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Abstract— During the last decade leukemia and lymphomas
have been a hot topic in the biomedical area. Their diagnosis is
a time-consuming task that, in many cases, delays treatments.
On the other hand, discrete orthogonal moments (DOMs) are
a tool recently introduced in biomedical image analysis. Here,
we propose a combination of DOMs to help in the diagnosis of
leukemia and lymphomas. We classify the IICBU2008-lymphoma
dataset that includes three hematologic malignancies: chronic
lymphocytic leukemia, follicular lymphoma, and mantle cell
lymphoma. Our methodology analyzes such diseases in the hema-
toxylin and eosin color space. We also include feature analysis to
preserve the most discriminating characteristics of the malignant
tissues. Finally, the classification of the samples is performed with
kernel Fisher discriminant analysis. The accuracy is 93.85%. The
results show the proposal could be useful in different biomedical
applications.

Keywords— Color deconvolution, Discrete orthogonal mo-
ments, Hematologic malignancies, Feature selection.

I. INTRODUCTION

Malignant neoplasm of hematopoietic and lymphoid tissues
or simply hematologic malignancies (HMs) are a collection of
diseases that includes leukemia and lymphomas [1]. Although
HMs are rare malignant disorders, they have been a major
topic in biomedical journals in recent years [2].

According to Rodriguez-Abreu et al. [3], over 250,000 cases
are diagnosed with leukemia yearly. This number represents
2.5% of the newly diagnosed cases of cancer around the world.
Leukemia affects bone marrow and is associated with the rapid
overproduction of immature white blood cells. As the disease
progresses, the abnormal cells crowd out healthy cells and
hamper the ability to fight against infections.

Chronic lymphocytic leukemia (CLL) is the most common
type of leukemia in Occident; around 80% of cases are diag-
nosed in elderly [4]. CLL is a type of slow growing leukemia
that attacks B lymphocytes, which are responsible for the
production of immunoglobulins. The damaged B lymphocytes
cells or B-CLL cells have a prolonged life and express CD38
protein, so that, if the cells contain high amounts of such a
protein, then CLL tends to get worse quickly [5] (see Fig.
1(a)).

Lymphoma damages B lymphocytes similarly to leukemia.
However, it begins in the lymphoid tissue such as spleen,
thymus, or lymph nodes instead of the bone marrow and can
grow as a solid tumor and spreads throughout the body [6].

Non-Hodgkin lymphoma (NHL) is the most common cancer
of the lymphatic system with about 90% of the diagnosed
cases [7]. Follicular lymphoma (FL) is a relatively common
lymphoma that represents up to 25% of NHL cases [8]. It is
asymptomatic and mainly affects lymph nodes. FL progresses
quite slowly from B lymphocytes and eventually may spread to
the bone marrow. Its name comes from the fact that abnormal
cells are organized in a follicular-like pattern, namely, cells
tend to grow in clumps known as follicles [9] (see Fig. 1(b)).

Mantle cell lymphoma (MCL) is also an HMs that rep-
resents approximately 6% of NHL cases and usually affects
males over 50 [10]. It develops in the mantle zone, which is
the outer section of lymph nodes. MCL spreads to the bone
marrow and sometimes to the gastrointestinal tract [11] (see
Fig. 1(c)). Compared to CLL and FL, MCL is an aggressive
disease that overexpresses the Cyclin-D1 protein, which helps
to control cell growth.

Since cytopathological phenotypes of HMs may differ sig-
nificantly, it is crucial to detect specific patterns to propose
tailored therapies based on individual risk profiles. Biopsy is
the standard clinical practice for detecting and grading HMs.
However, pathologists must handle a large number of cases
every day by visual inspection, thus, it is a difficult and time-
consuming work.

In order to overcome such an issue, many automatic
methods for classification have been proposed. For instance,
Orlov et al. [12] classify lymphoma images using a set of
features, which includes polynomial, texture, spectral, and
spatial characteristics. Sertel et al. [13] modify the gray level
co-occurrence matrices of cytopathological images by using
a non-linear color quantization, whereas Tuzel et al. [14] use
textons and support vector machines to classify five classes of
HMs. In [15], the authors use Wndchrm [16] that extracts a
large set of features to classify a biological dataset proposed
in [17].

Recently, orthogonal moments have emerged as a useful
tool for characterizing biological tissue because they are able
to represent texture in a non-redundant way by capturing the
oscillating behavior of all components of the texture of interest
[18], [19]. Nevertheless, the main drawback is related to the
numerical instability when a large window of analysis is used
since the order of the moments is linked to the window size.
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Fig. 1. IICBU2008-lymphoma dataset [17]. The images were transformed into the hematoxylin and eosin (H+E) color space. First row shows the original
RGB images, second row shows the hematoxylin channel, and third row presents the eosin channel. (a) CLL, (b) FL, and (c) MCL.

In this paper, we propose a novel methodology based on
discrete orthogonal moments (DOMs) to characterize hema-
tologic malignancies. Sliding windows are used to scan small
regions of tissue; then local DOM features are computed on
every position. This technique does not involve high-order
moment computation and avoids numerical instability. After
this step, the most important features are selected; then, kernel
Fisher analysis and K-NN are used to classify three different
hematologic malignancies.

In the following Section II we introduce briefly the mathe-
matical foundations of DOMs. In Section III the dataset and
the methodology are presented. The experiments and results
are shown in Section IV. Finally, conclusions are drawn in
Section V.

II. DISCRETE ORTHOGONAL MOMENTS

Orthogonal moments are uncorrelated statistical quantities
useful for characterizing images [19]. They are calculated
as projections of the image over an orthogonal basis [20].
One way of interpreting the projections is as a measure of
correlation between the image and the polynomial basis [18].
However, the implementation of the basis involves a discrete
approximation affecting the invariance and orthogonality of
the polynomials. In the following section, we introduce three

discrete orthogonal bases that eliminate the need for numerical
approximations and still satisfy the property of orthogonality.

A. Discrete Tchebichef Moments

Discrete Tchebichef polynomials (see Fig. 2(a)) were intro-
duced by Mukundan et al. [21] and are defined in terms of
hypergeometric functions as follows [20]:

tn(x) = (1−N)n 3F2 (−n,−x,1 +n;1,1−N ;1) (1)

where (x)n = Γ(x+n)/Γ(x) = x(x+ 1) . . .(x+n+ 1) is the
Pochhammer symbol, x,n= {0,1, . . . ,N − 1} and the hyper-
geometric function xFy is defined as:

xFy(a1, . . . ,ax;b1, . . . , by;z) =
∞∑
k=0

(a1)k(a2)k · · ·(ax)k
(b1)k(b2)k · · ·(by)k

zk

k!

(2)
The property of orthogonality of the discrete Tchebichef

polynomials is satisfied by:

N−1∑
x=0

= tn(x)tm(x) = ρ(n,N)δnm (3)

ρ(n,N) is a normalizing factor and δnm is the Kronecker delta.



Using Eq. (1) is possible to compute the discrete Tchebichef
moments (DTM) of the texture f(x,y):

Tnm =
N−1∑
x=0

M−1∑
y=0

t̂n(x)t̂m(y)f(x,y) (4)

where N and M are the image size on X and Y -axes
respectively. t̂x represents the scaled Tchebichef moments
[22], [18].

B. Discrete Krawtchouk Moments

Discrete Krawtchouk polynomials [23] constitute an or-
thogonal basis related to the binomial distribution (see Fig.
2(b)). The classic nth-order discrete Krawtchouk polynomial
is defined as:

Kn (x;p,N) = 2F1

(
−n,−x;−N ;

1

p

)
(5)

where x,n= {0,1, . . . ,N |N > 0} and pε(0,1).
In practice, the weighted discrete Krawtchouk polynomials

[24] are used to build the basis as follows:

K̂n (x;p,N) =Kn (x;p,N)

√
w (x;p,N)

ρ(n;p,N)
(6)

where w(x;p,N) = (Nx )px(1− p)N−x is the weight function
and ρ(n;p,N) = (1− p/p)n1/(Nn ) is the norm.

The weighted discrete Krawtchouk polynomials satisfy the
condition of orthogonality:

N∑
x=0

K̂n(x;p,N)K̂n(x;p,N) = δnm (7)

From Eq. (6), the discrete Krawtchouk moments (DKM) of
the texture f(x,y) are computed as:

Qnm =
N−1∑
x=0

M−1∑
y=0

K̂n (x;p1,N − 1)K̂m (y;p2,M − 1)f (x,y)

(8)
where N and M are the image size on X and Y -axes
respectively.

Discrete Krawtchouk moments are able to extract local
features when the parameter p varies between 0 to 1.

C. Discrete Dual Hahn Moments

Discrete Dual Hahn polynomials (see Fig. 2(c)) [25] are
defined on a non-uniform lattice x(s) = s(s+ 1) where s is
the order of a sample and x is its distance from the origin.
In [26], the lattice is adapted to the coordinate space of the
image. The discrete Dual Hahn polynomials are defined by
the following expression:

wn (s,a,b,c) =
(a− b+ 1)n(a+ c+ 1)n

n!
× 3F2(−n,a− s,a+ s+ 1;a− b+ 1,a+ c+ 1;1)

(9)

where n= {0,1, . . . ,N − 1} and s= {a,a+ 1, . . . , b− 1}. The
parameters a, b, and c are restricted to the following condi-
tions: − 1

2 < a < b, |c|< 1 + a, and b= a+N .
As in Krawtchouk polynomials, the discrete dual Hahn

polynomials are also scaled and normalized [26]:

ŵn (s,a,b,c) = wcn(s,a,b,c)

√
ρ(s)

d2
n

[
∆x

(
s− 1

2

)]
(10)

The weight ρ and norm d2
n functions are defined:

ρ(s) =
Γ(a+ s+ 1)Γ(c+ s+ 1)

Γ(s− a+ 1)Γ(b− s)Γ(b+ s+ 1)Γ(s− c+ 1)
(11)

and

d2
n =

Γ(a+ c+n+ 1)

n!(b− a−n− 1)!Γ(b− c−n)
(12)

The orthogonality condition of the weighted discrete dual
Hahn polynomials is given by:

b−1∑
s=a

ŵn (s,a,b,c) ŵm (s,a,b,c) = δmn (13)

Finally, the discrete dual Hahn moments (DHM) are com-
puted as:

Wnm =
b−1∑
s=a

b−1∑
t=a

ŵn(s,a,b,c)ŵm(t,a,b,c)f(s, t) (14)

where n,m= {0,1, . . . ,N − 1}.

III. MATERIALS AND METHODS

A. Dataset and preprocessing

In order to validate our proposal, we use the IICBU2008-
lymphoma dataset [17]. Three types of hematologic malignan-
cies stained with hematoxylin/eosin are presented in the set:
113 CLL samples, 139 FL samples, and 122 MCL samples.
The dataset was stored in the RGB space color and does not
include any information about patients.

1) Color deconvolution : The assessment of colored stains
may provide further information for classification of hemato-
logic malignancies [27]. Hematoxylin stains cell nuclei blue,
whereas eosin stains cytoplasm pink or red. Macenko et al.
[28] proposed to convert cytology samples into H+E space to
improve the ability to analyze quantitatively nuclei cells.

Here, we transform the dataset from RGB, I , into H+E, S,
using the color deconvolution formula [29]: S = V −1Il, where
Il =−log10(I) and V is the matrix of the stain vectors H+E
defined as:

V =

0.65 0.70 0.29
0.07 0.99 0.11
0.27 0.57 0.78

 (15)
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Fig. 2. Illustration of 1D discrete orthogonal polynomials from order 0 to order 3. The corresponding moments are calculated by projecting a texture over
the basis. (a) Tchebichef, (b) Krawtchouk with p= 0.5, and (c) Dual Hahn with a= 0, b=N , and c= 0.

B. Methodology

1) Feature extraction : The DOMs are calculated on each
channel, H and E, separately using a sliding window with an
overlap of 50% on X and Y-axes. We conducted experiments
by varying the window size from {10× 10, 20× 20, . . . , 80×
80}. The accuracy was the criterion to compute the optimal
window size of 50× 50 pixels. For every window position
(α,β), the orthogonal moments DTM, DKM, and DHM
are computed. So that, for each image, the average discrete
moments are concatenated one after another to build the image
descriptor.

The average discrete Tchebichef moment descriptor is com-
puted as:

Tnm =
1

α×β

α∑
g=1

β∑
h=1

T (g,h)
nm (16)

the average discrete Krawtchouk moment descriptor is:

Qnm =
1

α×β

α∑
g=1

β∑
h=1

Q(g,h)
nm (17)

and the average discrete dual Hahn moment descriptor is:

Wnm =
1

α×β

α∑
g=1

β∑
h=1

W (g,h)
nm (18)

for all the equations, the superscripts (g,h) represent the
window position.

The image descriptor could be written as:

D =

[
Tnm(H),Tnm(E), Qnm(H),

Qnm(E), Wnm(H), Wnm(E)

] (19)

H and E represent the stained channels.

2) Feature selection : Since the proposal generates high-
dimensional feature vectors and a limited dataset is available,
then we select a subset of relevant features using RELIEFF
[30], which is the multi-class extension of RELIEF [31].

RELIEFF estimates the quality of features by searching k
of the nearest neighbors from the same class and k nearest
neighbors from each of the different classes (hit and miss).
Then, a weight matrix is updated to rank those features that
best describe the data [32].

3) Classification : During the classification stage, we use
kernel Fisher discriminant analysis (KFDA) [33] to map the
selected features into a new space. In KFDA, the goal is to
find w∗ ∈ ζ that maximizes

J (w) =
wTSΦ

Bw

wTSΦ
Ww

(20)

where SΦ
B and SΦ

W are the corresponding matrices in ζ.
One way to solve Eq. (20) is to use a kernel matrix

K(x,y); compute the between-class scatter matrix, A; and
the within-class scatter matrix B. The kernel matrix is de-
fined as: K (m,n) = k (Xm,Xn) where X =

⋃C
i=1X

i are the
original data. Here, we use the Gaussian function, k (x,y) =

e−
1
2
‖x−y‖2

a2 with a,b ∈ R+ as the kernel function.
The between-class scatter matrix is defined by:

A =
C∑
j=1

lj (µj −µ)(µj −µ)
T (21)

where µj = 1
lj

∑
∀n∈Xj K (m,n) and µ= 1

l

∑
∀nK (m,n).

The within-class scatter matrix is defined by:

B = KKT −
C∑
j=1

ljµjµ
T
j (22)

The projection of the data can be computed as:

y = Kα∗ (23)
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Fig. 3. Final classification of the IICBU2008-lymphoma dataset[17]. After
projecting the features into the KFDA space, the separation among classes
is improved and the relevant features are labeled. Our proposal achieves an
accuracy of 93.83%.

where α∗ is built with the C − 1 largest eigenvalues of B−1A.
Finally, we use K-NN with k = 10 and the Euclidean

distance to classify the samples in the KFDA space (see Fig.
3).

IV. EXPERIMENTS AND RESULTS

For this study, we classified 374 samples from three classes:
CLL, FL, and MCL using ten-fold cross-validation. We kept
115 features out of 592, which means nearly 20% of the
most relevant features using RELIEFF. We also performed
comparisons using the three polynomials separately and keep
the same criterion to choose features. Our proposal achieved
an accuracy = 93.83% and outperformed the other methods
when the bases were used independently.

We also characterize the database with local binary patterns
[34] with radius R= 1 and neighbors N = 8 using the same
methodology described above. The results present here are
better than the ones reported in [17], where the authors used
154 out of 1025 features and achieved an accuracy = 85%. In
[13], Sertel et al. report 90.3% of accuracy. We summarized
in Table 1 the results of the experiments.

V. SUMMARY AND CONCLUSIONS

We present a novel method based on discrete orthogonal
moments for the classification of three hematologic malignan-
cies. The proposal combines the characteristics produced by
different polynomial bases into a single vector, so that, the
resulted features constitute over-complete descriptors that de-
scribe in a better way the local variations of tissues. Therefore,
we take advantage of the redundant information by preserving
the most relevant features to improve tissue characterization.
Discrete Tchebichef moments contribute with approximately
50% of the total of the features, whereas, discrete Krawtchouk

Table 1. Our proposal combines three DOMs to characterize HMs. We used
ten-fold cross-validation, thus, the mean results are reported here along with

the standard deviation (±). All data are expressed in %. Bold values
represent best results.

Method Accuracy Precision Sensitivity Specificity

Proposal 93.83±2.56 93.78±2.78 94.31±2.13 97.00±1.21

Tchebichef 82.06± 6.06 81.74± 6.20 82.90± 6.26 91.38± 2.94

Krawtchouk 75.97± 5.32 75.65± 5.64 76.63± 5.52 88.30± 2.63

Dual Hahn 70.88± 8.86 70.69± 9.09 71.24± 8.52 85.70± 4.21

LBPs [34] 76.77± 6.07 78.26± 6.46 76.01± 5.99 88.35± 2.89

and dual Hahn moments provide 25% of features each one.
We also included color analysis that allows us to discriminate
cell nuclei and cytoplasm; this analysis may provide detailed
information about the stage of the malignancies.

The technique presents here achieves over 90% of accuracy
and outperforms the results obtained when the discrete orthog-
onal moments are used separately up to 10%. Combination of
DOMs may help in a better understanding about the hema-
tologic malignancies. Since the diagnosis of leukemia and
lymphomas is performed by visual inspection, our proposal
is useful to reduce time and bias. As a summary, the results
have shown the effectiveness of our approach and the proposal
could be useful in different biomedical problems.
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González thanks CONACYT–263921 scholarship. J. Kybic
was supported by the Czech Science Foundation project 14-
21421S.

REFERENCES

[1] J. W. Vardiman, “The World Health Organization (WHO) classification
of tumors of the hematopoietic and lymphoid tissues: An overview with
emphasis on the myeloid neoplasms,” Chemico-Biological Interactions,
vol. 184, no. 1-2, pp. 16–20, 2010.

[2] A. Chizuka, M. Suda, T. Shibata, E. Kusumi, A. Hori, T. Hamaki,
Y. Kodama, K. Horigome, Y. Kishi, K. Kobayashi, T. Matsumura,
K. Yuji, Y. Tanaka, and M. Kami, “Difference between hematological
malignancy and solid tumor research articles published in four major
medical journals,” Leukemia, vol. 20, no. 10, pp. 1655–1657, 2006.

[3] D. Rodrı́guez-Abreu, A. Bordoni, and E. Zucca, “Epidemiology of
hematological malignancies,” Annals of Oncology, vol. 18, no. suppl
1, pp. i3–i8, 2007.

[4] E. Campo, S. H. Swerdlow, N. L. Harris, S. Pileri, H. Stein, and
E. S. Jaffe, “The 2008 WHO classification of lymphoid neoplasms and
beyond: Evolving concepts and practical applications,” Blood, vol. 117,
no. 19, pp. 5019–5032, 2011.

[5] F. Malavasi, S. Deaglio, R. Damle, G. Cutrona, M. Ferrarini, and
N. Chiorazzi, “CD38 and chronic lymphocytic leukemia: A decade
later,” Blood, vol. 118, no. 13, pp. 3470–3478, 2011.

[6] B. C.-H. Chiu and N. Hou, Epidemiology and Etiology of Non-Hodgkin
Lymphoma. Springer International Publishing, 2015, pp. 1–25.

[7] K. R. Shankland, J. O. Armitage, and B. W. Hancock, “Non-Hodgkin
lymphoma,” The Lancet, vol. 380, no. 9844, pp. 848–857, 2012.



[8] J. Trotman and G. Salles, Follicular Lymphoma. Totowa, NJ: Humana
Press, 2013, pp. 143–156.

[9] P. M. Reagan and J. W. Friedberg, “Follicular lymphoma: First-line treat-
ment without chemotherapy for follicular lymphoma,” Current Treatment
Options in Oncology, vol. 16, no. 7, pp. 1–13, 2015.

[10] R. N. Miranda, J. D. Khoury, and L. J. Medeiros, Mantle Cell Lym-
phoma. New York, NY: Springer New York, 2013, pp. 229–235.

[11] C. Thieblemont, Mantle Cell Lymphoma. Cham: Springer International
Publishing, 2015, pp. 233–243.

[12] N. V. Orlov, W. W. Chen, D. M. Eckley, T. J. Macura, L. Shamir,
E. S. Jaffe, and I. G. Goldberg, “Automatic classification of lymphoma
images with transform-based global features,” IEEE Transactions on
Information Technology in Biomedicine, vol. 14, no. 4, pp. 1003–1013,
2010.

[13] O. Sertel, J. Kong, G. Lozanski, A. Shana’ah, U. Catalyurek, J. Saltz, and
M. Gurcan, “Texture classification using nonlinear color quantization:
Application to histopathological image analysis,” in IEEE International
Conference on Acoustics, Speech and Signal Processing, 2008, pp. 597–
600.

[14] O. Tuzel, L. Yang, P. Meer, and D. J. Foran, “Classification of hema-
tologic malignancies using texton signatures,” Pattern Analysis and
Applications, vol. 10, no. 4, pp. 277–290, 2007.

[15] K. K. Siji, B. S. Mathew, R. Chandran, B. S. Shajeemohan, and K. S.
Shanthini, “Feature selection, optimization and performance analysis of
classifiers for biological images,” in National Conference on Communi-
cation, Signal Processing and Networking (NCCSN), 2014, pp. 1–5.

[16] L. Shamir, N. Orlov, D. M. Eckley, T. Macura, J. Johnston, and
I. G. Goldberg, “Wndchrm–an open source utility for biological image
analysis,” Source code for biology and medicine, vol. 3, no. 1, p. 13,
2008.

[17] L. Shamir, N. Orlov, D. M. Eckley, T. J. Macura, and I. G. Goldberg,
“IICBU 2008: a proposed benchmark suite for biological image analy-
sis,” Medical & biological engineering & computing, vol. 46, no. 9, pp.
943–947, 2008.
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opia of inductive learning algorithms with relieff,” Applied Intelligence,
vol. 7, no. 1, pp. 39–55, 1997.

[31] K. Kira and L. A. Rendell, “The feature selection problem: Traditional
methods and a new algorithm,” in Proceedings of the Tenth National
Conference on Artificial Intelligence, ser. AAAI’92. AAAI Press, 1992,
pp. 129–134.
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