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Abstract
Accurate geometrical models of the head are necessary for solving the forward
and inverse problems of magneto- and electro-encephalography (MEG/EEG).
Boundary element methods (BEMs) require a geometrical model describing
the interfaces between different tissue types. Classically, head models with a
nested volume topology have been used. In this paper, we demonstrate how this
constraint can be relaxed, allowing us to model more realistic head topologies.
We describe the symmetric BEM for this new model. The symmetric BEM
formulation uses both potentials and currents at the interfaces as unknowns and
is in general more accurate than the alternative double-layer formulation.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Magneto-/electro-encephalography (Phillips et al 1997, Sarvas 1987, Hämäläinen et al 1993)
is a non-invasive medical technique for measuring neuronal activity in the brain. A classical
approach to computing the dependences between the neuronal sources and the electric and
magnetic field measured outside the head is the boundary element method (BEM) (Bonnet
1999, Nédélec 2001). A symmetric BEM formulation (Adde et al 2003, Kybic et al 2005a)
was demonstrated to be much more accurate than the previously used alternatives, mainly
based on the double-layer formulation (Geselowitz 1967). The problem we address in this
paper is the limitation of the classically used head models consisting of a set of nested closed
surfaces. Nested models fail to model the openings present in the skull (eyes), or the brain
and skull defects caused by surgery. The effect of such defects on the localization accuracy
can be significant (Bénar and Gotman 2002, Oostenveld and Oostendorp 2002). We therefore
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Figure 1. Traditionally, the head is modelled as a set of nested regions (left), while a real head
geometry is much more complex (middle, transversal cut from the Visible Human project). The
model proposed here assumes piecewise constant conductivity, with arbitrary partitioning (right).

propose a new formulation that can handle arbitrary partitioning of the space into volumes
corresponding to different tissue types.

1.1. Problem definition

The relationship between the current source density Jp and the electric potential V in a
conducting environment is given by the quasi-static approximation of the Maxwell equations
(Sarvas 1987, Faugeras et al 1999)

∇ · (σ∇V ) = f = ∇ · Jp in R
3. (1)

The forward problem consists of calculating V given Jp and σ . We only consider piecewise
constant conductivity models, with different conductivities corresponding to different tissue
types. Such models can be constructed readily (although laboriously) from segmented MRI
data.

1.2. Previous work

Previous BEM models for MEG/EEG (Phillips et al 1997, de Munck 1992, Mosher et al 1999,
Gencer and Tanzer 1999, Hämäläinen and Sarvas 1989, Kybic et al 2005a) have been limited
to simple nested models (figure 1, left). However, it is clear that an actual head geometry
(figure 1, middle) is topologically more intricate. For example, nested models cannot represent
the openings present in the skull (eyes). We propose a new formulation that can handle arbitrary
partitioning of the space into volumes corresponding to different tissue types.

The importance of using head models with a general topology is becoming apparent. It
was proved for example that ignoring a hole in the skull can cause localization errors of up to
2 cm (Bénar and Gotman 2002). The standard BEM, capable of handling closed surfaces, was
applied to this case (Oostenveld and Oostendorp 2002) by using meshes composed of closed
surfaces approximating the true, general topology. This was done either by describing the
inner and outer skull surfaces by a single interface, by making different meshes partly coincide,
or by introducing an infinitely thin skull layer surrounding the compartment representing the
hole. Unfortunately, bringing surfaces close together deteriorates the numerical accuracy of
the BEM.

The classical double-layer BEM has been applied to a general topology in Akalm-Acar
and Gençer (2004), without justification of the validity of this extension. An isolated problem
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approach (Hämäläinen and Sarvas 1989) was used to mitigate the numerical inaccuracy of the
double-layer BEM for large conductivity differences.

1.3. Generalized head model

We consider a head model with piecewise-constant conductivity, by partitioning the space into
N + 1 disjoint connected open sets �1, . . . , �N+1, such that

⋃N
α=1 �α ∪ �N+1 = R

3. The
volumes �1, . . . , �N , with conductivities σα , correspond to head tissues and are bounded,
while �N+1, with conductivity σN+1 = 0, represents the air and extends to infinity (figure 1,
right).

Each pair of volumes �α,�β has a common boundary Sαβ = ∂�α ∩ ∂�β which is either
empty, or can be decomposed as the union of a finite number of connected regular surfaces4.
Note that each Sαβ is regular almost everywhere, and has a normal field n which points, by
definition, from �α to �β .

1.4. Connected Laplace problems

Since the conductivity is supposed to be piecewise constant, we can factor out σ from (1) to
yield a set of Laplace problems connected by boundary conditions, imposing the continuity
of potential V and current p = σ∂nV across the interfaces:

σα�V = f in all �α (2)

[V ]Sαβ
= [p]Sαβ

= 0 on all Sαβ. (3)

2. Symmetric boundary element method

The symmetric boundary element method (BEM) (Nédélec 2001) uses Green identities to
convert the differential equations (2) for V in R

3 into a set of integral equations with unknowns
V and p on the boundaries Sαβ , reducing the dimensionality of the problem from 3D to 2D.
A discretization leads to a symmetric system of linear equations. The symmetric BEM
formulation is more complicated but more accurate and numerically stable than the alternative
double-layer and single-layer BEM (Kybic et al 2003). Originally, the symmetric BEM was
formulated for the layered model (Kybic et al 2005a). We shall go over it again briefly, making
the appropriate changes to allow for the generalized head model (section 1.3), as already hinted
in Kybic and Clerc (2003).

2.1. Free-space solution

Let us first consider a solution of (2) without taking the boundary conditions (3) into account,
as if it were in an infinite space of constant conductivity. Let us decompose the sources as
f = ∑

α fα , such that for each α and for all x �∈ �α, fα(x) = 0. For α such that σα �= 0, we
denote by vα a free-space solution of

σα�vα = fα. (4)

We introduce the Green function G(r) = 1/(4π‖r‖) of the Laplace operator, such that
−�G(r) = δ0(r). The function vα = −(fα ∗ G)/σα satisfies (4). This free-space solution

4 A surface S is connected if for each pair of points A, B ∈ S there is a path in S between A and B. A surface is
regular if at each point it can be locally approximated by a plane.
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vα also satisfies the ‘zero at infinity’ condition (denoted by H in the representation theorem,
appendix B), which ensures that vα tends to zero infinitely far from all sources.

In volumes such as �N+1 (air), where the conductivity σN+1 = 0, we choose vN+1 = 0, a
valid solution of (4) which is also compatible with the condition H .

2.2. Continuous form of the symmetric BEM

Let us now describe how to convert the partial differential equations (2) and boundary
conditions (3) into the integral formulation. For each α, we define a function

uα =
{
V − vα in �α

−vα elsewhere,

where V is the solution of equations (2), (3) and vα the solution of (4). The function uα is
harmonic (�uα = 0) in R

3\∂�α . It jumps across the boundary ∂�α (between �α and R
3\�α)

according to [uα]∂�α
= Vα and σα[∂nuα]∂�α

def= pα , where Vα is the restriction of V on the
boundary. (The jump of f between �α and �β is defined as [f ]Sαβ

= f α
Sαβ

− f
β

Sαβ
, where f α

Sαβ
,

resp. f
β

Sαβ
, are the limits of f when approaching a point on the surface Sαβ from �α , resp.

�β.)
Consider the surface Sαβ = 	. First, we apply the representation theorem (Bonnet 1999,

Nédélec 2001) (appendix B) to calculate the limit of uα = V − vα from �α towards 	, using
the values of V and p on all the boundary ∂�α, 	 ⊆ ∂�α:

(V − vα)−	 = [uα]	
2

−
∑


=Sαδ

(D	
[uα]
 − S	
[∂nuα]
)

= V	

2
−

∑

=Sαδ

(
D	
V
 − σ−1

α S	
p


)
where D and S are the double- resp. single-layer potential integral operators (Kybic et al
2003, 2005a) (see also appendix A), the subscripts indicate the target and source surfaces
they operate upon, and we sum over all regions �δ adjacent to �α . Second, we apply the
representation theorem to the limit of uβ = V − vβ from �β towards 	:

(V − vβ)+
	 = − [uβ]	

2
+

∑

=Sβδ

(−D	
[uβ]
 − S	
[∂nuβ]
)

= V	

2
+

∑

=Sβδ

(
D	
V
 − σ−1

β S	
p


)
where the ‘inward’ orientation of 	 with respect to �β changes the sign of the normal derivative
∂n involved in D and p. Thanks to the continuity of vα, vβ , and V across 	 we can subtract
the two previous equations:

(vβ − vα)	 = −2D		V	 +
(
σ−1

β + σ−1
α

)
S		p	 −

∑
(
,γ )

(
D	
V
 − σ−1

γ S	
p


)
(5)

with (
, γ ) ∈ {(Sαδ, α); δ �= β} ∪ {(Sδβ, β); δ �= α}. Similarly, by evaluating (σ∂nu) on both
sides of 	 we get

(σβ∂nvβ − σα∂nvα)	 = −(σα + σβ)N		V	 + 2D∗
		p	 −

∑
(
,γ )

(σγN	
V
 − D∗
	
p
) (6)

with the same (
, γ ). We have obtained a set of equations for V and p that must hold on
all surfaces. Note that, since σN+1 = 0, the flow p across the external surfaces is 0, and the
corresponding terms disappear.
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2.3. Discretization of unknowns and surfaces

The surfaces Sαβ are triangulated, and the vertices common to several surfaces are shared. To
balance approximation errors, the potential V is discretized on the surfaces using piecewise
linear P1 elements {ϕk} (with k indexing the vertices of the triangulated surfaces) and the flow p
using the piecewise constant P0 elements {ψl} (with l indexing the triangles of the triangulated
surfaces), like in Kybic et al (2005a). Unlike ψl , the P1 functions ϕk span several triangles
which can belong to different surfaces. We therefore decompose them as ϕk = ∑

k′(k) ϕ′
k′ ,

where the notation k′(k) means ‘the indices k′ of triangles that contain the vertex of index k’.
Each of the partial functions ϕ′

k′ is supported only on one (oriented) triangle Tk′ and hence
belongs only to one surface. We approximate the unknowns as

V =
Nv∑
k=1

∑
k′(k)

xkϕ
′
k′ and p =

Nt∑
l=1

ylψl (7)

where Nv , resp. Nt , are the total numbers of vertices, resp. triangles, across all surfaces.

2.4. Discretization of the equations

Using a Galerkin approach, we take scalar products of both sides of (6) with P1 basis functions
ϕi and of both sides of (5) with P0 basis functions ψj , on Sαβ = 	:

〈(σβ∂nvβ − σα∂nvα), ϕi〉︸ ︷︷ ︸
wi

=
∑
i ′(i)


∑

k

xk

∑
k′(k)

δi ′k′(N)i ′k′ +
∑

l

ylµi ′l(D
∗)i ′l


 (8)

〈(vβ − vα), ψj 〉︸ ︷︷ ︸
zj

=
∑

k

xk

∑
k′(k)

µjk′(D)jk′ +
∑

l

ylνjl(S)jl . (9)

The discretized operator matrices are

(N)i ′k′ = 〈N	
ϕ′
k′, ϕ

′
i ′ 〉

(S)jl = 〈S	
ψl, ψj 〉
(D)jk′ = (D∗)k′j = 〈D	
ϕ′

k′, ψj 〉 = 〈D∗

	ψj , ϕ

′
k′ 〉,

where ϕi, ψj are defined on the surface 
 = Sγ δ or Sδγ , γ ∈ {α, β},�δ adjacent to �γ and
the constants are given by5

δi ′k′ µi ′l νjl condition
−(σα + σβ) −2

(
σ−1

α + σ−1
β

)

 = Sαβ

+σα −1 +σ−1
α 
 = Sαδ, δ �= β

−σα 1 −σ−1
α 
 = Sδα, δ �= β

+σβ −1 +σ−1
β 
 = Sδβ, δ �= α

−σβ 1 −σ−1
β 
 = Sβδ, δ �= α

0 0 0 otherwise.

The advantage of this discretization is a good balance of the regularity of the integrated
terms. The system matrix A (composed of N, D, D∗, S, see (10)) is symmetric, provided that
we order the equations as written above, (8), (9) and the unknowns as in A[xy]T .

5 In the first line, 
 is equal to 	 but also to the other components of ∂�α ∩ ∂�β , if this boundary is composed of
several regular surfaces. Then each coefficient δ, µ, ν is a sum of the individual contributions.
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The double integrals involved in evaluating the elements of matrices D∗, D, S are computed
partly analytically (Wilton et al 1984, de Munck 1992, Ferguson et al 1994); the outer integrals
are computed numerically using a 16-point triangle quadrature rule (Lyness and Jespersen
1975). Elements of the left-hand side of (8), (9) are calculated by an adaptive numerical
quadrature using the Cubpack++ library (Cools et al 1997).

The discretized operator N calculated approximated using the relation (Nédélec 2001,
theorem 3.3.2)

〈Nϕ′
i ′ , ϕ

′
j ′ 〉 = −(qi ′ × ni ) · (qj ′ × nj )〈Sψj ′ , ψi ′ 〉

where the partial P1 basis functions ϕi ′(x) = (qi ′ · x + αi ′)ψi ′(x) and ϕj ′(x) =
(qj ′ · x + αj ′)ψj ′(x) are supported only on triangles i ′ resp. j ′ with normals ni ′ , nj ′ .

2.4.1. Three nested layers. As an example, suppose the head model to consist of three nested
layers, denoted by 1, 2, 3. The system (8), (9) writes



(σ1+σ2)N11 −σ2N12 0 −2D∗
11 D∗

12

−σ2N21 (σ2+σ3)N22 −σ3N23 D∗
21 −2D∗

22

0 −σ3N32 σ3N33 0 D∗
32

−2D11 D12 0 (σ−1
1 +σ−1

2 )S11 −σ−1
2 S12

D21 −2D22 D23 −σ−1
2 S21 (σ−1

1 +σ−1
2 )S22




︸ ︷︷ ︸
A

·




x1

x2

x3

y1

y2




︸ ︷︷ ︸
u

=




w1

w2

w3

z1

z2




︸ ︷︷ ︸
c

where xα, yα are the unknown terms from (7) corresponding to the surface α. Similarly, wα, zα

are the corresponding source terms from (8), (9).
The zero blocks come from the fact that layers 1 and 3 do not touch a common volume

and thus do not interact. If more nested layers are added, it can easily be seen that the system
always keeps the structure(

N D∗

D S

)
︸ ︷︷ ︸

A

(
x
y

)
︸︷︷︸

u

=
(

w
z

)
︸︷︷︸

c

with D∗ = DT . (10)

The system is symmetric and the matrices N, D and S are block diagonal (provided a proper
ordering of the surfaces has been chosen). Note also that the number of unknowns is less than
N = Nv + Nt , because since σ4 = 0 the system does not depend on y3.

2.4.2. General topology. If the topology is more general, we can no longer uniquely identify
vertex unknowns with surfaces. The overall four-block structure of A remains as in (10) but
the block-diagonal structure is lost.

For example, consider the model in figure 2, consisting of two half-spheres Sa and Sb

with the same radius, enclosing volumes with conductivities σ1 and σ2, connected together
along a disc Sc and included within a larger sphere Sd enclosing a volume with conductivity
σ3, itself placed in a non-conductive medium. In this case, the submatrices have the following
structure:

N =




(σ1 + σ3)Naa −σ3Nab −σ1Nac −σ3Nad

−σ3Nba (σ2 + σ3)Nbb −σ2Nbc −σ3Nbd

−σ1Nca −σ2Ncb (σ1 + σ2)Ncc 0
−σ3Nda −σ3Ndb 0 σ3Ndd




D =

−2Daa Dab Dac Dad

Dba −2Dbb Dbc Dbd

Dca Dcb −2Dcc 0



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Sb

σ3
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σ2

Sc

Figure 2. Example of a general, non-nested topology.

and

S =




(
σ−1

1 + σ−1
3

)
Saa −σ−1

3 Sab −σ−1
1 Sac

−σ−1
3 Sba

(
σ−1

2 + σ−1
3

)
Sbb −σ−1

2 Sbc

−σ−1
1 Sca −σ−1

2 Scb

(
σ−1

1 + σ−1
2

)
Scc


 .

The zero blocks in N and D result from the fact that the surfaces Sc and Sd are not the boundaries
of a common volume. We can neglect the interaction between Sd and the zero-measure curves
at the intersection of Sa, Sb and Sc.

2.5. Deflation and preconditioning

The matrix A as defined in (10) has a kernel of dimension 1, related to the indeterminacy of
the absolute level of the potential V . Using deflation (Tissari and Rahola 1998, Fischer et al
2002, Kybic et al 2005a) we obtain a regular matrix

A′ = A + ωIdefl

where Idefl selects a solution with zero mean of the potential coefficients x over all the surfaces,
i.e. Ideflu = [ss. . s00 . . 0] with s = ∑

i xi . In other words, N′ = N + ω11T . The constant
ω is chosen to approximately maximize the conditioning of A′ by equalling the maximum
eigenvalues of Idefl and an approximation of A by its diagonal elements (Kybic et al 2005a).

The matrix A′ is then preconditioned by its diagonal. In other words, instead of solving
A′u = c, we solve (DA′D)(D−1u) = Dc, where D is a diagonal matrix such that all diagonal
elements of DA′D are equal to 1 in magnitude.

The system matrix A (10) is a so-called saddle-point system (Benzi et al 2005), indefinite
(with both positive and negative eigenvalues) even after the deflation and with relatively poor
spectral properties, more difficult to solve than standard positive definite linear systems.

2.6. Iterative solver

The matrix A is big but relatively well structured: since the N ,S,D interactions all decrease
with the distance between interacting elements, the elements in each block tend to get
smaller away from the diagonal. Therefore, it is advantageous to use iterative methods
for solving Au = c. We have chosen the MINRES algorithm (Barret et al 1994), which
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Figure 3. Sketched cross-sections of alternative representations of a two-sphere model: two closed
spheres (left), inner sphere divided into two hemispheres (middle), with a separating boundary
between the two hemispheres (right).

is a Krylov subspace method similar to the conjugate gradient method, and designed for
symmetric but not necessarily positive-definite matrices. Its convergence speed depends on
the eigenstructure of the system matrix (Paige et al 1993, Greenbaum 1997, Tichý and Liesen
2004). Preconditioning reduces the number of iterations by approximately a factor of 2.

3. Experiments

We have implemented the generalized topology algorithm presented here using the same
core computational routines as in the original symmetric method implementation (Kybic et al
2005a). We have verified that the matrices corresponding to layered head models are identical
to within machine precision.

3.1. Alternative spherical models

The second set of experiments checks the correctness of calculation for more complex
topologies, using three equivalent mesh sets. First, we calculated the outside field for a
two-layer spherical model with a diagonal, unit-magnitude, dipolar current source. Its cross-
section is sketched in figure 3, left. The conductivities are 1 S m−1 inside the inner sphere,
0.1 S m−1 between the inner and outer spheres, and 0 outside. Note that for such a simple
model, the EEG forward problem has an analytical solution. The surface electric potential,
computed with the BEM for a discretization with 516 points (1024 triangles) per sphere, is
shown in figure 4, left. The relative �2 error with respect to the analytical solution was 3.4%.
Since deflation depends on the discretization, the mean surface potential was subtracted from
all results for meaningful comparison.

In the second case (figure 3, middle), the inner sphere was divided into two hemispheres.
As the system matrix is identical to the first case, the surface field (figure 4, middle) is also
identical to the first case. Finally, we added a dividing surface between the two hemispheres
(figure 3, right), similar to figure 2, while maintaining the conductivities unchanged. The
relative �2 difference of the potential with respect to the first and second cases was 1.0%, the
error with respect to the analytical solution 3.8%. These errors are comparable to the error of
the BEM itself (Kybic et al 2005a).

3.2. Change of conductivity for spherical models

The third experiment studies the effects of a change of the conductivity of the ‘bottom’
hemisphere (figure 3, right) from 10−3 to 103, with the remaining conductivities unchanged
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Figure 4. Surface potential for the three alternative representations of the two-sphere model
(figure 3) with 516 to 632 points (1024 to 1280 triangles). Surface potential after mean subtraction
is shown. The three results are virtually identical.

(1 for the top hemisphere, 0.1 between the inner and outer spheres). Even though the surface
fields look very similar (figure 5, top), the change is well visible on the graph (figure 5, bottom)
showing the surface potential along a circular intersection of the outer sphere with the zy plane
(containing the dipole source) as a function of the angle.

3.3. Refining meshes for a realistic model with a hole

The numerical accuracy can be improved by selectively refining (increasing triangulation
density) in regions where abrupt spatial changes of the field are expected.

We created a realistic head model from MRI data with surfaces representing interfaces
between the skin (σ = 1), the skull bone (σ = 0.0125) and the cerebrospinal fluid (CSF,
σ = 1). The novelty is that we artificially introduced a ‘hole’ in the skull: a part of the
original skull volume now forms an extra compartment, with a separately chosen conductivity
σhole. The hole compartment has common borders with the skull, the brain/CSF and the skin
compartments. Such a hole could result from an injury or an operation. We have chosen a
realistic dipolar source in the upper half of the innermost compartment, oriented approximately
perpendicularly to the skull surface.

We have prepared five variants of this realistic head model (figure 6): a reference model
without the hole (R), a model with coarsely meshed hole walls (A), two models with increasing
number of triangle ‘layers’ representing the hole walls (B and C); since the top and bottom
surfaces are unchanged, this leads to anisotropic meshes. The last model (D) has the finest
hole wall meshing and adaptively refined top and bottom surfaces in the vicinity of the hole,
improving the mesh isotropy.

The hole conductivity was set equal to that of the bone so that the model without the hole
could be used as a reference to assess accuracy. A source dipole was placed in the upper half
of the innermost compartment.

The numerical results for the forward problem are reported in table 1. As expected,
the accuracy improves significantly for finer meshes. The condition number of the system
matrix6 remains average in all cases, while the number of MINRES iterations needed increases
about linearly with the total number of unknowns. For MINRES, relative residual threshold
ε = 10−6 was used. Double precision LAPACK GESV routine was used for the direct solver.

6 The null-space of rank 1 was not taken into account since it is taken care of by deflation.
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Figure 5. Surface potential for the three-compartment model (figure 3, right) for conductivities of
the bottom hemisphere σ = 10−3, 1, 103 (top image—left, middle, right, respectively). Surface
potential after mean subtraction is shown. The graph (bottom) shows the potential for the three
conductivities on the surface along an intersection of the outer sphere with the zy plane (containing
the dipole source) as a function of the ‘elevation’ angle. The curve with the highest amplitude
corresponds to σ = 10−3, the middle one to σ = 1 and the smallest amplitude to σ = 103.

Table 1. For head models R, A, B, C, D we show the number of vertices, total number of
unknowns, matrix condition number, number of MINRES iterations, relative residual, relative �2
errors with respect to the reference model R for the MINRES and direct solvers, and approximate
processor time (on 2 GHz AMD Opteron processor) for the iterative method.

Model Nv N σ1/σN−1 Iterations Residual Error direct Error iteration Time (min)

R 1636 3668 1.51 × 104 480 9.11 × 10−7 – – 16
A 1642 3698 1.36 × 104 485 9.40 × 10−7 0.93% 0.97% 17
B 1666 3770 1.38 × 104 511 9.34 × 10−7 0.82% 0.96% 18
C 1714 3914 1.39 × 104 581 9.13 × 10−7 0.60% 0.92% 22
D 2921 7613 1.84 × 104 859 9.79 × 10−7 0.19% 0.41% 117

We observed that reasonably anisotropic, irregular and non-smooth meshes do not
deteriorate significantly the numerical accuracy, nor the convergence. However, topological
defects—wrong triangle orientation, non-closed surfaces—can have disastrous effects.
Similarly, bad geometrical properties—almost but not exactly identical points, or points almost
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external view

model R model A model B model C D

Figure 6. Realistic head models with a hole in the skull. Top: external view. Bottom: close-up
view showing the details of the mesh around the hole for models R, A, B, C, D.

σ = 10−4 σ = 10−2 σ = 10−1 σ = 1

Figure 7. The surface potential for the realistic head models for different values of the hole
compartment conductivity. The same colourmap was used for all images (red is positive, blue is
negative). After mean subtraction.

but not quite lying on an edge—can also deteriorate numerical stability of the system. When
such a bad quality mesh was used for the same head model as presented here, the MINRES
algorithm needed over 104 to converge with a relative accuracy of 10−2—this is much worse
than the results with a good quality mesh shown in table 1.

3.4. Changes of conductivity for the realistic model

We have varied the conductivity of the hole compartment of the realistic model (variant D,
described above) and observed the changes of the surface field (figure 7). We found that the
changes are significant for a dipole beneath the hole, especially in the case of high conductivity
of the hole compartment (corresponding to the hole filled with metal or with CSF) that creates
a blurring effect. When the dipole is further away, the hole-induced changes are much smaller.

4. Conclusions

We have developed and implemented a variant of the symmetric BEM for models consisting
of almost arbitrary partitioning of the space into constant conductivity regions. The use of
such models in MEG/EEG is necessary if one desires to model precisely not only pathological
features but also standard human anatomy. Our experiments indicate that the effects of the
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generalized geometry models cannot be approximated by standard layered models. The
presented method offers new modelling possibilities and promises greater accuracy for
MEG/EEG forward and inverse problems. One must however bear in mind that the head
model generation process is a difficult problem. Another issue to be addressed concerns
the application of the BEM to very large meshes. A possible remedy is to use acceleration
methods, such as the fast multipole method7 (Kybic et al 2005b).
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Appendix A. Integral operators

We recall here the four integral operators involved in the symmetric BEM, as defined in Kybic
et al (2005a), Nédélec (2001) and Kybic et al (2003):

(Nf )(r) =
∫

∂�

∂2
n,n′G(r − r′)f (r′) ds(r′) (Df )(r) =

∫
∂�

∂n′G(r − r′)f (r′) ds(r′)

(D∗f )(r) =
∫

∂�

∂nG(r − r′)f (r′) ds(r′) (Sf )(r) =
∫

∂�

G(r − r′)f (r′) ds(r′).

If we restrict r to be on a surface 	 and use the notation 
 for ∂�, the above operators
represent mappings from functions defined on 
 to functions defined on 	. For example, for
the operator S we have

(S	
f )(r) =
∫




G(r − r′)f (r′) ds(r′), r ∈ 	.

Appendix B. Representation theorem

The boundary element method is based on the fundamental representation theorem (Bonnet
1999, Nédélec 2001). For details on its application to the EEG problem refer to Kybic et al
(2003).

Theorem 1 (representation theorem). Let � ⊆ R
3 be a bounded open set with a regular

boundary ∂�. Let u : (R3\∂�) → R be a harmonic function (�u = 0 in R
3\∂�), satisfying

the condition H :


lim
r→∞ r|u(r)| < ∞
lim

r→∞ r ∂u
∂r

(r) = 0,
lr

and denote p(r) def= ∂nu(r). Then{
−p = +N [u] − D∗[p] for r �∈ ∂�

u = −D[u] + S[p]

7 The fast multipole method (FMM) is a hierarchical method based on approximating far interactions with multipole
spherical harmonics series expansions.
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

−p± = +N [u] +
(
±I

2 − D∗
)

[p] for r ∈ ∂�

u± =
(
∓I

2 − D
)

[u] + S[p]

where I denotes the identity operator over ∂�.
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