annotated longitudinal images from the ANTIQUE dataset
were available for the training and evaluation of longitudinal Faster R-CNN.
Firstly, the newly initialized Faster R-CNN was trained to detect the carotid
artery in an image. The network that trained using Simple transformation
performed better than the one using data augmentation. The training Lloc

of this neural network was half of the localization loss of the Faster R-CNN
trained with Complex transformation, and 90% of predicted boxes had IoU
greater than 0.75 with the true positions (Table 7.7). Since there are some
similarities between the longitudinal and transverse images (both categories
contain the same fibres, but from different angles), the best transverse Faster
R-CNN was retrained for the localization of the carotid on the longitudinal
images. Sadly, this approach did not bring the desired results (Table 7.8).
This model achieved comparable results as the newly initialized Faster R-CNN
but did not surpass them. The freshly initialized Faster R-CNN, trained with

38



................................ 7.3. Experiments and results

Newly initialized Faster R-CNN
Transformations Simple tr. Complex tr.
Training Lcls 0.00387 0.01138
Training Lloc 0.00261 0.01310
Validation Lcls 0.00371 0.01226
Validation Lloc 0.00291 0.01270

Test Lcls 0.01456 0.02370
Test Lloc 0.01927 0.03854

Test IoU >= 0.6 98% 100%
Test IoU >= 0.75 90% 90%
Test IoU >= 0.85 62% 60%

Table 7.7: The results of newly initialized Faster R-CNN trained to detect a
carotid artery on the longitudinal images.

Pretrained Faster R-CNN
Transformations Simple tr. Complex tr.
Training Lcls 0.00323 0.00844
Training Lloc 0.00331 0.01589
Validation Lcls 0.00354 0.00857
Validation Lloc 0.00337 0.01666

Test Lcls 0.02047 0.01752
Test Lloc 0.02808 0.03293

Test IoU >= 0.6 98% 100%
Test IoU >= 0.75 84% 88%
Test IoU >= 0.85 58% 52%

Table 7.8: The results of pretrained Faster R-CNN trained to detect a carotid
artery on the longitudinal images.

Simple transformation, was selected as the best model for this task. Figure
7.5 shows sample predictions (blue bounding box) of this model on the test
set. The model was able to detect an object in all of the test samples, but in
34% of the cases, more than one artery was detected (Table 7.5).
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(a) : IoU= 0.78335 (b) : IoU= 0.63968

(c) : IoU= 0.89091 (d) : IoU= 0.90961

Figure 7.5: The blue boxes were generated by the best longitudinal Faster
R-CNN from the experiments. The yellow bounding boxes are true positions of
the carotid arteries.
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Chapter 8

Segmentation of ultrasound carotid artery
images

The image of the artery itself does not give any information about how much
is the stenosis developed. For this purpose, the image needs to be segmented
into its core parts. Initially, four parts were aimed to be recognized, namely
a plaque, a lumen, an artery wall, and a surrounding tissue. By this, the
severity of the disease could be measured by the percentage of the lumen
blocked by a plaque. However, during the annotation process was found out
that separating the artery wall from the plaque is not an easy task. Based on
this, another approach was proposed, that the wall with the plaque might
be combined into one category. Later the severeness of the carotid artery
stenosis could be diagnosed by the thickness of the wall with stenosis. Two
models based on the U-net architecture were trained, one for longitudinal
and one for transverse images.

8.1 Dataset

Segmenting an image by hand is arguably the most complicated annotation
one might face in image recognition. It not only takes much time but requires
a high level of focus as well. The medical students annotated the same images
as in the localization section. Even with medical education, it was still not
easy to decide which parts of a carotid can be labeled as a plaque or specify a
precise border of an artery wall. It required an iterative process of consulting
and adjusting the annotations. From the original images was selected the
rectangular area containing the segmentation of the carotid artery.

Image class Training set Validation set Test set
Longitudinal 75 25 50
Transverse 75 25 50

Table 8.1: Number of samples in each set—training, validation and test one.
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8.1.1 Data augmentation

In the case of segmentation, several transformations might be used to process
the input. Two of them are horizontal and vertical flips, which were used in
the previous sections. The input to the model can be cropped from an original
ultrasound by a bounding box predicted by a Faster R-CNN. In the case that
a localization model would create the input, it cannot be assumed that the
bounding box would be as tight around the artery as the reference created
by hand. In the better case, the area would contain surrounding tissue, not
only an artery. For this purpose, a transformation was created that adds a
random number of pixels from predefined interval ([0,max_add)) to each
side (8.1e). Normalization, Random adding of pixes, Random horizontal and
vertical flips were composed to the Complex transformation (Table 8.2). In
the Simple transformation, the input was only normalized to 0–1 range, and
15 pixels were added to each side (Figure 8.1b).

(a) : Original image (b) : Original mask

(c) : Horizontal flip (d) : Vertical flip

(e) : Add

Figure 8.1: Examples of the image transformations used in segmentation. The
artery wall is red, the plaque is blue, the lumen is green, and the rest tissue is
black.
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Simple transformation Complex transformation

Normalize Normalize
Add, 15 Random Add, max_add = 30

Random Horizontal flip, p = 0.5
Random Vertical flip, p = 0.5

Table 8.2: The comparison of transformations used in the segmentation task.

8.2 U-net

The model used in this chapter contain multiple changes compared to the
original architecture of U-net [66]. In the original paper, the input and the
output did not have the same size. This was caused by using convolutional
layers without padding, which reduces dimension after every pass through.
As a result, the forwarded outputs from the left arm of the network needed to
be cropped. With the usage of padding, the input shape needs to be adjusted
because of the pooling layers. The selected input shape was chosen 512 × 512.
Such shape can be nicely reduced by a factor of 2 by the max-pooling layers
in the left part of the network, respectively, upsampled in the right arm. The
upsampling is done by bilinear rescaling, followed by a convolutional layer
that reduces the number of the features by half. Other adjustments were
made in the convolutional blocks used through the network. ReLU activation
functions were replaced by PReLU, which was shown to improve the fitting of
a model [27]. Batch normalization was used after every second convolutional
layer in order to stabilize the training process [33]. The convolutional block
is described in detail in Table 8.3.

U-net Convolutional block
convl3
PReLU
convl3

BatchNorm
PReLU

Table 8.3: Convolutional layers have kernels with a shape 3 × 3 and a number
of filters depending on the position in the net. As an activation function was
used PReLU. During the training, batch normalization is used.

8.2.1 Training

The output of a U-net model can be treated as a pixel-wise classification,
thus it can be trained with cross-entropy. RMSprop [67] with Momentum
(set to 0.99) were selected as the optimizer. The learning rate started at 10−4
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and was lowered 10 times every time the model did not improve for 5 epochs.
The training took 100 epochs, and the U-net with the lowest validation loss
was selected.

8.3 Experiments and results

As well as in the previous Chapter, two separate models were created. In
this task, no other data were available, so both models are trained only
on the dataset described in Table 8.1. The transverse and the longitudinal
U-nets were trained two times with a different set of transformations used.
In both cases, Simple transformation achieved better results than Complex
transformation. The complete evaluation can be found in Tables 8.4 and
8.5. The U-net fitted the not-augmented data easily, and it did result in the
training losses.

Transverse U-net
Transformations Training loss Validation loss Test loss

Simple tr. 0.21543 0.33858 0.27408
Complex tr. 0.36391 0.38702 0.39736

Table 8.4: Results of the U-net network on the transverse data.

Longitudinal U-net
Transformations Training loss Validation loss Test loss

Simple tr. 0.10081 0.36706 0.34370
Complex tr. 0.33790 0.36282 0.35817

Table 8.5: Results of the U-net network on the longitudinal data.

Box-plot in Figure 8.4 describes the accuracies of the predicted segmentation
masks on the test set. The mean of the test accuracies was 86.53% in the
transverse case and 84.23% in the longitudinal case, although the longitudinal
U-net had multiple outliers in the predicted masks. The worst test prediction
made by the longitudinal model in terms of accuracy is shown in Figure 8.3.
Opposingly, Figure 8.4 shows the best test segmentation mask. In the case of
the transverse images, the transverse U-net model was able to find the artery
easily. Although in some cases, the thickness of the artery wall with plaque
is lower than in the segmentation references (Figure 8.5). The best-predicted
test transverse mask had an accuracy of 94.96% and can be seen in Figure
8.6.
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Figure 8.2: Box-plot describing accuracies of segmentation masks made by the
best longitudinal and transverse U-nets on the test sets.

The U-net architecture was able to segment the ultrasound images. However,
in order to create a network that could be used in the computer-aided diagnosis,
the prediction ability needs to be increased, possibly by enlarging the labeled
dataset. Despite the fact that U-net is able to be trained on small datasets
[66], the training datasets in the available studies are usually bigger than
the 75 images used in this project [51, 47, 59, 39]. The accuracy of the
longitudinal U-net could be increased by selecting the area of an artery by a
rotatable bounding box [55, 49]. The rectangular area selected by this box
would contain less unrelated tissue, and the neural network would not be
misled as in Figure 8.3. Another possible improvement could be achieved by
remaking the borders in the existing references. In the current ground truth
segmentations, the plaque is not always directly located on the artery wall—it
is separated by a slim region classified as a lumen (Figure 8.3b). Because of
this fact, the model is trained on the images, where the plaque is attached to
the artery wall, and also on the images where the plaque is surrounded by
the lumen. These two facts are contradictory since, from the physiological
perspective, the plaque evolves from the artery wall.
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(a) : Predicted mask (b) : True mask

(c) : Original image

Figure 8.3: The least accurate test segmentation mask of the longitudinal U-net.
The artery wall with plaque is grey, the lumen is white, and the rest tissue is
black. In this case, the U-net evaluated as the artery not only the true one
but the tissue above as well. Indeed, the tuboid shape in the upper part of the
ultrasound image reminds an artery. This resulted in low accuracy of 66.84%.
However, the model was able to recognize the narrowed lumen in the left part of
the carotid artery.
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(a) : Predicted mask (b) : True mask

(c) : Original image

Figure 8.4: The most accurate test segmentation mask of the longitudinal U-net.
The network was able to recognize the narrowed area in the middle part of the
artery. The accuracy of this mask is 94.61%.
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(a) : Predicted mask (b) : True mask

(c) : Original image

Figure 8.5: The least accurate test segmentation mask of the transverse U-net.
It achieved an accuracy of 86.53%. The wall in the segmentation created by the
network is thinner than the reference.
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(a) : Predicted mask (b) : True mask

(c) : Original image

Figure 8.6: The most accurate test segmentation mask of the transverse U-net.
The accuracy of the predicted mask was 94.96%. The thickness of the artery
wall with plaque is similar to the one in the reference.
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Chapter 9

Conclusion

The objective of this thesis was to propose and implement a set of neural
networks for the database of ultrasound carotid artery images targeting three
different image processing tasks—classification, localization, and segmentation.
Over one thousand and five hundred images were classified by hand, on
which three CNN architectures were trained and compared. The ResNet50
achieved almost 100% of accuracy on the test set, and easily distinguished the
four categories of the ultrasound images. One hundred fifty representative
examinations of the patients with carotid artery stenosis were selected, of
which one longitudinal and one transverse image with good visibility of an
artery was chosen. These data were annotated with bounding boxes localizing
the CCA, respectively ICA. In collaboration with the Faculty of Medicine
and Dentistry of the Palacký University, these annotations were checked
by a group of medical students, who also created the segmentation masks
of the carotid arteries. The bounding box annotations were used to train
two separate Faster R-CNNs, one for each image type. Both models were
able to predict 90% of the test bounding boxes with IoU >= 0.75. For the
segmentation task, the U-net model was selected. The experimental part
showed that this architecture of the convolutional neural network is able to
achieve solid performance with only 75 training images. The average accuracy
of predicted segmentation masks was 86.53% on the transversal and 84.23%
on the longitudinal test set. However, such results are not satisfactory in the
field of medical image processing, where these segmentation masks would be
used to diagnose the severeness of carotid artery stenosis. The U-net could be
improved by enlarging the training set, improving the current segmentation
references, or in the longitudinal case, by localizing the artery by a rotatable
bounding box.

The results of this thesis will be used together with the neural networks
and the code base in the research project “Evaluation of atherosclerotic
plaque stability in carotids using digital image analysis of ultrasound images”.
This project investigates the visual differences in digital images of unstable
(symptomatic) and stable (asymptomatic) plaques and the connection between
the ultrasound images and the increased risk of plaque progression and risk.
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Appendix A

Convolutional neural net

Convolutional neural nets are a family of neural nets, which use convolutional
layers. They usually take as an input grid structured data [22], typically
images. For example, one may see images as a 3D tensor, one dimension for
each primary color in RGB encoding. However, from their first practical use
in reading check system [90], they have been applied in many domains, not
necessarily in image processing only. They have been used in text processing,
for example, in analyzing sentiment of a text [11], time series classification
[92], or in the field of recommender systems [37]. Its main component is
a convolutional layer, often combined with a pooling layer. One may find
convolutional networks combined with fully connected or even LSTM layers
[34]. This section will discuss the most used ones—convolutional, pooling,
and fully connected layers.

A.1 Convolutional layer

The cornerstone of each convolutional neural net is a convolutional layer.
In this layer, one or multiple convolutional filters are applied to the layer’s
input. In Table A.1, different convolutional filters are applied to an image.
In the neural network, every trainable filter is relatively small and serves as a
feature extractor. At each position, the filter’s kernel takes input from its
receptors field, computes its weighted sum, adds bias, and applies a non-linear
activation function [88]. Equation A.1 describes this transformation.

Yi,j = σ(b+
x∑

k=0

y∑
l=0

wk,lai+k,j+l) (A.1)

The kernel is continuously applied over an input, and the distance between
two such operations is called a stride. Since convolution reduces an image’s
dimension, the input is usually padded with some constant value (for example,
0) to preserve it [12]. Figure A.1 shows the convolution on an input of size
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5 × 5, and the size of the kernel is 3 × 3. Zero padding is used to keep the
spatial dimension.

Convolutional kernel Image

 0 0 0
0 1 0
0 0 0



 1 1 1
1 1 1
1 1 1



1
9

 0 −1 0
−1 5 −1
0 −1 0



Table A.1: Example of different convolutional kernels. The first one is an
identity kernel, which does not change an image. The second one blurs the input,
and the last one sharpens it.

Figure A.1: Example of a convolution of input with shape 5 × 5, using 3 × 3
kernel, zero padding, and stride equal to one. [89]
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A.2 Pooling layer

Pooling layers often follow the convolutional ones, and their purpose is to
reduce the dimensionality. Firstly, the average pooling was used. It computes
the average value of the receptor field, shown in Equation A.2. Max-pooling
was introduced in the last years. Such a layer propagates the maximum value
at each position (Equation A.3) [63]. For example, a pooling layer with a
receptor field of size 2 × 2 and stride 2 reduces the dimension to half. Such
an example can be seen in Figure A.2.

Yi,j = 1
xy

x∑
k=0

y∑
l=0

wk,lai+k,j+l (A.2)

Yi,j = max
(p,q)∈<i,j

(xp,q) (A.3)

Figure A.2: Comparison of average and max-pooling with receptor field of size
2 × 2 and stride 2.[63]

A.3 Fully-connected layer

A fully connected layer comprises one or multiple neurons, where each neuron
is connected to every unit in the previous layer by trainable weight. With
added bias and transformation with a non-linear function, the output is
forwarded to the next layer (Equation A.4) [36].

Yi,j = σ(bi,j +
n∑

k=0
wi,j,kaj−1,k) (A.4)
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A.4 Architecture

Typically, CNN’s input size is fixed, so the image needs to be preprocessed
accordingly. Firstly, the input is processed by a series of convolutional
layers grouped in blocks, where every convolutional layer has the same
setting (number of filters, kernel size, stride, padding). Pooling layers reduce
the dimension between the blocks, and the number of filters in the next
convolutional block is increased. The last part is composed of one or multiple
fully connected layers. The number of neurons depends on the application.
If the network should behave like a binary classifier, we can use one neuron
with a sigmoid activation function. If the aim is to classify n categories,
the layer should contain n neurons followed by a soft-max function. In the
case of localization of a single object, four neurons can predict two corners
of a bounding box surrounding the target. Figure A.3 displays the whole
Architecture [74].

Figure A.3: Example architecture of convolutional neural network (VGG-16) [80].

A.5 Training

During the training of a network, its free parameters, weights, and biases
are being changed to values, making the model perform well on the training
dataset. A loss function measures the performance of a model. In the case of
regression, sum-of-squared errors can be used to compute the fit (Equation
A.5).

L(θ) =
N∑

i=0
(yi − f(xi)) (A.5)

Cross-entropy can be used to evaluate the classifier (Equation A.6).

56



...................................... A.5. Training

L(θ) = −
N∑

i=0

K∑
k=0

yik log fk(xi). (A.6)

The loss of a model L(θ) is typically reduced by gradient descent, in the
neural network case, also called back-propagation. Thanks to the fact that
the neural network can be seen as a composition of functions, the gradient
can be easily computed by the chain rule. During the gradient descent, free
parameters of a model iteratively update. Update of a model parameter wk

in the iteration e+ 1 has form:

we+1
k = we

k − α
N∑

i=0

δLi

δwe
k

, (A.7)

with learning rate α [25].
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Appendix B

Implementation details

The project was implemented in the programming language Python [87], ver-
sion 3.7. Deep learning library PyTorch 1.6 [58] is utilized to use, create, and
train neural networks. Code documentation is following Numpy docstring
guide [14]. Code is formatted by Black code formatter [44] and can be found
and downloaded from GitHub [42]. The models can be downloaded from
Google Drive [41].

B.1 Project structure

The project contains three main parts: classification, localization, and
segmentation. Each one contains an implementation of particular models,
datasets, training, and additional functionality used in the project. The code
shared between them is stored in the carotids directory. Figure B.1 shows
the complete structure.

B.2 Examples

For every part, there is an example script that trains the sample model. Train-
ing scripts are named classification_train.py, localization_train.py,
and segmentation_train.py. Each of them contains a training proce-
dure equivalent to the one which produced the best network for the given
task. There are three programs that show how to load and use such mod-
els. These scripts can be found under the names classification_use.py,
localization_use.py, and segmentation_use.py.
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implementation_and_examples/
carotids/ ......................................Implementation

classification/
localization/
segmentation/
...

data_samples/ .....................Data used in the examples
...

Readme.md ................................Project description
classification_train.py
classification_use.py
localization_train.py
localization_use.py
segmentation_train.py
segmentation_use.py

Figure B.1: The implementation of the project is located in the subfolder
carotids. It contains three different folders, each containing implementation
of a different task—classification, localization, and segmentation. In
the root directory are a Readme file, License, and examples. A small number
of sample images is present in data_samples folder, which are used in the
examples.
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Appendix C

List of Abbreviations

AI Artificial intelligence
BUT Brno University of Technology
CA Carotid artery
CAD Computer-aided diagnosis
CCA Common carotid artery
CNN Convolutional neural network
CONVL(s) Convolutional layer(s)
CT Computed tomography
ECA External carotid artery
FC(s) Fully connected layer(s)
ICA Internal carotid artery
IoU Intersection over Union
MI Medical imaging
MRI Magnetic resonance imaging
RPN Region proposal network
TIA Transient ischemic attack
VA Vertebral artery
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