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Abstract
Objective The aim of this work was to assemble a large annotated dataset of bitewing radiographs and to use convolutional
neural networks to automate the detection of dental caries in bitewing radiographs with human-level performance.
Materials andmethods A dataset of 3989 bitewing radiographs was created, and 7257 carious lesions were annotated using
minimal bounding boxes. The dataset was then divided into 3 parts for the training (70%), validation (15%), and testing (15%)
of multiple object detection convolutional neural networks (CNN). The tested CNN architectures included YOLOv5, Faster
R-CNN, RetinaNet, and EfficientDet. To further improve the detection performance, model ensembling was used, and nested
predictions were removed during post-processing. The models were compared in terms of the F1 score and average precision
(AP) with various thresholds of the intersection over union (IoU).
Results The twelve tested architectures had F1 scores of 0.72–0.76. Their performance was improved by ensembling which
increased the F1 score to 0.79–0.80. The best-performing ensemble detected caries with the precision of 0.83, recall of 0.77,
F1 = 0.80, and AP of 0.86 at IoU=0.5. Small carious lesions were predicted with slightly lower accuracy (AP 0.82) than
medium or large lesions (AP 0.88).
Conclusions The trained ensemble of object detection CNNs detected caries with satisfactory accuracy and performed at
least as well as experienced dentists (see companion paper, Part II). The performance on small lesions was likely limited by
inconsistencies in the training dataset.
Clinical significance Caries can be automatically detected using convolutional neural networks. However, detecting incipient
carious lesions remains challenging.

Keywords Dental caries detection · Convolutional neural networks · Ensembling · Bitewing · X-ray images

Introduction

Machine learning and especially neural networks have
improved remarkablyover the last decade, surpassinghuman-
level performance inmany tasks, such as the ImageNet image
classification task [6, 10] or breast cancer detection [31]. In
dentistry, neural networks are also increasingly used [13].
Among other applications, they have been used to detect
dental caries in bitewings, periapical radiographs, orthopan-
tomograms, and photographs [24, 29]. Such a method can
work as a second reader, providing an independent image
assessment and giving dentists an opportunity to cross-check
their decisions. The automatic method could also reduce the
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probability of caries being overlooked, and it could be used to
determine the caries’ position for dental records or teaching
purposes.

Related work

This work is focused on automatic caries detection in bitew-
ings [1, 5, 7, 9, 23, 25, 27, 28, 33] which has been previously
approached in various ways. The first group of methods
extracts individual teeth in radiographs and trains a classi-
fier deciding whether there is a carious lesion in the tooth
or not. Kuang et al. [14] proposed a neural network, which
was able to outperform an ordinary dentist by more than
5% while being 6% worse than an experienced one. The
best results were obtained by a kernel SVM classifier. Moran
et al. [25] used histogram equalization, Otsu’s thresholding,
andmorphological operations to extract individual teeth. The
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teeth were assigned to three categories: sound teeth, incipient
lesions, and advanced lesions. Using 112 radiographs with
480 annotated teeth and the ResNet and Inception models for
classification task, the best achieved tooth-level accuracywas
73.3% [25]. Mao et al. [23] used a similar approach while
using tooth images split in mesial and distal halves. On 3716
such images, AlexNet reached a 90.3% accuracy. On 3000
tooth images extracted from periapical radiographs without
dental restorations, Lee et al. [16] reached an accuracyof 89%
formolars and 82% for both premolars andmolars combined,
using GoogLeNet and Inception-v3 neural networks.

The task of detecting caries can also be formulated as
a segmentation problem, producing a binary mask of the
caries. Cantu et al. [5] created a large dataset of 3686 bitewing
images. Three dentists independently drew a polygonal-
shaped mask over caries in each image. The per-pixel
performance of a U-Net model with EfficientNet B5 as
a backbone outperformed the mean performance of seven
dentists in all metrics. Lian et al. [18] achieved an IoU (inter-
section over union) of 0.785 on panoramic images, while
the best-performing dentist achieved an IoU of 0.717. Lee
et al. [17] annotated not only caries but also the enamel,
dentin, pulp, and gutta-percha restorations and used two inde-
pendentU-Netmodels.While themodel achieved a relatively
modest F1 score of 0.641, it was shown to help the den-
tists to improve their sensitivity by 7–10%. A competition
in segmenting the bitewing radiographs was organized in
2015 [37].However, the results on caries detectionwere poor,
with pixelwise F1 ≈ 12%.

The third approach applies object detection techniques,
yielding a rectangular bounding box for each lesion, without
attempting to identify their precise boundaries. This sig-
nificantly simplifies the annotation effort and also avoids
the task of identifying individual teeth [38]. Srivastava et
al. [33] trained a fully convolutional neural networkwith over
100 layers on a dataset containing more than 3000 bitewing
radiographs. It produced a pixel mask, which was then post-
processed by fitting a minimal bounding rectangle, obtaining
F1 = 0.7 at IoU=0.8. In a related work using U-Net and
trained on 6000 bitewing X-ray images, F1 = 0.61 was
reported [15]. Bayrakdar et al. [1] performed both seman-
tic segmentation and object detection on a dataset of 621
bitewing images, reporting object detection precision (posi-
tive predictive value) of 0.78, recall (sensitivity) of 0.77, and
F1 score of 0.78.Themodel outperformed 2 dentists with 2–3
years of experience while being outperformed by 3 dentists
with over 10 years of experience.

Bayraktar et al. [2] used YOLOv3 and a dataset of 1000
bitewing images evaluated in terms of classifying individual
11,521 approximal surfaces (i.e., not images or detections,
making the values not directly comparable) of which 1847
were decayed and reported recall of 0.72, precision of 0.86,
and specificity of 0.98, corresponding to F1 = 0.83. Using

the same architecture and a dataset of 994 images, Panyarak
et al. [27] reported recall of 0.67 and precision of 0.75 at
IoU = 0.5, with good results for extensive caries but fail-
ing to predict enamel caries reliably. In the most recent
object detection study by Chen et al. [7], the Faster R-CNN
model was trained on 818 labeled bitewing radiographs and
achieved the F1 score of 0.74, outperforming postgraduate
students with less than 3 years of experience.

Estai et al. [8] used a two-step approach on 2468 bitew-
ing images: regions of interests (ROI) were detected using
Faster R-CNN and then classified as carious or sound by
the Inception-ResNet-v2 neural network with F1 = 0.87 (on
manually selected ROIs, i.e., not reflecting the ROI detection
performance).

Finally, some authors have attempted to classify the
lesions according to their stage. Panyarak et al. [27, 28]
classified the lesions into 4 or 7 classes according to the
International Caries Classification and Management System
(ICCMS), instead of just two (carious and sound). However,
the task seems to be difficult; the classification error reached
0.36 in the 4-class case and 0.42 in the 7-class case. Better
results were obtained by Chen et al. [7] who reported a sen-
sitivity of 0.65 for enamel caries (E1/E2), 0.69 for lesions
involving the outer third of dentin (D1), and 0.85 for deeper
dentin lesions (D2/D3).

Proposed approach

In this work, the problem of dental caries localization was
formulated as an object detection and was solved using state-
of-the-art object detection CNNs (Sect. 2). The objectives
of this work were to assemble a large dataset of bitewing
radiographs with annotated carious lesions and to develop
an automatic algorithm for caries detection. The method was
experimentally evaluated in Sect. 3. For amore extensive per-
formance comparison with 7 additional human annotators,
please see the companion manuscript (Part II) [36].

Methods

Data

Recent bitewing X-ray images of adult patients from rou-
tinely performed diagnostics scans were retrieved from
a hospital information system and anonymized. See Sec-
tion 5.2 for ethical considerations. The radiographs were
acquired using four different intraoral X-ray units, three
of which used direct radiography and one employed indi-
rect radiography. Sensor physical dimensions ranged from
31×41mm to 27×54mm.To simplify processing, all images
were rescaled to 896 × 1024 pixels, with the wide-sensor
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Fig. 1 An example bitewing
X-ray image with annotated
carious lesions in the CVAT web
application

images padded with black horizontal margins to preserve the
aspect ratio. Consequently, the image scaling is not identi-
cal for all images, but the differences are small and can be
handled by the CNN object detectors thanks to the augmen-
tation (Sect. 2.3).

Annotations were performed by a specialist in cariology
and operative dentistry with 5 years of experience (A.T.),
henceforth denoted as expert E0. The annotation process was
conducted in theComputerVisionAnnotationTool (CVAT).1

Each lesion was marked by a minimum bounding box, i.e.,
the smallest possible axis-parallel rectangle containing the
entire lesion (Fig. 1).

The dataset was created in a step-wise (bootstrap) fash-
ion. The initial dataset consisting of 2599 images with 4575
annotated carious lesions was used for the first training of
the YOLOv5 object detection model (Sect. 2.2). The model
was then applied on additional 1400 images, its predictions
were reviewed by E0, and bounding boxes were adjusted
if needed. Around 20 predictions per 100 images had to be
either added or removed to get the same annotation quality
as in the initial dataset. The review was approximately twice
as fast as annotating the images from scratch.

The YOLOv5 model was retrained on this extended
dataset, and its predictions were compared with the ground
truth, i.e., annotations by E0. There were 1543 images with
at least a single false-positive or false-negative detection. The
annotations for these imageswere reviewed and possibly cor-
rected by the annotator, taking into account the automatic
predictions. Finally, corrupted and low-quality images were
removed, yielding a final dataset D0 with 3989X-ray images
and 7257 annotations.

The histograms of the number of lesions per image and
the bounding box dimensions in D0 are shown in Figs. 2
and 3, with numerical values in Table 1. It can be observed
that there were approximately 2 lesions per image. Since
the annotation bounding boxes were reasonably tight, their

1 https://github.com/opencv/cvat

sizes were assumed to be a good indicator of the approximate
lesion size.Given the scale 19–25 pixels/mm, the size ofmost
lesions was 1–3mm.

Object detection architectures

Several existing general-purpose deep learning CNN archi-
tectures for object detection from images were tested: Faster
R-CNN [30], RetinaNet [19], YOLOv5 [12], and Efficient-
Det [34]. For Faster R-CNN and RetinaNet, alternative back-
bones (feature extractors) were also tested, namely ResNet-
50, ResNet-101 [11], and SwinTransformer (tiny) [20]. For
theYOLOv5 architecture, the originally proposed backbones
were used, denoted small (S), medium (M), and large (L), all
of them based on the CSPDarknet53 architecture [3]. For the
EfficientDet, a family of backbones D0, D1…D5 (from the
smallest to the largest) was tested. In the following, the net-
works are denoted architecture-backbone (see, e.g., Table 2),
with SwinTransformer andResNet abbreviated as SwinT and
R, respectively. YOLOv3 (used in [2]) was also tested, but
the results were inferior to YOLOv5.

Fig. 2 Histogram of bounding box dimensions in the final dataset D0.
Sizes greater than 150 pixels are omitted
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Fig. 3 Histogram of the number of annotated carious lesions per image
in the final dataset D0

Preprocessing and augmentation

The final dataset D0 (Sect. 2.1) was randomly split into
training (70%), validation (15%), and test parts (15%). The
intensity was normalized for all images to have the same
mean and variance.

During training, the following augmentation operations
were applied to artificially increase the dataset size to
improve the generalization: horizontal and vertical flip, trans-
lation by up to 10% of the image size, rotation by up to 10◦,
Gaussian blur with σ = 7 ∼ 31 px, and gamma correction
with γ = 0.6 ∼ 1.4. The last three operations were applied
with a probability of 0.3, and the others with a probability of
0.5.

Optimization and GPU acceleration

AdamW optimizer [22] provided the most consistent results
on our data. The initial learning rate was determined by
a coarse grid search and then modified by the cosine anneal-
ing learning rate scheduler [21].

Nvidia GTX 1080-Ti GPU with 12GB of memory was
used. Depending on the network, it allowed batch sizes
(BS) between 16 for the smallest YOLOv5-S model and 1

Table 1 Statistics of bounding box annotation dimensions in the final
dataset D0

Width (px) Height (px)

Image size 1068 795–847

Minimum box size 8 9

Maximum box size 384 315

Mean box size 47.55 53.15

Box size st. deviation 37.99 35.33

for EfficientDet-D4 and D5. To compensate for the small
batch size, the gradients were accumulated for 1–16 batches,
such that the number of accumulated gradient evaluations
remains the same (16). For EfficientDet-D4 and D5, with
batch size 1, batch-normalization had to be replaced by
group-normalization.

Pruning

For each image i , each method a provided a set of bounding
boxes

Bia = {
b1ia, b

2
ia, . . .

}
(1)

The automatic methods were set to produce 300 boxes per
image, much more than the maximum expected number of
carious lesions in the image. For each box, a confidence score
0 ≤ c

(
b j
ia

) ≤ 1 was also predicted. Boxes with a confidence
lower than a threshold, c < δa , were discarded. The method-
dependent threshold δa was determined on the validation set
to maximize the F1 score.

Model ensembling and box fusion

Model ensembling was used to improve the detection per-
formance. Three different ensembles of four models each
were created: Ensemble 1 combined four independently
trained YOLOv5-M models, while Ensemble 2 combined
YOLOv5 models with small (S), medium (M), large (L),
and extra large (XL) backbones. Ensemble 3 combined
different types of models: RetinaNet-SwinT, Faster R-CNN-
ResNet50, YOLOv5-M, and RetinaNet-R101.

For each image i, the sets of bounding boxes Bia predicted
by na individual detection methods a = 1, . . . , na were first
concatenated

Bi =
na⋃

a=1

Bia = {
b1i1, b

2
i1, . . . (2)

. . . b1i2, b
2
i2, . . . , b

1
ina , b

2
ina , . . .

}

with updated confidence scores

c′(b j
ia

) = wac
(
b j
ia

)
(3)

where 0 ≤ wa ≤ 1 were fixed, method-dependent weights
(see below).

There were usually a lot of nearly identical and overlap-
ping boxes in Bi . These duplicates or near-duplicates could
be eliminated for example by non-maximal suppression, soft
non-maximal suppression [4], or non-maximum weighted
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suppression [39]. Weighted boxes fusion (WBF) [32] was
used here based on preliminary experiments. It greedily clus-
tered boxes with IoU > τ , where τ is a hyperparameter. For
each clusterC , it produced a fused bounding boxbC by taking
a weighed average of the box coordinates, using the updated
confidence scores c′ (3) as weights

bC = 1

ZC

∑

b∈C
c′(b) b (4)

with ZC =
∑

b∈C
c′(b) (5)

and assigning it the confidence score as a weighted mean

c(bC ) =

∑

b j
ia∈C

wac
(
b j
ia

)

∑

b j
ia∈C

wa +
∑

a∈M
wa

(6)

where M =
{
a; �b j

ia ∈ C, a ∈ {
1, . . . , na

}}

is a set of methods that do not appear in the cluster C .
This way, the confidence c(bC ) is decreased if fewermethods
agree.

The hyperparameters τ and wa were found by numerical
optimization of the F1 score of the fused boxes on the vali-
dation set (without the preprocessing described in Sect. 2.7).
Exact values of weights wa were not critical. On the other
hand, the results were fairly sensitive to the IoU threshold τ ;
the best values for τ were 0.45 ∼ 0.65.

Post-processing

The boxes produced by the automatic detection were some-
times nested, as in Fig. 4. The larger box usually matched

Fig. 4 The automatic method (green) produced two nested predictions
in the left maxillary first molar (tooth depicted on the top right). The
large box enclosed the entire carious lesion and matched the ground
truth annotation (magenta). The small box enclosed only the enamel
lesion, neglecting the extension to the dentin

the ground truth, as it enclosed the entire carious lesion. The
smaller box marked only the enamel penetration zone within
the larger lesion. Thiswas probably caused by a large number
of caries limited to the enamel in the training dataset, while
dentin involvement, which implies damage to the enamel,
was less frequent. The enclosed detections were therefore
pruned as follows:

For all predicted fused bounding boxes b, sorted in
a decreasing order by the confidence score c(b), the remain-
ing predicted boxes b′ with smaller confidence c(b′) < c(b)
and area S(b′) < S(b) were considered. If b′ was mostly
enclosed in b, i.e., if

S
(
b ∩ b′) > βS(b′), (7)

then the prediction b′ was removed. The hyperparameter
β = 0.8 was found by optimizing the F1 score on the val-
idation set. The post-processing was used in all subsequent
experiments except for the comparison of the architecture-
backbone average precision (AP).

Evaluation of themodels

The performance of the automatic methods was evaluated
on the test part of the final dataset D0 (598 radiographs).
The MS COCO competition approach was adopted, and the
lesion detection performance was quantified using average
precision AP@τ [26], where the average is taken over all
recall levels between 0 and 1 and τ is the IoU threshold
for the detection to be considered correct. AP (without τ ) is
the average of AP@τ for the subscripts S, M, and L (e.g.,
APS), denote results for small, medium, and large lesions,
evaluated for ground truth bounding boxes with area smaller
than 322 pixels, between 322 and 962 pixels, and larger than
962 pixels, respectively.

Results

Model comparison

Table 2 compares the different neural network detection
architectures and backbones (models) by evaluating their AP
on the test part of the D0 dataset. The best-performing archi-
tectures were RetinaNet [19] with the SwinTransformer [34]
backbone and YOLOv5 [12] with the large backbone. The
table also shows that AP indeed decreased with increasing
IoU threshold (τ ). The largest drop was observed between
τ=0.5 and τ=0.75. This indicated that the overlap of pre-
dictions and annotations was mostly more than 50% but less
than 75%. Finally, it was revealed that the performance of the
models was similar for medium and large lesions and lower
for small lesions.
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Table 2 Comparison of
different neural network
architectures and backbones
(named architecture-backbone)
on the test part of dataset D0 in
terms of average precision
(AP@τ ) for different IoU
thresholds τ , as an average over
all τ (denoted AP) and for the
subsets of small, medium, and
large lesions (denoted by
subscripts S, M, L)

Models AP AP@.3 AP@.5 AP@.75 AP@.5S AP@.5M AP@.5L

EffDet-D0 0.360 0.832 0.762 0.292 0.682 0.798 0.779

EffDet-D1 0.387 0.848 0.792 0.336 0.696 0.841 0.763

EffDet-D4 0.349 0.821 0.742 0.285 0.660 0.784 0.672

RetinaNet-R50 0.397 0.864 0.814 0.346 0.768 0.84 0.803

RetinaNet-R101 0.384 0.855 0.789 0.323 0.728 0.817 0.815

RetinaNet-SwinT 0.393 0.872 0.827 0.311 0.786 0.847 0.852

Faster R-CNN-R50 0.391 0.856 0.801 0.326 0.758 0.822 0.794

Faster R-CNN-R101 0.375 0.861 0.791 0.294 0.743 0.818 0.768

YOLOv5-L 0.408 0.853 0.815 0.375 0.783 0.840 0.769

YOLOv5-S 0.374 0.834 0.773 0.301 0.713 0.804 0.745

YOLOv5-M 0.402 0.861 0.808 0.364 0.765 0.837 0.755

Best values are shown in bold

Table 3 Precision, recall, and F1-score for the tested neural networks
(architectures and backbones) on test part of the dataset D0

Models Precision Recall F1

EffDet-D0 0.71 0.72 0.72

EffDet-D1 0.77 0.76 0.76

EffDet-D4 0.72 0.73 0.73

RetinaNet-R50 0.77 0.75 0.76

RetinaNet-R101 0.76 0.73 0.74

RetinaNet-SwinT 0.77 0.76 0.76

Faster R-CNN-R50 0.73 0.78 0.76

Faster R-CNN-R101 0.75 0.75 0.75

YOLOv5-S 0.76 0.71 0.74

YOLOv5-M 0.77 0.74 0.76

YOLOv5-L 0.74 0.79 0.76

Best values are shown in bold

Fig. 5 A zoom of the precision-recall curves for the tested neural net-
works on the test part of dataset D0

The resulting F1 score, precision, and recall are shown in
Table 3. EfficientDet-D1 [34] worked best along with Retina-
Net-SwinT and YOLOv5-L. The precision-recall curves are
shown in Fig. 5.

Model ensembling

The results of the ensemble models are shown in Tables 4
and 5 in terms of the F1 score and AP, respectively. It can
be seen that the ensemble models outperformed the indi-
vidual models in both F1 and AP (compared with Table 2).
The best-performing ensemble model was the most hetero-
geneous Ensemble 3. See a companion paper [36] for its
comparison with 7 additional human annotators.

Discussion

In this work, multiple deep neural networks were trained to
detect caries. As it is common in object detection, their per-
formance was evaluated mainly using average precision AP
and the F1 score. These measures take both precision (pos-
itive predictive value) and recall (sensitivity) into account,
as AP is defined as the area under the precision-recall curve,
and the F1 score is calculated as the harmonic mean of pre-
cision and recall at the working point. Naturally, the results
depend on the IoU threshold (τ ), i.e., to what extent a model

Table 4 Precision, recall, and the F1 score of the ensemble models on
the test part of the dataset D0

Model Precision Recall F1

Ensemble 1 0.81 0.77 0.79

Ensemble 2 0.79 0.79 0.79

Ensemble 3 0.83 0.77 0.80

Best values are shown in bold
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Table 5 Evaluation of the
ensemble models on the test part
of the dataset D0 in terms of the
average precision (AP@τ ) for
different IoU thresholds τ , as an
average over all τ (denoted AP)
and for the subsets of large,
medium, and small lesions
(denoted by subscripts S, M, L)

Model AP AP@.03 AP@.5 AP@.75 AP@.5S AP@.5M AP@.5L

Ensemble 1 0.434 0.879 0.841 0.390 0.814 0.862 0.804

Ensemble 2 0.442 0.878 0.850 0.418 0.821 0.866 0.817

Ensemble 3 0.444 0.898 0.861 0.405 0.821 0.879 0.876

Best values shown in bold

prediction must overlap with the corresponding annotation
to be considered correct. As for this application, detecting
the caries is more important than their exact location, and
the threshold τ = 0.5 seems appropriate.

All the networks performed satisfactorily (AP@0.50.742–
0.827, F1 score 0.716–0.764), with RetinaNet with the
SwinTransformer backbone and YOLOv5 with the large
backbone performing the best. A marked improvement in
precision was achieved by combining results of several net-
works, taking advantage of their diversity (see Tables 4
and 5). The best-performing model (Ensemble 3) com-
prised of RetinaNet-SwinTransformer, YOLOv5-M, Faster
R-CNN-ResNet50, and RetinaNet-ResNet101 models and
yielded the AP@0.5 of 0.86 and F1 score of 0.80.

Several automatic caries detection methods have been
described in the literature [1, 9, 15, 27, 33]. Direct compari-
son is unfortunately not possible as neither the test data nor
the implementations are available for these methods. In con-
trast, we provide the source code (see the Data availability
statement) and the test dataset [35, 36]. There are also fun-
damental differences in the composition of the datasets. The
included radiographs were acquired using different X-ray
machines/sensors and exported in different formats. Fur-
thermore, various exclusion criteria were used, such as the
presence of primary teeth [5, 7], the presence of restorations
on proximal surfaces, or the absence of caries in the radio-
graph [7].

Second, some works were concerned only with proximal
caries [2, 8, 9, 25] or consisted ofmanually selected ROIs [8].
In this work, the evaluation was performed at the lesion level
to avoid the need to identify individual teeth. However, one
consequence of this choice is that accuracy or specificity can-
not be calculated since no “true negatives” were labeled in
the dataset. Moreover, the performance measure calculated
at the level of lesions is numerically different from measures
calculated at the level of individual teeth [9] or tooth sur-
faces [7]. For example, the reported tooth-level specificity of
0.85 and sensitivity of 0.69 [9] corresponds to a precision
about 0.62 on the lesion level, assuming that lesions exist
on the average in 25% of teeth (as in the study by Chen et
al. [7]). Based on such approximative calculations, Ensem-
ble 3 seems to outperform the alternative methodsmentioned
above.

This study also showed that predicting small carious
lesions is less accurate compared to medium and large
lesions. This was expected, since the interpretation of incip-
ient lesions is clinically difficult and the annotations may
therefore be inconsistent. The present results partially agree
with the findings of Chen et al. [7] who also reported the
lowest sensitivity in enamel lesions (E1/E2). However, the
sensitivity in shallow dentin lesions was similar, and only
deep dentin lesionswere predictedwith a significantly higher
sensitivity. Even more complex classification was attempted
by Panyarak et al. but the models underperformed [27], and
this issue therefore remains to be solved.

The presented results are based on a dataset containing
3989 bitewing radiographs with 7257 carious lesions labeled
using bounding boxes. While this dataset seems to be one of
the largest datasets of this type, there are limitations. First,
the image scaling is not exactly the same, and second, all
labels were created by a single annotator. This approach was
selected because large discrepancies were found when com-
paring annotations by multiple experts [36].

Conclusions

Various CNN object detection architectures and backbones
were trained to detect caries in bitewing radiographs. While
individual networks yielded decent results, they were further
improved by postprocessing and fusing results of multiple
methods. All models performed best in large or medium-
sized lesions which are easier to detect than incipient caries.
Please see a companion paper [36] for an extensive compar-
ison of the method described here with 7 additional human
annotators.
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