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Bootstrap Resampling for Image Registration
Uncertainty Estimation Without Ground Truth

Jan Kybic, Senior Member, IEEE

Abstract—We address the problem of estimating the uncertainty
of pixel based image registration algorithms, given just the two
images to be registered, for cases when no ground truth data is
available. Our novel method uses bootstrap resampling. It is very
general, applicable to almost any registration method based on
minimizing a pixel-based similarity criterion; we demonstrate it
using the SSD, SAD, correlation, and mutual information criteria.
We show experimentally that the bootstrap method provides better
estimates of the registration accuracy than the state-of-the-art
Cramér-Rao bound method. Additionally, we evaluate also a
fast registration accuracy estimation (FRAE) method which is
based on quadratic sensitivity analysis ideas and has a negligible
computational overhead. FRAE mostly works better than the
Cramér-Rao bound method but is outperformed by the bootstrap
method.

Index Terms—Accuracy estimation, bootstrap, Cramér-Rao
bound, image registration, motion estimation, performance limits,
uncertainty estimation.

I. INTRODUCTION

MAGE registration [1], [2] finds a geometric transforma-
I tion relating coordinates of corresponding points in two
given images. Image registration is used for motion analysis,
video compression and coding, object tracking, image stabiliza-
tion, segmentation, stereo reconstruction, and super-resolution
[3]. Biomedical applications [4]-[8] include intrasubject, inter-
subject, and intermodality analysis, registration with atlases,
quantification and qualification of feature shapes and sizes,
elastography, distortion compensation, motion detection and
compensation.

Most image registration algorithms return just a single, deter-
ministic answer, a point-wise estimate of the unknown geometric
transformation. However, in practice, there is always some asso-
ciated uncertainty, the registration accuracy is limited. Knowing
this uncertainty is useful to determine whether and to what ex-
tent the registration results can be trusted and whether the input
data is suitable. It can be used to give more weight to more re-
liable image pairs or spatial locations, for example, in sequence
registration, group-wise registration, flow-inpainting, or recov-
ering elastography parameters from the displacement.
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This paper presents a general method to estimate the uncer-
tainty of area based (or pixel based, as opposed to landmark or
feature based) image registration algorithms on a particular pair
of images. This method (Section II) uses bootstrap resampling
[9]-[11] and performs well at the cost of increasing the compu-
tational complexity 10 ~ 100 times with respect to the original
algorithm. The key feature of our approach is that the uncer-
tainty is estimated from the input images only, under very weak
assumptions about the registration problem—no ground truth
and no explicit model for the transformation, the noise, or the
images is needed. Also, we aim to estimate the absolute uncer-
tainty (in pixels), not a dimensionless confidence measure with
only a relative interpretation.

There are two main limitations. (i) Only the variability of the
returned transformation can be estimated, not the bias. Fortu-
nately, the bias of image registration algorithms is often quite
small, as can be seen experimentally (Section III-A). (ii) We
need to assume some form of ergodicity of the image gener-
ating processes, so that their behavior across realizations can be
deduced from their behavior in space.

The bootstrap method is compared experimentally with the
Cramér—Rao bound method [12], [13] and also with a fast regis-
tration accuracy estimation (FRAE) method, which is based on
Gaussian approximation and quadratic sensitivity analysis ideas
[14] (Section I-E).

A. Problem Definition I—Image Registration

Most area based image registration algorithms can be cast
into the following framework: We are given two images f, g :
R™ — R™, with n = 1 for grayscale images. The images are
considered to be random realizations of an image-generating
process (e.g., sensor noise) and are related by an unknown ge-
ometrical transformation Tp« : R™ — R™, so that pixel f(x)
corresponds to pixel g'(x) = g(7p-(x)) and their values are
dependent. For simplicity of exposition, we consider here espe-
cially the case of a 2-D translation (m = 2)

To-(x) =x' =x+6" (1)

which is fully determined by a parameter vector 8* € R%, d = 2.
The quality of the registration is measured by a criterion

J(0) = Jr(0) + Jp(6) 2)

where Jg is a regularization part of the criterion, often penal-
izing unsmooth deformations. The data part .Jp measures the
similarity of the image f and the warped image ¢, using an
image similarity measure. Again for simplicity we shall use
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the sum of square differences (SSD) similarity criterion and no
regularization

J(0)=Jp(0) = > (f(x) - ¢'(x))°
xXeN
with ¢'(x) =g(Tp(x)) = g(x+6%) 3)

where 2 C Z™ is a set of pixels of a suitable window.
The transformation parameters are estimated as a minimizer
of J

0 = arg moin J(6). 4)

We expect the criterion to be relevant, so that the estimated
transformation parameters are close to the true ones, 0~0"

Our choice of the transformation 7" and the criterion .J makes
the registration algorithm equivalent to the well-known block
matching algorithm [15]. In our implementation, image g is
interpolated using cubic B-splines [16], [17], its derivative is
calculated analytically, and the minimization (4) is performed
using the BFGS (Broyden-Fletcher-Goldfarb-Shanno) pseudo-
Newton algorithm [18], which incrementally updates the esti-
mate of the Hessian matrix from the gradient.

B. Problem Definition II—Uncertainty Estimation

Since images f, g are random (across realizations) due to the
stochastic nature of the image generation process (measurement
noise)A, the criterion .J(@) is also random, and, hence, the esti-
mate @ from (4) is random, too. The problem addressed in this
article is to characterize the uncertainty of . In particular, we
shall evaluate the covariance matrix

C)=E [(é —9)(6 - 9)T} with 6=E[0] (5
and a mean displacement variance
2
2 _ R _ 7o
e’ = E[Igee,z})n HTG(X) TO(X)H } (6)
For T'(x) = x + @, the expression simplifies to

2 =tr Cy. (7
The mean displacement variance £ is equal to the mean squared
geometric error (MSE) provided that the estimator (4) is unbi-
ased, # = @*. MSE is in turn closely related to the warping
index [19]. We also define the root mean squared error RMSE =
MSE'/2.

C. Related Work on Image Registration Accuracy Evaluation

Evaluation of image registration method is most often done
via simulations, generating the data artificially and comparing
the recovered results with the known true transformation
[20]-[22]. More realistic but less widely applicable ’gold
standard’ approach is to use some independent and sufficiently
accurate method to determine the true deformation, such as
using special markers for validation which are not used for
registration [23]-[25]. A “bronze standard” [26], [27] uses a
robust mean of several registration algorithms as a reference.
The registration accuracy can also be estimated indirectly,
from ground truth segmentations [28], [29] or by its ability to

create good generative models [30]. An a posteriori estimate
is possible for low-rank transformations and a large number
of corresponding features [31], [32]. Confidence measures
for block matching [33], [34] and optical flow estimation
[35]-[38] are based either on the data part of the criterion (such
as preferring high correlation) or on the regularization part of
the criterion (penalizing unlikely deformations); they can be
derived from the image derivative covariance matrices [39],
[40], or from a posteriori probabilities [41] assuming a specific
noise model. However, note that confidence measures typically
do not attempt to recover absolute values of registration errors,
only relative ordering between errors in different spatial posi-
tions within one image.

In some special cases, typically assuming i.i.d. Gaussian
noise statistics, the expected accuracy can be evaluated analyti-
cally [42]-[46].

D. Cramér—Rao Bound

The most relevant prior art is based on estimating the
Cramér—Rao bound [12], [13] for §*, which we review here
briefly using our notation for coherence. For tractability, the
following observation model is assumed:

u'(%) + wy(x)
(X) = u(x) + wy (%)

with  o/(x) =u(Tp- (x)) = u(x + 6*)

where wy, w, are zero mean i.i.d. Gaussian additive measure-
ment noises with variance o?; f, g are the input images and
u is a fixed but unobservable ’true’ image. The corresponding
log-likelihood is

—logp(f,g|8) = const
1 2 2
t5 (Z (F60) = w'(0)* + (9(x) — u()) ) ®
XeQ
The elements of the Fisher information matrix (FIM) F are

B [82 logp(f. 9 | 9)} _

Fi(6) = 96,00,
1Oy

C))

The second quadratic term in (8) is constant with respect to
and the expected value of wy = f(x) — u/(x) is zero. Hence

1 ou' ou’

F-(0) = — -
XeQ
and using the chain rule yields
o’ Bxk

In accordance with [13], we estimate the partial derivatives
Ou’ /Oy, using first order differences.

The Cramér—Rao bound gives us a lower bound on the co-
variance of any unbiased estimator of #*, including 6 (4)

. -1
CGZF

in the sense of positive-semidefiniteness.

12)
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The estimate CgRBi ~ F~! is described in [12] and [13].
In practice, neither o nor v’ is available. We, ther;fore, first
perform a registration as defined by (4) to obtain € and then
plug-in the following ML estimates:

() ~ 5 (1) + 9(x+6)) (13)
o2 z%}é;(f(x) —g(x—}—ﬂ))Q (14)

into (10) to obtain a realizable CRB estimate CERBT ~F L

E. Fast Registration Accuracy Estimation (FRAE)

The second method which we will review here briefly and
later use for comparison is the fast registration accuracy es-
timation method (FRAE) [14], which is based on quadratic
sensitivity analysis ideas. It is a fast method, incurring only a
negligible computational overhead. Given a similarity criterion
which can be written as a sum of pixel contributions

J0) = Jp(0) = Y e(x:0)

XeQ

15)

we start by determining a confidence interval of the criterion
value J (@) at @ around a noiseless value .J*(0)
P[J*0)—~<JO)<J*@)+7] =1-a. (16)

Assuming that .J(6) is normally distributed with a standard de-
viation oy, then for a = 0.05

v = (1 - %) o, ~ 1960, (17)

where ®~! is the inverse normal cumulative distribution func-
tion. The standard deviation can be estimated as

0%~ Var[z e(x)] = Z Z Covle(x),e(y)]. (18)
Xe XeQyeQ
For uncorrelated e(x), a practical estimator is
o2 = Z (e(x) — 6)2 (19)

XeQ

to which we might add the effect of quantization noise [14].

As the true criterion function J*(6) is known with a lim-
ited accuracy the position of its minimum 8* is, therefore, also
known only with a limited accuracy. From the confidence in-
terval (16) and properties of minimum we get an inequality for
the true value of 8 based on observable quantities

P[J(8°) < J(B) +29] > (1 - ). (20)
We approximate .J(#) quadratically around @
J(0) = J() + %(0 - 0)"H(0 - 0) 1)

an estimate of the Hessian H is available for free as a by-product
of the BFGS optimization procedure. This yields

Pl0"—8)"H(6" - 0) <49] > (1—a)®  (22)
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from which we can get an equivalent covariance matrix that a
normally distributed # would have for (22) to hold as an equality

CFRAE _ 4y
5 =

H—l — H—l
F1((1 - a)2d) Aoy

(23)

where F'~! is the inverse cumulative xg distribution function.
The value of A can be precomputed, for example for & = 0.05
and d = 2 we get A ~ 1.6839.

E. Bootstrap—Introduction and Related Work

Bootstrap resampling [9]-[11], [47]-[50] is a powerful and
versatile computational technique for assessing the accuracy of
a parametric estimator in small sample situations. Let us have N
i.i.d. samples X = {z1, ...,z } of arandom variable X with a
probability distribution px . A bootstrap resample is constructed
by randomly selecting N points from X with replacement. This
isrepeated B times, forming B multisets! X® p=1...B.The
bootstrap resamples X(*) are conditionally independent given X
and follow the same distribution as X.

Let us further have a continuous statistics ¢(X) (e.g., a mean)
and its estimator ¢(X) = ©. We are interested in assessing the
reliability of ) = o(X), as measured for example by its vari-
ance or its confidence interval. We apply the estimator ¢ to the
bootstrap resamples X(?), obtaining B values 9() = o(X®)) .
The desired reliability measure is then evaluated using the em-
pirical distribution of the B bootstrap values 9(*).

Bootstrap resampling was used in image processing to eval-
uate the performance of detection and classification algorithms
[51], [52] and edge detectors [53], to compensate the bias in
estimation of ellipse parameters [54] and to improve image seg-
mentation [55], [56]. Bootstrap was also used to assess the ac-
curacy of a rigid motion estimation algorithm based on 3-D key
points [57], [58].

II. BOOTSTRAP ACCURACY ESTIMATION

Bootstrap resampling accuracy estimation [59] is a general
but computationally intensive method. Its inputs are a registra-
tion algorithm and the two input images f and g. In contrast to
FRAE and CRB (Sections I-D and I-E ), the bootstrap method
can provide a nonparametric estimate of the probability density
p(@) and any desired statistics on 8, such confidence intervals.
However, for an easy comparison with the CRB and FRAE, we
will concentrate on using bootstrap to obtain a covariance ma-
trix estimate C2°°, and consequently 2 from (7), which has the
additional advantage of requiring only a small number of boot-
strap resamples B and thus being computationally tractable (see
Section III-B).

A. Bootstrap Covariance Estimation

To determine the variability of 0 from 4) we will use
bootstrap to “simulate” the behavior of the criterion function
J (@) across realizations. Bootstrap can be applied to a criterion
written as a sum of pixel contributions (15). However, we use

I A multisetis a generalization of a set, which can contain each element several
times.
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a more general form, anticipating its use in Section II-D. We
replace the sum by a more general operation, describing the
data criterion as a function = of a multiset of pairs of pixel
intensities of corresponding pixels

Jp(8) ==(X(0)), X(8) = {(f(x),9'(x);x€Q}. 24

Following the bootstrap methodology (Section I-F), we take
the pixel coordinates €2 and make a set of B bootstrap resamples
Q®) b =1...B by sampling from Q with replacement. We get
a set of B bootstrap versions of the data criterion

with X®(0) = {(f(x),q'(%));x € Q®}.
For example for SSD (3), the bootstrap version is
O)= Y ((0-dx)° Qo
XecQ(®)
with EX)= Y (fi—g) 27)
(fi,g:)€EX

Finally, by minimization of each J g’ ) we get B bootstrap ver-
sions of 8 ®)

0" = arg uin (Jr(0) + T2 (9)) (28)
which can be used to estimate any desired statistics on 9, such
as the covariance matrix

B
1 A A
Cgom’ = B E (0<b) _ uzoot) (0(b) _ uzoot)T (29)

B
1 ~(b
with et = =3 9" (30)

B. Practical Bootstrap

Algorithm 1 describes a practical implementation of boot-
strap resampling. At each bootstrap run, a multiset S is con-
structed containing pixels from €2, some several times, some not
at all, by repeatedly drawing a random number & from the uni-
form distribution 1 . .. N. This induces a bootstrap version of the
criterion function (25) which is then optimized. The minimiza-
tion(28) is repeated B times. We have observed that B = 10 ~
100 is normally sufficient to estimate Cho°t [9]. See also Sec-
tion III-B. The starting point for each minimization (Algorithm
1, line 7) can be chosen randomly around the original starting
point f (used to find @) to detect potential local minima.

Algorithm 1: Bootstrap registration uncertainty estimation

Input: Images f, g, set of pixels @ = {x1,...,xn}.
Output: Parameter #, covariance matrix Cz“t ~ Cg.

16 — argming Jr(0) + E({(f(xq),g’(x,))},z =1. ..N)
2for b = 1to B do

3 S < empty multiset

4 fori=1to N do

5 bSHSU{k},kNHd{lN}

6 9( ) — argnbin Jr(0) + E({(f(xi),g’(xi))};i € S)

8 Calculate Czo‘)t from {@(b); b=1...N} using (29)

C. Block Bootstrap

In reality, samples (f(x;),¢’(x;)) are not independent —
they are based on different positions in the same images which
are spatially correlated and also the measurement noise can
be correlated. A possible approach is to decorrelate the sam-
ples by fitting an appropriate model before bootstrapping the
residuals [9], [48], [49]. A more robust technique is a moving
block bootstrap [9], [49], [60] which we extend here to N-D.
Its essence is to sample from {2 not element by element but
by spatially consecutive blocks. This way, the spatial depen-
dency is preserved if the block size () is chosen large enough.
However, choosing () too large decreases the randomness of
the sampling; we use = 5. Algorithm 2 is a modified ver-
sion of Algorithm 1 using block bootstrap. The only differ-
ence is that pixel indices are added to S one block of size
(2Q + 1) x (2Q + 1) at a time. Alternatively, a different (not
rectangular) neighborhood could be used by changing the norm
at line 6 of Algorithm 2.

Algorithm 2: Block bootstrap uncertainty estimation

Input: Images f, g, set of pixels Q@ = {x1,...,xx}, block
size Q).
Output: Parameter 9, covariance matrix C2"°°" ~ C 0
16 — argming Jr(0) + Z({(f(x:),¢' (%)) };i=1...N)
2forb =1to B do
3 S « empty multiset

4 repeat

6 S—Su{ie{l...N}|x — x|l <Q}

7 with k ~; ;4 {1N}
8 E%%il ISl < N

9 0 —argmin Jr(0) +EZ({(f(x:),9'(x:)) };i € 5)

10 Calculate Cgbo‘)t from {9(})); b=1...N} using (29).

D. Bootstrap for Different Similarity Criteria

To demonstrate the bootstrap generality, we show its appli-
cation to several commonly used image similarity criteria be-
sides SSD (3). The sum of absolute differences (SAD) criterion
is written as follows [compare with (27)]:

>

(fi,gi)€X

[1]

(X) =

fi — gil-

Similarly, the (negative) normalized correlation criterion
(NCCQ) is obtained as follows:

(fi—f)(9: —9)

[1]

()= -

1/2

(rlex  (87%9)
| 1
f=x ook 9=x 9gi

(f17g7)ex (f7,g7)€X

= 2 N2
sp= Y. (fi—f)7  s= (9i-9)". B
(fi,g:)€X (fi,9:)€X
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The mutual information (MI) has no readily identifiable pixel
contributions, nevertheless it fits well into the formulation (24)

J(8) = Jp(8) = Z(X)

Ly La Lr Lg
== prlogp—Y aqilogq+y Y rilogri
k=1 =1 k=11=1

(32)

where 7 is the smooth joint histogram [61] with Lr X Lg
bins and parameters fmin, gmin, 15, hg, and p;, g; are the cor-
responding marginal histograms

fi_fmin i — Ymin
e 5 A e

(fi,9:)EX

8£ (1) #6(0;)
Pk = Z o (fi)y @ = Z ¢1G(9j)

(fzygz)ex (fngw)ex

where ¢ is the chosen windowing function; we are using a linear
B-spline, i.e., P1 or linear interpolation.

The bootstrap algorithm (Algorithm 1) works unchanged for
all four presented similarity criteria. Care must be taken when
evaluating the criterion for the minimization on line 7 that it is
calculated over the bootstrap multiset S instead of the original
set of pixels. The bootstrap samples are not spatially indepen-
dent, especially for the NCC and MI criteria, but in spite of that,
the bootstrap works well and it is not even necessary to use the
block bootstrap (see the experimental results in Section III-A).

III. EXPERIMENTS
A. Block Matching Accuracy Prediction

The purpose of the first experiment is to measure the true root
mean squared geometrical error (RMSE) of the block matching
algorithm (Section I-A) and to compare it with the predicted ¢
(6), (7) by the Cramér—Rao bound method CRB (Section I-D),
the FRAE method [14] (Section I-E) and the bootstrap method
(Section II).

We took the gray-scale 8-bit Lena image of size 512 x 512
pixels and selected three rectangular regions of interest (ROI)
of size 61 x 61 containing high, medium, and low amount of
texture and detail, respectively (Fig. 1). In each run, we have
displaced the ROI with a randomly selected displacement t
uniformly distributed in the range [—2,2]? pixels. We have
perturbed both the original ROI and the displaced ROI with
one of three types of noise: (i) uncorrelated zero-mean i.i.d.
Gaussian (white) noise with varying standard deviation o;
(ii) correlated Gaussian noise obtained by convolving the i.i.d.
noise by a Gaussian kernel with standard deviation 0.8 pixels;
(iii) salt & pepper noise obtained by changing with probability
p the value of each pixel to either O or 255 (chosen randomly);
p was between 10~2 and 0.3. The block matching registration
was run with a small (up to +0.05 pixels) random initial
displacement fy. A constrained BFGS optimization was used
with the maximum displacement set to £10 pixels to detect
divergence. The experiment was performed 102 times for each

method, noise type and noise level. We are reporting the root

12
mean squared geometrical error (RMSE) (mean Ht — 0” )1/ ?

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 1, JANUARY 2010

Fig. 1. Lena test image with three rectangular test areas 1,2,3 (ROIs) with pro-
gressively decreasing level of detail.

in pixels and comparing it with the mean displacement ¢ (6),
(7) estimated by the evaluated methods. Bias is negligible in all
cases. To eliminate the influence of outliers (the optimization
program failing to converge) and thus distorting the statistics,
we used a trimmed mean, discarding 5% of the highest and
lowest values. This influences only in minor ways the reported
results and only for the highest noise levels. We only report
results for ROI size 61 x 61 because results for other ROI sizes
were similar, the error slowly decreases with increasing ROI
size for all methods; this is because only translational motion
is considered.

Fig. 2 shows selected results. We can see that the Cramér—Rao
bound (CRBi) gives a good estimate of the accuracy, especially
for higher SNR [Fig. 2(a)—(c)]. It nevertheless consistently un-
derperforms the bootstrap and often also the FRAE method.
Bear in mind, however, that under practical conditions, CRBi
cannot be evaluated because it depends on unknown quantities.
We can calculate only CRBr (Section I-D) which gives exceed-
ingly optimistic estimates, especially for low SNR, being the
worst of the methods tested. The advantage of CRBr is its min-
imal computational cost. However, the results show that it is us-
able only for Gaussian noise and high SNR.

For medium to high SNR and Gaussian noise, the FRAE
method (Section I-E) gives usable estimates that correctly
follow the trend of the true error, even though the error is often
overestimated [Fig. 2(a)—(f)]. The FRAE method fails for low
SNR (worse than 10 ~ 20 dB) because the Hessian estimate is
unreliable in this case. The FRAE method also fails for the salt
& pepper noise at the SNR levels tested [Fig. 2(g)-(1)].

A clear winner is the bootstrap method (Section II-A). The
estimated error follows the true error for both uncorrelated
and correlated noise, as well as for the salt & pepper noise
[Fig. 2(a)-(1)]. Most of the time the ratio between the two
values is less than 2.

On the other hand, the benefit of the block bootstrap method
(Section II-C) has not been demonstrated. In some cases block
bootstrap performs better than normal bootstrap, such as for po-
sition 1 and correlated noise [Fig. 2(d)]. Most of the time there
is no clear improvement, such as for the salt & pepper noise
[Fig. 2(g)—(i)] or for uncorrelated noise (not shown). And there
are also cases when block bootstrap is inferior to standard boot-
strap [Fig. 2(e)-(f)].
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Fig. 2. Geometrical RMSE in pixels as a function of the SNR in decibels. We compare the true error with the error ¢ estimated by CRB, FRAE, and bootstrap
methods. CRBi values are only available for the white noise case (a)—(c). Block bootstrap results are only shown in images (d)—(i) to reduce clutter. Positions 1, 2,

3 refer to Fig. 1. Each data point is an average of 103 experiments.

B. Number of Boostrap Resamples

The second experiment studies the effect of varying the
number of bootstrap resamples B using the same setup as
above (Section III-A) with uncorrelated additive Gaussian
noise with standard deviation o and region 1 (see Fig. 1). The
graph in Fig. 3 shows the dependence of the coefficient of
variation

boot

boot) 1/2/mean e

cv [611)300t] = (var e}
of the bootstrap estimate €%°° on the number of bootstrap re-
samples B for several different noise levels. We observe that
the coefficient of variation decreases with B but the decrease is
slow and diminishes even further with increased noise level o.
This is in rough agreement with the theoretical formula [9]

(33)
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Fig. 3. Coefficient of variation (the ratio of standard deviation and mean) of
the bootstrap estimate of the registration error ¢ as a function of the number
of bootstrap resamples B for images with normal additive noise with standard
deviation ¢ = 0.1, 1, 3, 10, corresponding to SNR 53 ~ 13 dB.

where 22! represents an ideal bootstrap estimate with B—o0

(which still has some residual variance because it is based on
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Fig. 4. Predicting spatial dependency of the block matching registration error for an ultrasound image (a) onto which we have applied a random translation. We
show the geometrical RMSE in pixels using gray scale, dark tones correspond to high accuracy and vice versa. Compare the low SNR results (d)—(f) with the true
error (b) and the high SNR results (g)—(i) with the true error (c). Note that the gray scale differs between images. Mean values over 10 repetitions for the bootstrap

(d)—(g) and 100 repetitions for other cases (b), (c), (e), (f), (h), (i) are shown.

a finite number of noisy pixel values) and c is a constant de-
pending on the kurtosis of €. Both the experiment results and
the literature [9] confirm our empirical observation that B as
low as 10 is often enough and that it is rarely useful to increase
B over 100.

C. Spatial Dependency

The third experiment evaluates the ability of the tested
methods to determine the spatial dependency of the registration
error. We have taken an ultrasound image [Fig. 4(a)] and trans-
lated it randomly as in Section III-A. After having added an
1.i.d. Gaussing noise, we have applied the block matching algo-
rithm to determine the displacement between the original and

the translated image. We have used a window of size 29 x 29,
its center was moved over the entire image with a step of 5
pixels. The geometrical RMSE is shown, averaged over 100
experiments, except for the bootstrap method where we have
used ten experiments and B = 10 bootstrap repetitions. The
deformation field was reinterpolated to the original resolution,
the boundary regions are ignored (black in the images).

If the noise level is higher than the speckle amplitude, the de-
formation can be determined accurately only along the image
edges [Fig. 4(b)]. This is very well captured in the bootstrap re-
sult [Fig. 4(d)] which also estimates the amplitude of the RMSE
reasonably well. FRAE [Fig. 4(e)] correctly shows higher reg-
istration accuracy along some of the stronger edges but fails to
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point out the low accuracy in the big textureless region (dark
“cyst” on the left) and also the amplitude scale is incorrect. The
CRBr results are incorrect, low and high accuracy regions are
partly interchanged.

For a noise level lower than a speckle amplitude, the reg-
istration results are accurate almost everywhere except the
textureless regions [Fig. 4(c)]. This is well recovered by boot-
strap [Fig. 4(g)] including the amplitude scale, only the loss
of accuracy in the shadows is less pronounced. The FRAE
result [Fig. 4(h)] is less noisy than before [Fig. 4(e)] but the
low accuracy textureless region is not identified in either. The
spatial distribution shown by CRBr [Fig. 4(i)] is now more
similar to the truth [Fig. 4(c)]. Nevertheless, both FRAE and
CRBr are inferior to bootstrap and their amplitude scale is
incorrect.

D. Motion Field Estimation, Window Size, and Sparsification

In the next set of experiments, we have applied block
matching to a pair of consecutive images from the Street
sequence, which is one of the standard synthetic sequences
used in optical flow algorithm testing [62]. Fig. 5(a) and (b)
shows a grayscale version of an image number 109 and an
x-component of the ground truth motion field. For block
matching, rectangular windows of varying size were centered
at all image pixels (except borders) and a low amplitude i.i.d.
Gaussian noise (SNR ~ 40dB) was added to both images.
Window size is an important parameter: for too small windows
the results are noisy [results with 9 X 9 window are shown in
Fig. 5(c)], for large windows the spatial resolution is decreased
[41 x 41 window in Fig. 5(d)]. We have measured the root
mean square geometrical error (RMSE) as a function of the
windows size [Fig. 5(e)], each measured point is an average of
100 registration. We have than compared the measured RMSE
with the predicted € by CRB, FRAE and bootstrap. While none
of the prediction methods is able to capture the full shape of
the dependence, only bootstrap is capable of successfully iden-
tifying a range of usable window sizes. FRAE fails to indicate
the loss of precision for small windows and CRB exhibits no
dependence at all.

The performance of confidence measures for motion field es-
timation is often evaluated using sparsification [38], [39], [41]: a
given percentage of the *worst’ points according to a confidence
measure under test is discarded and the sum of the true geomet-
rical error of the remaining points is calculated. Fig. 5(f) shows
the dependence of the total error on the relative proportion of
discarded pixels for one realization of the Street images as de-
scribed above, using block matching with window size 41 x 41.
We see that bootstrap performs the best for most sparsification
levels, the performance of FRAE and CRB is similar. All three
methods are far from the best achievable results using the true
error as a criterion.

E. Alternative Similarity Criteria

‘We have used the same experimental setup as in Section III-A
to evaluate the performance of the bootstrap method for the
SAD, NCC, and MI criteria. The experimental results (Fig. 6)
show that the bootstrap estimation of € (6), (7) follows the true
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Fig. 5. Image from the Street synthetic sequence (a). The true x-component of
the motion field (b) and the fields recovered by block matching for window sizes
9 % 9(c)and 41 x 41 (d). The gray scale mapping is the same in images (b)—(d).
The dependence of the true and predicted error on the window size (e) around
the point marked by a cross in image (a). Total geometrical error over the image
for one realization as a function of the relative proportion of discarded pixels
ranked according to bootstrap, FRAE and CRB error estimates, and the true
error (f).

RMSE error very well for low and medium SNR for all three
criteria and for high SNR for the SAD and MI criteria. The
difference for higher SNR for the correlation criterion only oc-
curs at very high accuracy levels which are unlikely to appear
in practice.
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Fig. 6. Geometrical RMSE in pixels as a function of the SNR in dB for position 1 in Fig. 1, as in Fig. 2. We compare the true error with the error ¢ estimated
by the bootstrap method for the (a) SAD, (b) normalized correlation, and (¢) mutual information image similarity criteria. Each data point is an average of 100

experiments.

IV. CONCLUSION

We have shown a general bootstrap based technique to esti-
mate image registration uncertainty, applicable to a wide class
of minimization-based pixel registration algorithms. Given
nothing more than the two images to be registered, we can
predict the registration error in a quantitative way. Only very
weak assumptions have to be made. Although for the sake
of simplicity we have considered only 2-D translations, the
presented accuracy estimation techniques are directly usable
for other registration methods that find transformation with
more degrees of freedom.

Of the examined methods, bootstrap performed better than
both FRAE and CRB and should be used if we can afford the
its computational complexity. We expect the described method-
ology to find many uses in all practical situations whenever an
estimate of a registration uncertainty is needed.
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