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Abstract
Image registration is an important part
of many practical applications in the field
of medical imaging, computer vision, car-
tography etc. In this bachelor’s thesis I
will present a new method of registration
based on the "Poly-Filter Local All-Pass"
(PF-LAP) method. The PF-LAP algo-
rithm uses systems of linear equations
to estimate an all-pass filter representing
the local displacement of each pixel in a
coarse to fine manner. The new proposed
method uses a similar approach to find-
ing the local deformation, but does this
only for a sparse set of chosen pixels. The
sparse deformation field is then fit into
a global deformation model. The effec-
tiveness and speed of the new proposed
method is experimentally compared with
a four other methods including the PF-
LAP method. The results show that the
proposed method is faster and more accu-
rate on the chosen datasets, than most of
the other methods, including PF-LAP.

Keywords: image registration, image
processing

Supervisor: Prof. Dr. Ing. Jan Kybic
FEE, Department of Cybernetics

Abstrakt
Registrace obrázků je důležitou součástí
mnoha praktických aplikací v poli lékař-
ského zobrazování, v počítačovém vidění,
v kartografii atd. V této bakalářské práci
představuji novou metodu registrace zalo-
ženou na metodě "Poly-Filter Local All-
Pass" (PF-LAP). Algoritmus PF-LAP po-
užívá soustavy lineárních rovnic k odhadu
all-pass filtru representující lokální posun
každého pixelu iterativně, od hrubé po
jemnou deformaci. Nová navrhovaná me-
toda používá obdobný způsob nalezení
lokální deformace, ale hledá ji pouze pro
řídkou sadu vybraných pixelů. Získaná
řídká deformace je aproximována globál-
ním deformačním modelem. Účinnost a
rychlost nové navrhované metody je ex-
perimentálně porovnána s dalšími čtyřmi
metodami, včetně metody PF-LAP. Vý-
sledky ukazují, že navrhovaná metoda je
rychlejší a přesnější na vybraných data-
setech, než většina testovaných method
včetně PF-LAP.

Klíčová slova: registrace obrázků,
zpracovávání obrazu

Překlad názvu: Robustní a rychlá
registrace obrazů metodou "Local All
Pass"
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Chapter 1
Introduction

This thesis focuses on image registration [3, 4, 5]. Image registration is the
process of overlaying different images capturing the same scene.

Motivation and Goals

Image registration is essential in many different fields, for different uses. In
medical imaging, for example, it is used for combining computer tomogra-
phy (CT) scans with magnetic resonance (MR) images for more complete
information about the patient or for monitoring tumor growth.

There are different approaches to image registration algorithms each with
its own uses and its own advantages and disadvantages. I will focus on the
Local All-Pass (LAP) and Poly-Filter Local All-Pass (PF-LAP) algorithms
[5, 6] developed by Christopher Gilliam and Thierry Blu, with a goal to
develop a faster version of the LAP registration method, using a sparse
evaluation and global deformation fitting.

Thesis Structure

In Chapter 2, I explain what image registration is and I give an overview of
image registration algorithms. In the following chapter I describe in detail
how the LAP and PF-LAP algorithms work in particular. Afterwards, in
Chapter 4, I present a new image registration method that I developed for
this thesis, which is based on the PF-LAP method. Then, in Chapter 5, I
evaluate the new method experimentally and compare it to PF-LAP and
other image registration methods.
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Chapter 2
Image Registration

Image registration is the process of finding a geometric transformation that
takes one image, I2 — known as the source/moving/sensed image — and
aligns it with another image, I1 — known as the target/fixed/reference image.

The differences between I1 and I2 are due to different imaging conditions;
these images can be taken at different times, at different depths, from different
viewpoints, by different sensors etc. The goal of image registration is to find
the geometric transformation mapping these two images. The differences
of the images can be classified according to the sensor used to acquire the
images: images taken by the same sensor are known as mono-modal images
(see Figure 2.2) and images taken by different sensors are known as multi-
modal images (see Figure 2.1). Generally speaking, multi-modal image pairs
are more different in appearance than mono-modal images.

2.1 Formal Definition

A grayscale image can be thought of as a function that maps a pixel location
— a coordinate — to an intensity I(x) = e, where x ∈ RN is the pixel location,
e ∈ R is the intensity and N is the dimensionality of the image.

A displacement field is a function that maps a pixel location to a displace-
ment vector u(x) = [u1(x), . . . , uN (x)]T , where x ∈ RN is the pixel location,
un is the displacement in the nth dimension and N is the dimensionality of
the image.

In this thesis I will be dealing only with 2D images, so this notation can
be simplified as follows:

I(x, y) = e,

u(x, y) = [ux(x, y), uy(x, y)] ,T

where: ux : R2 → R,
uy : R2 → R.

(2.1)

Here the the ux is the shift of the pixel at (x, y) in the x direction and uy

is the shift of the pixel at (x, y) in the y direction.
Two images can be related directly, by a geometric transformation T , if

their pixel intensities do not change as they are moved from one image to

3



2. Image Registration ..................................

Figure 2.1: multi-modal images taken from [1], a computer tomography (CT)
image on the left and a magnetic resonance (MR) image on the right.

Figure 2.2: mono-modal images taken from [2]

another. In optical flow theory this is known as the brightness constancy
hypothesis [7].

Under The brightness constancy assumption two images are related as
follows:
Definition 2.1. Brightness constancy

I1(x, y) = I2(T (x, y)),
T (x, y) = (x+ ux(x, y), y + uy(x, y))

(2.2)

This formulation is, however, very restrictive, it means that the images have
to have the same illumination. This is generally not the case for multi-modal
(2.1) nor mono-modal images (2.2).
Definition 2.2. Image registration is estimating u(x, y) so that image I2 is
aligned with I1.
Example 2.3. In Figure 2.3 is an example of how I1, I2, u(x, y) from equation
2.1 can look like.
Remark 2.4. So far images, displacement fields, etc., were used in a continuous
sense — with independent variables being x ∈ R and y ∈ R and surrounded

4



................................... 2.2. State of the Art

(a) : I1(x, y) (b) : I2(x, y)

(c) : I1 (orange) and I2 (blue) (d) : u(x, y)

Figure 2.3: The Lena photo in 2.3a as the target image, the warped source
image in 2.3b, a blending as a representation of differences between the target
and source in 2.3c and the ground truth displacement field that transforms the
source image I2 so that it’s aligned with I1 in 2.3d.

by round brackets. Later, when working with functions in the discrete domain,
I will use k ∈ Z and l ∈ Z as independent variables and surround them with
square brackets.

2.2 State of the Art

Image registration algorithms can be split roughly into two categories by
the nature of their matching criteria (feature-based, area-based) [3], and two
categories by the nature of their deformation model (global, elastic).

Feature-based methods are based on extracting significant features that
are shared by both images, these can be SIFT points [8] or regions (forests,
biological tissue), lines (rivers, region boundaries like; edges of bones, lakes) or
points (lines intersections, region corners). Ideally these features are distinct
and spread all over the image. Compared to area-based methods, these

5



2. Image Registration ..................................
methods do not work directly with intensity, the features are on a higher
information level [3].

Intensity-based methods deal directly with intensities of images without
detecting significant points. They use similarity measures like normalized
cross-correlation, mutual information, or the sum of squared differences on
windows of images to find correspondence.

Parametric methods use global parametric models to describe the defor-
mation field. The deformation field can be represented using basis functions,
such as quadratic functions [9] or B-splines [10]. The advantages of these
methods are that many deformations can be approximated by using a small
number of parameters.

Elastic methods deal with per pixel displacement estimations, they are
generally able to estimate more complex displacement fields than parametric
methods, but can be more sensitive to intensity changes.

6



Chapter 3
The Local All-Pass Algorithm

In this chapter, I talk about the method Local All-Pass (LAP) method first
introduced in [6] by Christopher Gilliam and Thierry Blu.

The main concept of the Local All-Pass algorithm is that a constant
displacement between two images, I1 and I2, is equivalent to filtering with
an all-pass filter. This comes from time-shifting property of the Fourier
transform; F {f (t− t0)} = e−jωt0F (ω). Therefore, estimating this constant
displacement field boils down to finding an all-pass filter and extracting the
displacement from it. I will elaborate on how this is done in the next section
using [5] as a reference. This basic concept applies if the displacement field is
constant. But what if it isn’t? We can make a different assumption about the
deformation field; we assume that the displacement is slowly varying, which
means it is locally constant. More in section 3.2.

3.1 LAP on a Constant Displacement Field

In a constant displacement field u(x, y) all vectors are identical, so u(x, y) =
[a, b]T where a and b are constants.
Example 3.1. In Figure 3.1 is an example of what a constant displacement
field (and images shifted with it) can look like.

Shifting is All-Pass Filtering

We have two images, I1 and I2, related by a constant displacement field
u(x, y) (just as in Example 3.1). Assuming brightness constancy 2.1, I1 is a
shifted I2:

I1(x, y) = I2(x+ ux(x, y), y + uy(x, y)). (3.1)

More specifically, since we are working with a constant displacement field

I1(x, y) = I2(x+ a, y + b). (3.2)

A constant shift in the spatial domain is equivalent to the following in the
frequency domain:

7



3. The Local All-Pass Algorithm..............................

(a) : I1(x, y) (b) : I2(x, y)

(c) : I1 (orange) and I2 (blue) (d) : u(x, y)

Figure 3.1: The target image in 3.1a, is warped by a constant displacement field
opposite to the one in 3.1d, the result is the source image 3.1b. In 3.1c there is
a blending of these images.

Î1(ωx, ωy)e−jaωx−jbωx = Î2(ωx, ωy), (3.3)

where Î1 and Î2 are Fourier transforms of images I1 and I2 and (ωx, ωy) are
coordinates in the frequency domain. We can define a filter with a frequency
response

ĥ(ωx, ωy) = e−jaωx−jbωx . (3.4)

And we see that I2 is a filtered version of I1 with the filter ĥ(ωx, ωy). This
filter is,..1. separable: ĥ(ω) = ĥ1 (ω1) ĥ2 (ω2) , where ĥ1 and ĥ2 are two 1D filters,..2. real: ĥ(ω) = ĥ∗(−ω), where ĥ∗ represents the complex conjugate of ĥ,

and..3. all-pass: |ĥ(ω)| = 1, as shown in [6].

8



......................... 3.1. LAP on a Constant Displacement Field

To estimate the filter we need to move to the discrete domain. The properties
of the digital version of h are the same as the continuous version.

3.1.1 Estimating the Filter h

The frequency response ĥ(ωx, ωy) of a digital all-pass filter can be expressed
as the ratio of the Discrete Fourier transform (DFT) of two filters that have
opposite phase [5]. This means that ĥ(ωx, ωy) can be expressed as

ĥ(ωx, ωy) = p̂(ejωx , ejωy )
p̂(e−jωx , e−jωy ) , (3.5)

where p̂(ejωx , ejωy ) is called the forward filter and p̂(e−jωx , e−jωy ) the back-
ward filter.

Using equations 3.3, 3.5 and 3.4, we get

Î1(ωx, ωy)ĥ(ωx, ωy) = Î2(ωx, ωy),
Î1(ωx, ωy)p̂(ejωx , ejωy ) = Î2(ωx, ωy)p̂(e−jωx , e−jωy ).

(3.6)

In the discrete spatial domain — using the discrete pixels locations k, l as
independent variables as mentioned before in Remark 2.4 — the equation 3.6
becomes

I1[k, l] ∗ h[k, l] = I2[k, l],
I1[k, l] ∗ p[k, l] = I2[k, l] ∗ p[−k,−l]

m
I1[k, l] ∗ p[k, l]− I2[k, l] ∗ p[−k,−l] = 0.

(3.7)

Remark. ∗ denotes convolution. Two dimensional discrete convolution of an
image f [k, l] and a filter w can be defined as follows:

g[k, l] = w[k, l] ∗ f [k, l] =
∞∑

s=−∞

∞∑
t=−∞

w[s, t]f [k − s, l − t]. (3.8)

Since a digital image is of finite extent, convolution is undefined at the borders
of the image. In particular, for an image f [k, l], of size M ×N , f [k± s, l± t]
is only defined for 1 ≤ k ± s ≤ N and 1 ≤ l ± t ≤ M . This is addressed
by artificially expanding the domain of the image by padding. In the LAP
algorithms, symmetric padding is used.
Remark. Symmetric padding of the string abcdef would look like this:

d c b a a b c d e f f e d c

Estimating the all-pass filter h is the equivalent to estimating the forward
filter p.

9



3. The Local All-Pass Algorithm..............................
Estimating the Forward Filter p. The filter p is then approximated as a
linear combination of N known basis filters pn:

papprox[k, l] =
N−1∑
n=0

cnpn[k, l] (3.9)

where cn are the coefficients of the filters pn.

The basis filters chosen in [5] are:

p0[k, l] = exp (−k
2 + l2

2σ2 ),

p1[k, l] = k p0[k, l],
p2[k, l] = l p0[k, l],
p3[k, l] = (k2 + l2 − 2σ2) p0[k, l],
p4[k, l] = kl p0[k, l],
p5[k, l] = (k2 − l2) p0[k, l],

(3.10)

where −R ≤ k ≤ R, −R ≤ l ≤ R, σ = (R + 2)/4 and R is the half size of
the filters. This means that each basis filter pn[k, l] is defined on a matrix
(2R+ 1)× (2R+ 1) with offset indices, so that the origin [0, 0] is in the center,
like so:

p[−R,−R] · · · p[−R,−1] p[−R, 0] p[−R, 1] · · · p[−R,R]

...
. . .

...
...

... . .
. ...

p[−1,−R] · · · p[−1,−1] p[−1, 0] p[−1, 1] · · · p[−1, R]

p[0,−R] · · · p[0,−1] p[0, 0] p[0, 1] · · · p[0, R]

p[1,−R] · · · p[1,−1] p[1, 0] p[1, 1] · · · p[1, R]

... . .
. ...

...
...

. . .
...

p[R,−R] · · · p[R,−1] p[R, 0] p[R, 1] · · · p[R,R]

10



...................3.2. LAP on a Smooth, Slowly Varying Displacement Field

(a) : Basis filter p0[k, l]. (b) : Basis filter p1[k, l].

(c) : Basis filter p2[k, l].

Figure 3.2: First 3 basis filters—p0[k, l], p1[k, l] and p2[k, l]—with half size R = 8.

3.1.2 Retrieving the Deformation from Filters

The frequency response of the estimated filter hest should be close to that of
3.4, so the displacement estimation is

ux, uy = j
∂ log (hest(ωx, ωy))

∂ωx,y

∣∣∣∣∣
ωx=ωy=0

. (3.11)

In terms of impulse response of the filter p:

ux = 2
∑

k,l k papprox[k, l]∑
k,l papprox[k, l] ,

uy = 2
∑

k,l l papprox[k, l]∑
k,l papprox[k, l] .

(3.12)

Remark. Note that result of the sum
∑

k,l pn[k, l] (from equation 3.12) for
each basis filter is known beforehand—being either 0 or 1 for the filter basis
3.10.

3.2 LAP on a Smooth, Slowly Varying
Displacement Field

In the previous section, we used all the pixels from both images to estimate a
single all-pass filter and from it we calculated a single displacement vector

11



3. The Local All-Pass Algorithm..............................
that represented the entire constant displacement field. Now we will adapt
the previous steps to work locally to estimate a smooth, slowly varying
displacement field.

In a smooth slowly varying displacement field, the deformation can be
considered locally constant and so an all-pass filter can be estimated relating
a local region in I1 to the same region in I2 as illustrated in Figure 3.3.

Figure 3.3: A smooth slowly varying displacement field warping Image 1 to
Image 2. The red rectangle shows that the displacement can be assumed to be
locally constant.

3.2.1 Estimating Local All-Pass Filters

In the Section 3.1, we used all the pixels from both images to estimate a
single all-pass filter. Now we will formulate a local version to estimate the
filters. There are two key differences compared to the previous section:..1. We are estimating a unique all-pass filter for every pixel g of the image

I2...2. To estimate the filter for pixel g, we use just some pixels from the images
— pixels that are in a square window Wg around pixel g.

The size of the local window Wg is (2W + 1)× (2W + 1), where R ≤W and
it is the size of the location we are assuming to have a constant displacement.
In Figure 3.3, there is a visualisation of what this means.

To estimate the displacement of the pixel g, equation 3.7 is modified to be
local:

I1[k, l] ∗ papprox[k, l] = I2[k, l] ∗ papprox[−k,−l]
m

R∑
s=−R

R∑
t=−R

papprox[s, t]I1[k − s, l − t] =
R∑

s=−R

R∑
t=−R

papprox[−s,−t]I2[k − s, l − t],

(3.13)
where [k, l] ∈ Wg and Wg is the window of pixels with g in the center.

12



...................3.2. LAP on a Smooth, Slowly Varying Displacement Field

Estimating papprox.

min
{cn}

∑
[k,l]∈Wg

|papprox[k, l] ∗ I1[k, l]− papprox[−k,−l] ∗ I2[k, l]|2 ,

where papprox[k, l] = p0[k, l] +
N−1∑
n=1

cnpn[k, l]
(3.14)

is minimized to obtain an approximation of the local filter p for pixel g. This
is then done at each pixel by shifting the local window Wg, so that it centers
around it, obtaining a local filter for each of these pixels. The displacement is
then extracted from each of these filters using equation 3.12, making a dense
displacement field for the whole image.

Implementation

In this section, I will explain how 3.14 is minimized effectively, then I sum-
marize the entire process in Algorithm 1. Firstly, papprox is substituted into
the minimization:

min
{cn}

∑
[k,l]∈Wg

|p0[k, l] ∗ I1[k, l]− p0[−k,−l] ∗ I2[k, l]+

N−1∑
n=1

(cnpn[k, l] ∗ I1[k, l]− pn[−k,−l] ∗ I2[k, l]) |2 (3.15)

This is simplified by getting rid of the absolute value, then a derivative with
respect to cn is calculated and the result is set to equal 0. For readability, I
define the element-wise difference of image I1[k, l] convolved with pn[k, l] and
image I2[k, l] convolved with pn[−k,−l],

ψn[k, l] def= (pn[k, l] ∗ I1[k, l]− pn[−k,−l] ∗ I2[k, l]) ,

and the sum of element-wise products of two functions ζ[k, l] and ξ[k, l] in
the window Wg,

〈ζξ〉Wg

def=
∑

[k,l]∈Wg

ξ[k, l]ζ[k, l],

The minimization can then be formulated as follows,

0 =
∑

[k,l]∈Wg

ψ0[k, l]ψn[k, l] +
N−1∑
m=1

cn

∑
[k,l]∈Wg

ψn[k, l]ψm[k, l]

for: n = 1, 2, . . . , N − 1.

(3.16)

Therefore, solving 3.14 is equivalent to solving N − 1 linear equations,
which is done as follows:..1. The convolution of image I1[k, l] with every forward filter pn[k, l] is

calculated and so is the convolution of image I2[k, l] with every backward
filter pn[−k,−l]. That is 2N convolutions — N convolutions per image.

13



3. The Local All-Pass Algorithm................................2. Calculate ψn[k, l] for every n...3. For every pixel g in the image I1[k, l] a system of linear equations is
prepared as follows:

Agcg = bg Ag



c1
...

cN−1

 =

bg

 ,
where Ag and bg are constructed like this:

Ag =


〈ψ1ψ1〉Wg . . . 〈ψ1ψN−1〉Wg

...
. . .

...
〈ψN−1ψ1〉Wg . . . 〈ψN−1ψN−1〉Wg



bg = −


〈ψ1ψ0〉Wg

...
〈ψN−1ψ0〉Wg

 ,
and cg is a vector of coefficient cn and the windowWg is centered around
g. The sums over the window Wg can be calculated quite effectively
using a summed-area table (see the following paragraph) or by using
convolution...4. Solve the system of equations for every pixel g obtaining the coefficients
vector cg. This step can be done very effectively using Gaussian elimina-
tion by making use of vectorized, elementwise operations if the matrices
Ag are organised is a specific way.

Using a summed-area table. For every pixel g from I1[k, l] the sum
〈ψnψm〉Wg has to be calculated (N−1)N

2 + N − 1 times — due to the di-
mensions of Ag and bg. But since the window Wg is centered around each
pixel in turn (it is shifted by 1 pixel distances), the sums can be effectively
calculated using a summed-area table. This is very effective when we need
the calucation done for every pixel g from I2. To create a summed-area table,
for a function Q[k, l], to calculate

∑
[k,l]∈Wg

Q[k, l] with Wg around every
pixel of Q[k, l] in turn we follow these steps:..1. Q[k, l] is padded with a zero padding with width W in each direction.

This is so that the sum would be defined for pixels within W in of the
image edge...2. The result is padded once more, this time with 1 pixel width of zeros.
This is so that the calculation, as shown in Figure 3.4, doesn’t have to
check for edge conditions...3. Perform a 2D cumulative sum over the padded image.

Then the sum of the window Wg around pixel g of function Q[k, l] is just 3
operations on the summed-area table, like in Figure 3.4.

14



................................... 3.3. Poly-Filter LAP

2D cumulative sum. A table T , with a 2D cumulative sum of image I, is
created as follows:

T [0, 0] = 0,
T [n+ 1, n] = T [n, n] + I[n+ 1, n],
T [n, n+ 1] = T [n, n] + I[n, n+ 1].

(3.17)

(a) : Summed-area table edge case. (b) : Summed-area table.

Figure 3.4: A summed-area table for the image Q[k, l]. The images show the
area of the original image Q[k, l] in white, the symmetric padding of width W in
green, the 1 pixel zero padding in black, the area of the window W in orange
and the central pixel of W in red. The sum

∑
[k,l] ∈ W Q[k, l] is calculated from

the values at the locations marked in purple, with 3 operations: a− c− b+ d.

Algorithm 1: Local All-Pass (LAP) Estimation of a Deformation
Field from [5].
Input : Images I1 and I2, window half size W , filter half size R and

number of filters N
1 Initialization: Generate N basis filters, based on N and R (see 3.1.1).
2 Filtering: Filter I1 and I2 with the basis filters and calculate ψn[k, l]

for every n = 1, 2, ..., N − 1.
3 Systems of Equations - Preparation: Prepare matrices Ag and vector

bg for every pixel g in I2, using summed-area tables.
4 Systems of Equations - Solution: Solve the linear system Agcg = bg for

every pixel g in I2.
5 Extraction: Using the calculated coefficients vector cg calculate the

deformation for every pixel g in I2, using 3.12
Result: Deformation field aligning I2 to I1.

3.3 Poly-Filter LAP

When the LAP algorithm estimates large deformations it has to use a large
window W and thus has to assume, that large parts of the displacement field
are constant. To remedy this, the Poly-Filter LAP (PF-LAP) [5] algorithm

15



3. The Local All-Pass Algorithm..............................
uses the LAP algorithm to estimate the displacement field iteratively, in a
coarse-to-fine manner. The algorithm starts by estimating the displacement
field using a large filter size R allowing for slowly varying deformations and
reducing R at each iteration, allowing for faster varying deformations. At
each iteration, the deformation is estimated, image I2 is warped closer to
image I1 using the current deformation estimate and this estimate is added
to the previous estimate. The resulting displacement estimate is a sum of the
estimates at all the values of R. The specifics of this process are delineated
in the flowing sections and are summarized in Algorithm 2.

The estimate of the deformation field yielded from the LAP Algorithm 1
isn’t perfect and obvious errors and outlying estimates have to be removed
in the each iteration of PF-LAP in a post-processing step. Also, it can
be profitable to repeat iterations with one filter size R. To do so, at the
end of each iteration the Peak signal-to-noise ratio (PSNR) of the warped
source image Iwarped

2 and the target image I1 is compared to the PSNR of
the previous Iwarped

2 and I1. If the value after, minus before the iteration, is
higher than a threshold ε, no iteration is added, but if otherwise, an additional
iteration with the same value of R is added. New iterations are added only
to a certain maximum number of iterations, Max. Iterations = 3.
Remark. As one of the initialization steps to improve robustness, a limit is
set on the the minimum size of W based on the how much noise is estimated
to be in the images. See the paper [5] for the specific calculation.

3.3.1 Post-Processing

The post-processing of the deformation field has two steps, namely inpainting
and smoothing, described below.

Inpainting

The deformation field estimated by Algorithm 1 has obvious error of 2 types:..1. displacement vectors that exceed the expected support of the filter — i.e.
vectors which have a length larger than R,..2. displacement vectors that are within W from the edge of the image.

The erroneous values of the first type are removed and replaced using an
inpainting procedure. The inpainting algorithm from [11] is used, which
iteratively replaces the erroneous values with a mean of values from all of
non-erroneous neighbors, until they are all re-estimated. The erroneous values
near the boundary are replaced by the nearest valid value.

Smoothing

Since we are assuming that the displacement field is slowly varying, it can be
smoothed using a Gaussian filter to eliminate any errors that haven’t been
replaced in the inpainting procedure. The smoothing Gaussian filter has
σ = 2W and size (4W + 1)× (4W + 1).
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................................... 3.3. Poly-Filter LAP

3.3.2 Pre-Processing

To reduce the reliance on the brightness constancy hypothesis and improve
its performance on real images which often have changes in illumination [5]
employs 2 optional steps: histogram matching [12] and high-pass filtering.
The high-pass image Ihp of image I is obtained by subtracting the image
smoothed with a Gaussian filter Ismoothed from the original I.

Algorithm 2: Poly-Filter Extension of the LAP Algorithm from [5].
Input : Images I1 and I2, number of filters N , an array of filter sizes r

and maximum number of repetitions at each filter size
Max. repeats.

1 Initialization: Set the starting estimate of the deformation field u0 = 0,
the image I2 warped by this deformation field Iwarped

2 = I2 and the
minimal size of the window Wlimit is set based on the estimated noise.

2 for i in Number of filter sizes r do
3 Set LAP parameters: R = r[i] and W = max(R,Wlimit).
4 [Optional] Pre-filtering: High-pass image I1 (see 3.3.2).
5 for j in Max. repeats do
6 [Optional] Pre-filtering: High-pass image Iwarped

2 (see 3.3.2).
7 Displacement Estimation: With the current N , R and W

calculate the deformation field ∆u between I1 and Iwarped
2

using the Algorithm 1.
8 Post-Processing: Remove errors from ∆u using inpainting and

smoothing with a Gaussian filter (see 3.3.1).
9 Update the Displacement Estimation: Set ui = ui−1 + ∆u.

10 Warp: Warp I2 with ui to obtain a new Iwarped
2 .

11 if PSNR
(
I1, I

warped
2,j

)
− PSNR

(
I1, I

warped
2,j−1

)
> ε then

12 Break inner loop.
13 end
14 end
15 end

Result: Deformation field aligning I2 to I1 and the registered source
image, Iwarped

2 .

17



18



Chapter 4
The Sparse Local All-Pass Algorithms

In this chapter, I will present the new image registration methods, I developed
for this thesis, Sparse Local All-Pass (Sparse LAP) and Sparse Poly-Filter
Local All-Pass (Sparse PF-LAP). The key idea behind these methods, is to
obtain displacement vectors, calculated in the same fashion as the in the LAP
algorithm, but only at specific points in the image (not for every pixel of the
source image). And then fit a global deformation model to these this sparse
set of vectors and thus obtain a dense displacement field.

This approach leads to a few advantages. Speed is improved, because the
post-processing and pre-filtering steps can be omitted (see Section 4.5). Also,
with global fitting, the deformation field is smoother—naturally does not
have outlying estimates.

In the following sections I will explain how this proposed method works
and, to describe some of the workings, I will compare it with the LAP and
PF-LAP methods.

4.1 Point Selection

Similarly to [4], I assume that correspondences of two images can most easily
be found on the boundaries of regions and not as easily in their interiors.
This means that pixels that are on the edges or corners of the image features,
can provide more reliable information about the displacement in that area.
A demonstration of this can be seen in Section 4.1.1.

Points on edges and corners of a image I are selected by smoothing I with
a small Gaussian filter with σ = 1 (to get rid of pixel-sized edges). Then,
I is filtered with a Sobel filter [13] in both x and y directions, giving us
the gradient in these directions. Then the magnitude of these gradients is
calculated, resulting in an edge image (see Figure 4.2). The pixels with the
highest intensity are then picked iteratively from this edge image, while the
pixels inside a given radius C, of the picked pixel, are restricted from being
picked. This, along with providing a maximal number of chosen points D,
allows for the points to be sparsely distributed throughout the whole image.
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4. The Sparse Local All-Pass Algorithms ..........................
This process is shown in Algorithm 3.

Algorithm 3: Find Edge Points.
Input : Image I, maximal number of points D and the minimal

exclusion radius C.
1 Gradient Images: Smooth the image I and filter with a Sobel filter in

both x and y directions obtaining IGx and IGy respectively.
2 Edge Image: Calculate the edge image as the magnitude of gradient

images Iedge =
√
IGx 2 + IGy 2.

3 Sort Edge Image Pixels: Sort the pixels of Iedge by their intensity and
store it in Aorder.

4 Initialization: Create an empty starting array of edge points P and a
empty matrix for marking excluded pixels E.

5 for ai in Aorder do
6 if ai not marked as excluded in E then
7 Add ai to the array P .
8 Mark pixels in a radius C from ai as excluded in E.
9 if Number of elements in P = D then

10 Break.
11 end
12 end
13 end

Result: Sparse set of pixels P .

4.1.1 Edge Image Displacement Estimation Quality

To show that the displacement estimation is better at points of high gradient,
I took 100 random images images from the AAPM RT-MAC Grand Challenge
2019 dataset [14, 15] containing MR scans of the head and neck (described in
better detail in Chapter 5, with example images in 5.2) and warped them
with a random uniform deformation with maximum displacement of 5 pixels.
Then I used the LAP algorithm to estimate the displacement field for these
images and, knowing the ground truth displacement field, I calculated the
normalized cross correlation (NCC) between the displacement error of the
estimation and the intensity of the magnitude of gradient of the source. The
result of this experiment is shown as a histogram of the calculated NCC
values in Figure 4.1.
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....................................4.1. Point Selection

Figure 4.1: Histogram of NCC of displacement error and intensity of the edge
image, calculated on 100 random realisations.
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4. The Sparse Local All-Pass Algorithms ..........................

Figure 4.2: Edge image of Lena, with points selected using Algorithm 3.

4.2 Sparse Deformation Field

After selecting the points of interest, a deformation vector for each of these
points in calculated. Fortuitously, one of the properties of the LAP algorithm
is that estimating an all-pass filter for one pixel is independent of the the
estimation for any other pixel — in the way that the minimization (3.14)
is separate for each of these pixels. In my work, I take advantage of this
and estimate all-pass filters only for some pixels P obtaining a sparse set
displacement vectors. To do so, the same steps as in Section 3.2.1 are followed
— but only for these specific pixels.

4.2.1 What is different?

Convolved area. In contrast to the implementation in Section 3.2.1, in
general, we don’t need to perform full convolutions of I1 and I2 with the base
filters pn. We only need to convolve I1 and I2 with the base filters pn in the
widow Wg around each pixel g from P .
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...............................4.3. Global Deformation Model

(a) : W = R = 10 with approxi-
mately 85% of the image covered.

(b) : W = R = 4 with approximately
25% of the image covered.

Figure 4.3: Two Lena images, covered with the windowsWg around pixels g ∈ P
highlighted in orange.

This means that, in theory, there are some computations to be saved,
because only a fraction of the convolutions need to be calculated. However,
when collecting the sparse set of points, one of the goals is to have these points
well distributed throughout the image. And when estimating the displacement
of maximum size O, we need the convolutions of an area of size R ≥ O, and
for medium and large values of R, where the most time would be saved, most
of the image is covered with regions, that need a convolution. This is shown
in the Figure 4.3a, where W = R = 10 and 300 points are chosen from the
Lena image, where the area needed to be convolved is in shown in orange.
This still leaves some places where nothing has to be calculated, but thanks
to the fact that image convolution is very well optimised, when calculated
on the whole image, doing the convolution only for the regions in marked in
orange is significantly slower. This is true until about 20% of the image is
covered, where the difference evens out. But with a healthy amount of points,
this 20% coverage should be reached only by the smallest filters with R < 4.

Systems of equations. Another possible change to the implementation in
Section 3.2.1 is the way the systems of linear equations are solved. Besides
Gaussian elimination, I considered QR and Cholesky decompositions, but for
N = 3 and N = 6, (Ag and bg have sizes (N − 1) × (N − 1) and (N − 1)
respectively (see section 3.2.1) and any number of points D (there are up
to D systems of equations—one for each chosen pixel), vectorized Gaussian
elimination, that can solve all of the equations at once, was always the fastest.

4.3 Global Deformation Model

In [2] the results of the PF-LAP algorithm at each iteration are fit into
a global deformation field. According to the paper, this led to speed and
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4. The Sparse Local All-Pass Algorithms ..........................
precision improvement over the PF-LAP algorithm from [5]. I take this a
step further, in that I use the LAP algorithm to calculate the displacement
vector only for some pixels, and I fit this this sparse estimate into a global
deformation model.

This can be done in a couple of ways, such as affine, quadratic, radial basis
function (RBF) or B-spline fitting. In this work, I implemented two options,
radial basis function (RBF) fitting and quadratic polynomial fitting.

4.3.1 Radial Basis Function Fitting

Radial basis function fitting allows for good flexibility in the variety of
displacement fields. They can create less rigid and more general displacement
fields compared to a quadratic polynomial fitting.

Generating a Dense Displacement Field

The dense displacement field u(x, y) is calculated as follows,

u(x, y) =
D∑

i=1
wiφ (‖(x, y)− (xi, yi)‖) , (4.1)

where φ(r) is the radial basis function, (xi, yi) is the coordinate of computed
displacement vector u(xi, yi) and D is the number of computed displacement
vectors. I considered two radial basis functions, multiquadratic,

φ1(r) =
√

1 + (εr)2,

where ε = 1 and thin plate spline [16],

φ2(r) = r2 ln(r).

The weights wi are obtained by solving the matrix equation.


φ (‖(x1, y1)− (x1, y1)‖) . . . φ (‖(xD, yD)− (x1, y1)‖)

...
. . .

...
φ (‖(x1, y1)− (xD, yD)‖) . . . φ (‖(xD, yD)− (xD, yD)‖)



w1
...
wD

 =


uest (x1, y1)

...
uest (xD, yD)

 (4.2)

where uest(xi, yi) is the estimated displacement vector at (xi, yi).

4.3.2 Quadratic Polynomial Fitting

In comparison to the displacement field from RBF fitting, quadratic fitting
can create much simpler deformations, but when the number of points used
is high, it is a lot faster.
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Generating a Dense Displacement Field

The dense displacement field u(x, y) is calculated as follows,

u(x, y) =
M∑

m=1
bmum(x, y) (4.3)

where M = 6 is the number of basis functions um, that form the quadratic
polynomial. The basis functions are:

u1(x, y) = 1,
u2(x, y) = x,

u3(x, y) = y,

u4(x, y) = x2,

u5(x, y) = y2,

u6(x, y) = xy.

(4.4)

The weights bm are obtained by minimizing the the square difference of
the displacement estimated at coordinate of points P and the quadratic
expression 4.3,

min
bm

∑
x,y∈P

|u(x, y)− uest(x, y)|2 , (4.5)

where P are the coordinates of pixels from P and uest(x, y) is the estimated
displacement vector at (x, y).

With just the first three basis functions uk, any rigid/linear transformation
can be modeled. Adding the next three allows the fitting to deal with more
complex situations like perspective changes. In the experiments in Chapter 5,
quadratic polynomial fitting was shown to be very effective at approximating
homography transformations.

4.4 The Algorithms

Similarly to the previous sections, I first present an algorithm that estimates
displacement without iterations — with one filter size R and W — the Sparse
Local-All Pass algorithm. And then, I will extend this algorithm, in the
poly-filter fashion, so that it is able to estimate faster varying displacement
fields.

4.4.1 Sparse LAP

The steps in this algorithm are very similar the to the steps explained in
Section 3.2.1, the only difference is that the algorithm takes the edge points
P as an extra input parameter, and returns a displacement only for these
points. The process is summarized in Algorithm 4.
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Algorithm 4: Sparse Local All-Pass Displacement Vector Estimation.
Input : Images I1 and I2, number of filters N , filter half size R,

window half size W and edge points P .
1 Initialization: Generate the filter basis based on N and R (see 3.1.1).
2 Filtering: Filter I1 and I2 with the basis filters and calculate ψn[k, l]

for every n = 1, 2, ..., N − 1.
3 Systems of Equations - Preparation: Prepare matrices Ag and vector

bg for every pixel g in P , using summed-area tables.
4 Systems of Equations - Solution: Solve the linear system Agcg = bg for

every pixel g in P .
5 Extraction: Using the calculated coefficients vector cg calculate the

deformation for every pixel g in P , using 3.12
Result: Deformation vectors at points P .

4.4.2 Sparse PF-LAP

The Sparse Poly-Filter Local All-Pass algorithm (Sparse PF-LAP) is to the
Sparse LAP like the PF-LAP is to LAP. The motivation behind it, is to be
able to estimate faster varying displacements, using a filter pyramid.

The Sparse PF-LAP algorithm first finds up toD edge points P in the target
image using Algorithm 3, then, as in PF-LAP, it estimates the displacement,
but this time using Sparse LAP (see Algorithm 4), at a subset of P , Pi, which
contains only points that are not within W of the image border (explained in
the following paragraphs). Thus obtaining displacement vectors ui. Then,
if this is not the first iteration, deformation vectors at points Pi from the
previous dense deformation estimate ui−1, are added to the newly obtained
vectors ui. The newly estimated vectors, added to the vectors taken from the
previous global fitting, are now fit into a global deformation model, to obtain
the next dense displacement field. After that, the source image is warped
closer to the target image, with this dense displacement field. (Optionally,
the same PSNR testing mechanism as in PF-LAP is employed, to evaluate
if the current registration led to a large improvement.) And then, the next
iteration, with a smaller R, is run with the warped source image and target
image as inputs.

In contrast to the PF-LAP algorithm, no post-processing is necessary. This
plays a key role in the speed advantage of Sparse PF-LAP over PF-LAP (see
section 4.5). As for pre-processing, Sparse PF-LAP optionally uses histogram
matching before the registration begins.

Subset of P . Similarly to the post-processing step of PF-LAP, where the
estimations withinW of the image border is scrapped, here, a subset of points
P , Pi is created at each iteration, containing only points not in aW boundary
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of the image border.
Algorithm 5: Poly-Filter Extension of the LAP Algorithm from [5].
Input : Images I1 and I2, number of filters N , maximum number of

points edge points D, edge point exclusion radius C and
maximum number of repetitions at each filter size
Max. repeats.

1 Find Edge Points: Find up to D edge points P , with an exclusion
radius C, in I1, using Algorithm 3.

2 [Optional] Histogram Matching: Edit I2 to match the intensity
histogram of I1 [12].

3 Initialization: Set the starting estimate of the deformation field u0 = 0,
the image I2 warped by this deformation field Iwarped

2 = I2 and the
array of filter sizes r (see 4.1).

4 for i in Number of filter sizes r do
5 Set Sparse LAP parameters: R = r[i], W = R and the subset Pi,

not containing points within W of borders.
6 for j in Max. repeats do
7 Sparse Displacement Estimation: With the current N , R, W

and Pi, calculate the deformation vectors ∆u between I1 and
Iwarped

2 using the Algorithm 4.
8 Global Fitting: Add the previous deformation estimate ui−1 at

Pi to ∆u, and fit the result into a global deformation model,
obtaining ∆u (see 4.3).

9 Update the Displacement Estimation: Set ui = ui−1 + ∆u.
10 Warp: Warp I2 with ui to obtain a new Iwarped

2 .
11 [Optional] if PSNR

(
I1, I

warped
2,j

)
− PSNR

(
I1, I

warped
2,j−1

)
> ε

then
12 Break inner loop.
13 end
14 end
15 end

Result: Deformation field aligning I2 to I1 and the registered source
image, Iwarped

2 .

Remark 4.1. The default filter size pyramid r, is set in a similar manner as
in the PF-LAP paper [5]. The largest filter half size R is set to 1

4 of the
smaller dimension of the source image, and then descends in powers of two
until R = 1.

4.5 Speed Advantages

As discussed before in Section 4.2, besides the fact that the displacement
is estimated only at a small fraction of points, which means that there are
fewer systems of equations to prepare and solve, and fewer deformations to
be extracted, there are no other implementation changes that proved to be
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useful. This however, is by itself enough to boost the speed of Sparse LAP
considerably. This improvement can be seen in the the Listings 4.1 and 4.2,
in the rows "prepare A and b", "solve linear systems" and "calculate flow".

The main source of speedup over the PF-LAP algorithm, is thanks to
the fact that, with global fitting, there is no need for post-processing — no
inpainting nor smoothing, which as seen in Listing 4.2 are responsible for
great portions of the total runtime. Another significant factor slowing down
PF-LAP, is pre-filtering, which, as demonstrated in the Chapter 5, doesn’t
need, to be effective, as it outperformed PF-LAP with the prefiltering option
enabled.

The most time consuming process in both algorithms is filtering. In Sparse
PF-LAP it represented 80% of the total time, while in PF-LAP 40%.

Remark. The input parameters for these runs were as follows; N = 3, His-
togram matching = true, Max. repeats = 3 for both algorithms, specifically
in Sparse PF-LAP, D = 600, C = 13 and quadratic global model fitting was
used and specifically in PF-LAP, the prefiltering option was enabled.

Remark. The number of calls for PF-LAP was slightly higher, but this wasn’t
due to any parameter change, the PSNR testing process evaluated more
iterations of PF-LAP as ones to be repeated.

Listing 4.1: Sparse PF-LAP timings
------------------------------------------------------------

Time
----------------------

Tot / % measured: 4.34s / 100%

Section ncalls time %tot avg
------------------------------------------------------------
sparse pflap with psnr 1 4.33s 100% 4.33s

single filter pyramid level 8 4.16s 95.9% 519ms
sparse lap 12 3.85s 88.7% 320ms

filtering 12 3.47s 80.2% 289ms
prepare A and b 12 370ms 8.54% 30.8ms

window sum part 1 36 241ms 5.57% 6.70ms
window sum part 2 24 128ms 2.96% 5.35ms

solve linear systems 12 601µs 0.01% 50.0µs
calculate flow 12 121µs 0.00% 10.1µs

image interpolation 12 158ms 3.66% 13.2ms
flow interpolation 12 137ms 3.16% 11.4ms

setup 1 177ms 4.10% 177ms
find edge points 1 109ms 2.51% 109ms
hist match 1 49.7ms 1.15% 49.7ms

------------------------------------------------------------
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Listing 4.2: PF-LAP timings.
------------------------------------------------------------

Time
----------------------

Tot / % measured: 22.6s / 100%

Section ncalls time %tot avg
------------------------------------------------------------
pflap 1 22.6s 100% 22.6s

single filter pyramid level 8 22.6s 100% 2.82s
lap 19 9.07s 40.1% 477ms

filtering 19 6.39s 28.3% 336ms
prepare A and b 19 1.05s 4.63% 55.1ms

window sum part 1 57 664ms 2.94% 11.7ms
window sum part 2 38 227ms 1.00% 5.96ms

solve linear systems 19 1000ms 4.42% 52.6ms
calculate flow 19 134ms 0.59% 7.05ms

prefiltering 46 6.78s 30.0% 147ms
smoothing 19 3.95s 17.5% 208ms
inpainting 19 2.34s 10.3% 123ms

replicating borders 19 54.7ms 0.24% 2.88ms
image interpolation 19 340ms 1.50% 17.9ms

setup 1 46.7ms 0.21% 46.7ms
hist match 1 40.9ms 0.18% 40.9ms

------------------------------------------------------------
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Chapter 5
Experiments

In this chapter, I evaluate the performance of the proposed algorithm, Sparse
PF-LAP, against the following image registration algorithms:..1. BUnwarpJ [17, 18]: an ImageJ/Fiji image registration plugin, which

estimates a B-spline-based deformation. It uses multi-resolution and the
minimised criterion is a sum of squares difference (SSD)...2. Elastix [19, 20]: an image registration software base on the Insight
Segmentation and Registration Toolkit (ITK). It consists of a collection
of algorithms, in the following experiments b-spline image registration in
a multi-resolution scheme was used...3. DROP2 [21, 22]: an intensity-based image registration toolkit with
both linear and non-linear registration methods. In the experiments
both linear and non-linear registration was used...4. PF-LAP [5]: an intensity-based image registration algorithm with a
multi-resolution scheme. Discussed in Chapter 3.

Remark. There are more registration algorithms provided in BIRL, but their
results on the chosen testing datasets were not good, so I excluded them from
the experiments.

To run these registration methods, I use the image registration benchmark
framework provided from the Automatic Non-rigid Histological Image Reg-
istration (ANHIR) Challenge [23], the Benchmark on Image Registration
methods with Landmark validation (BIRL) [24, 25]. The ANHIR challenge,
and its’ benchmarking framework BIRL, use Euclidean distance of two cor-
responding landmarks Target Registration Error (TRE) as a performance
metric, more on this in the following paragraph.

BIRL’s performance metrics. Every corresponding image pair I1, I2 in
the histology dataset used in ANHIR has a number of corresponding key-
points that, when the images I1 and I2 get geometrically aligned, should
overlap. In other words, when a registration algorithm aligns I2 with I1, it
also aligns key-points of I2 with the ones in I1. BIRL uses the misalignment
of the key-points as a performance metric and terms it Target Registration
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Error (TRE), defined as the Euclidean distance between the key-point of the
registered source image Ireg

2 and the key-point in target image I1. A mean or
median can then be taken from the TRE of all key-points of an image. In
the following tests, I use mean and median TRE as a performance metric for
the registration of one image, more on this in the following Section 5.1.

CIMA histology dataset. First, I tested the PF-LAP algorithm and the
proposed methods on the histology dataset from the Center for Applied
Medical Research (CIMA)[25, 26, 27] containing 2D histological microscopy
tissue slices, stained with different stains and with annotated landmarks at
key-points in each slice, as used in the ANHIR challenge. But the results of
the PF-LAP and the Sparse PF-LAP algorithms were not good, revealing
a shortcoming of this method. One reason was probably that the images in
this dataset were not ideal for the LAP approach. Even though the images in
this dataset are technically mono-modal, they can be assumed to be almost
multi-modal due the fact that the variety of the used stains dramatically
change the appearance model, and the deformation may range from fine
elastic transformation to completely missing sections. For this reason I tested
the methods on two other datasets, consisting of real mono-modal images...1. One experiment is performed on the Oxford affine dataset [28], which has

images covering a range of situations like blurring, varying illumination
and change in viewpoint. These images are provided with a ground truth
homography matrix, see Section 5.3...2. And another experiment is performed on a subset of images taken from
the dataset of the AAPM RT-MAC Grand Challenge 2019 [14, 15], which
consists of head and neck MR scans which I artificially warped with
random homography transformations, see Section 5.4.

Remark. All tests were run on the docker image provided in BIRL on a
computer with Intel Core i7 at 3,4 GHz with 16GB of RAM.

5.1 Performance Metrics

When the ground truth deformation is known (as in the two experiments
described above), an ideal performance metric of an image registration algo-
rithm could be a mean or median absolute deformation error. Comparing
image registration algorithms from different toolkits or as standalone pro-
grams in different programming languages, can be hard however, because
the representation of the outputted deformation can be unique to each of
the methods. For this reason, I chose to use BIRL as medium to compare
the proposed methods to others. But since BIRL does not measure error of
the dense displacement field, and the datasets above do not have annotated
key-points, I create a large number of uniformly distributed key-points in
I1 and shift them with the known ground truth deformation field to create
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corresponding key-points in I2. This gives me the ability to measure the TRE
of key-points of the registered source image Ireg

2 and the target image I1.
I chose to use mean TRE, TREMean and median TRE, TREMed and exe-

cution time (in seconds) as the three quality measurements to compare the
algorithms on one image pair. When assessing performance on the datasets, I
take the mean of these measurement, effectively measuring average TREMean,
average TREMed and average time.
Remark. Note that the more key-points used, the closer the TRE is to the
absolute deformation error.

5.2 Method Parameters

All of the tested methods have configurable input parameters to best suit
the type of registration. For tests on both datasets, Oxford affine and head
MR images, I set the transformation parameter to affine for Elastix, DROP2
was set to use both linear and non-linear registration and the parameters of
BUnwarpJ and other parameters of the first two methods were left as defaults
from the BIRL framework. As for the LAP based methods, the number of
base filters N was set to 3, and histogram matching was used as a part of
the procedure. PF-LAP was run both with, and without prefiltering. For the
Sparse methods, the number of edge points D was set to 500, the exclusion
radius C to 13 and quadratic model fitting was used, as it better suits the
ground truth deformation.

5.3 Experiment on the Oxford Affine Dataset

In this experiment I show how the proposed algorithm copes, when brightness
constancy is violated. I chose four subsets of images from the Oxford affine
dataset [28]:..1. Bikes, containing images of size 1000× 700 pixels, in which the source

images are corrupted by blurring and have a maximum displacement
ranging from 39.2 to 52.7 pixels,..2. Leuven, containing images of size 900× 600 pixels, in which the source
images are corrupted by illumination change and have a maximum
displacement ranging from 7.7 to 22.2 pixels,..3. Trees, containing images of size 1000× 700 pixels, in which the source
images are corrupted by blurring and by the movement of leaves and
have a maximum displacement ranging from 38.6 to 55.4 pixels,..4. UBC, containing images of size 800× 640 pixels, in which the source im-
ages are corrupted by JPEG compression and do not have a displacement
at all.
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5. Experiments .....................................
Each subset contains a one target image I1 and five source images I2, I3, I4,
I5 and I6 — from small changes in the imaging conditions to large changes.
The dataset contains a ground truth homography transformation from the
target image to all of the source images for each subset. In section A.1 of the
Appendix A, there is a figure for each subset showing I1, I3, the ground truth
deformation and the deformation estimated by the Sparse PF-LAP method.

Remark. There are more subsets in this dataset, but the maximum displace-
ment is too high for the PF-LAP, Sparse PF-LAP and the other tested
methods, to output a meaningful registration.

Figure 5.1: An well registered source image from the Bikes subset of the Oxford
affine dataset, with estimated and target key-points.
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Bikes

Method Avg. TREMean Avg. TREMed Avg. Time
DROP2 6.83 6.68 0.981
Elastix 0.811 0.699 63.7

BUnwarpJ 2.59 2.49 66.4
Sparse PF-LAP 0.999 0.944 9.07

Sparse PF-LAPPSNR 1.15 0.993 14.7
PF-LAP 6.21 3.68 29.3

PF-LAPprefilt 1.95 1.65 4.42
Sparse PF-LAP* 1.36 1.17 0.964

Sparse PF-LAPPSNR
* 1.11 0.995 1.56

PF-LAP* 6.99 4.03 1.99
PF-LAPprefilt

* 2.0 1.64 2.1

Leuven

Method Avg. TREMean Avg. TREMed Avg. Time
DROP2 1.87 1.9 0.792
Elastix 0.797 0.526 63.5

BUnwarpJ 2.41 2.37 72.6
Sparse PF-LAP 0.38 0.261 8.03

Sparse PF-LAPPSNR 0.547 0.413 11.7
PF-LAP 1.5 0.805 18.5

PF-LAPprefilt 1.15 0.842 3.35
Sparse PF-LAP* 0.419 0.371 0.955

Sparse PF-LAPPSNR
* 0.496 0.396 1.01

PF-LAP* 2.41 1.51 1.34
PF-LAPprefilt

* 1.53 1.14 1.68

Trees

Method Avg. TREMean Avg. TREMed Avg. Time
DROP2 5.49 5.51 1.22
Elastix 1.69 1.3 64.1

BUnwarpJ 3.98 3.26 67.5
Sparse PF-LAP 3.66 2.62 9.37

Sparse PF-LAPPSNR 2.54 2.12 15.7
PF-LAP 6.1 3.11 29.5

PF-LAPprefilt 4.97 2.73 4.22
Sparse PF-LAP* 2.94 2.41 0.974

Sparse PF-LAPPSNR
* 2.51 2.09 1.4

PF-LAP* 5.67 3.41 1.59
PF-LAPprefilt

* 5.05 2.86 2.12

UBC

Method Avg. TREMean Avg. TREMed Avg. Time
DROP2 0.0636 0.0635 0.763
Elastix 0.122 0.114 65.0

BUnwarpJ 2.97 2.63 71.5
Sparse PF-LAP 0.0811 0.0612 6.91

Sparse PF-LAPPSNR 0.157 0.123 10.7
PF-LAP 8.15 2.01 29.3

PF-LAPprefilt 2.19 0.897 3.36
Sparse PF-LAP* 1.21 0.521 1.25

Sparse PF-LAPPSNR
* 0.566 0.417 1.14

PF-LAP* 7.57 1.79 2.27
PF-LAPprefilt

* 1.9 0.873 1.47

Table 5.1: Results on the Oxford affine dataset. Best values in each subset are
highlighted in bold. Methods marked with (*) are run on images resized to 400
diagonal pixels (see section 5.3).
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Down-scaling. Since the DROP2, Elastix and BUnwarpJ methods all use
image down-scaling in the form of a multi-resolution scheme, I decided to also
downscale the images to show how the proposed methods cope with this. The
images were down-scaled to from roughly 1100 diagonal pixels, depending on
the subset, to 400 diagonal pixels. These runs that used down-scaled images,
are marked the (*) in the results Table 5.1.

Results

The results of the compared methods are displayed in Table 5.1. Best values
are highlighted in bold. The Sparse PF-LAP method performed best in the
Leuven and UBC subsets, where the displacement is the smallest, achieving
sub-pixel precision. In the Leuven dataset it was closely followed by the
down-scaled run of the algorithm, while in the UBC the first place in precision
was split between it and DROP2, which was quite a bit faster.

On original sized images in the Leuven, Bikes and UBC subsets, Sparse
PF-LAP without PSNR testing came out more precise (almost twice as precise
in UBC), than Sparse PF-LAP with PSNR testing, but performed worse in
the Trees subset.

Interestingly, but for the Leuven dataset — where it was otherwise — the
Sparse PF-LAP with PSNR testing outperformed the Sparse PF-LAP method
on all of the down-scaled images — in the UBC and Trees subset the difference
was significant.

The timings of all methods were quite stable—varying by a small amount
over all four subsets. Tied for fastest is the down-scaled Sparse PF-LAP
and DROP2 at roughly 1.1 seconds of runtime, with the down-scaled Sparse
PF-LAP with PSNR testing close behind. While the slowest by far are Elastix
and BUnwarJ with around 65 seconds of execution time.

On the whole, both of the proposed algorithms outperformed PF-LAP
(with, and without prefiltering) in all the performance metrics measured.
The methods came out in second place in the Bikes subset, where they were
slightly outperfored by Elastix. And they managed second place in the Trees
subset where the Elastix algorithm dominated every other, beating Sparse
PF-LAP by a large margin.

5.4 Experiment on Head MR Images

In this experiment the algorithms are run on 60 MR scans of the head and
neck, from the AAPM RT-MAC Grand Challenge 2019 dataset [14, 15].
These target images were filled with key-points and deformed with a random
homography transform to create the source images. Each transform was
rescaled, so that the maximum displacement is 40 pixels. An example of a
target and source image is in Figure 5.2.

Remark. The brightness constancy not violated in this experiment.
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(a) : Target image I1. (b) : Source image I2.

(c) : I1 (orange) and I2 (blue).

Figure 5.2: MR head scan: target and generated source.

Down-scaling. Similarly to experiment on the previous dataset, I use run
the LAP based methods on down-scaled images. Here the down-scaling factor
was smaller in comparison; from 724 diagonal pixels to 400.

Results

The results of the compared methods are displayed in Table 5.2.
In this experiment Elastix is the clear winner quality-wise, outperforming

all other algorithms by a good margin, but speed-wise it is lacking, being the
slowest after BUnwarpJ.

Since, discounting noise and scan artifacts, the margins where the image
is only black are quite wide, I thought this would better suite the Sparse
algorithms over PF-LAP. But surprisingly, PF-LAP performed quite well
on these images. With prefiltering it achieved an average TREMed of 2.04,
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Sparse PF-LAP followed with 2.23. In average TREMean however, Sparse
PF-LAP came in second with PF-LAP third.

The runtimes on this data are similar as in the previous one, the down-
scaled Sparse PF-LAP being the fastest with 1.23 seconds and followed by
the down-scaled Sparse PF-LAP with PSNR testing with 1.77 seconds.

Unfortunately, DROP2 is excluded from the results, because every regis-
tration attempt ended with an internal error.

Method Avg. TREMean Avg. TREMed Avg. Time

DROP 13.9 13.3 0.491
Elastix 1.36 1.16 70.5

BUnwarpJ 270.0 185.0 74.6
Sparse PF-LAP 2.54 2.23 3.9

Sparse PF-LAPPSNR 2.74 2.34 6.38
PF-LAP 11.2 3.93 17.9

PF-LAPprefilt 2.79 2.04 5.85
Sparse PF-LAP* 3.48 2.89 1.23

Sparse PF-LAPPSNR
* 2.67 2.32 1.77

PF-LAP* 11.4 4.23 3.34
PF-LAPprefilt

* 2.88 2.07 3.92

Table 5.2: Results on head MR images. Best values are highlighted in bold.
Methods marked with (*) are run on images resized to 400 diagonal pixels (see
section 5.4).
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Chapter 6
Summary and Conclusion

In this thesis, I first briefly explained what image registration is, and what are
some approaches to solve the image registration problems. Then I described
in detail how the Poly-Filter Local All-Pass (PF-LAP) and Local All-Pass
(LAP) image registration algorithms work. After that, I proposed a new
method—Sparse Poly-Filter Local All-Pass (Sparse PF-LAP)—based the
PF-LAP algorithm, that uses sparse displacement estimation and global
deformation model fitting. And compared this methods experimentally with
others, on real, and artificial data.

The proposed method performed very well in both of the conducted ex-
periments, in quality, outperforming PF-LAP and all other tested methods,
besides Elastix, which was superior in on some data. Sparse PF-LAP was
also shown to be very fast. It was faster than PF-LAP by a good margin,
and, with image down-scaling, was faster than every other algorithm, except
for DROP2. The performance of the proposed methods was very good even
on down-scaled images, even improving the registration quality on the Trees
subset of the Oxford affine dataset. On the whole, the sparse estimation
and global fitting approach was shown to be very effective, and I think it
should be explored further. In particular, a multi-resolution scheme could
be implemented, to improve the speed for large images, while keeping the
registration quality high. Another area left unexplored, is to improve the
algorithm to work on multi-modal-like images, similar to the ones from the
ANHIR challenge.
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Appendix A
Datasets

Examples of images from the datasets used in Chapter 5.

A.1 Oxford Affine

Examples of dataset images used in the first experiment in Chapter 5, target
and source from each subset, along with the ground truth deformation and
deformation estimated by the Sparse PF-LAP algorithm without PSNR
testing.

(a) : I1 (b) : I3

(c) : u (d) : uest

Figure A.1: UBC subset.
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(a) : I1 (b) : I3

(c) : u (d) : uest

Figure A.2: Leuven subset.

(a) : I1 (b) : I3

(c) : u (d) : uest

Figure A.3: Trees subset.
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(a) : I1 (b) : I3

(c) : u (d) : uest

Figure A.4: Bikes subset.

A.2 MR head images

One random example of dataset images used in the second experiment in Chap-
ter 5, along with the ground truth deformation and deformation estimated
by the Sparse PF-LAP algorithm without PSNR testing.
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(a) : I1 (b) : I2

(c) : u (d) : uest

Figure A.5: MR head images.
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Appendix B
Attachment contents

/
BIRL .....................used datasets, run scripts and test results
thesis.pdf............................pdf file with the thesis text
LAP_julia................Julia package with implemented methods
README.md.................text file with the GitHub and other urls
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