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Abstract

A new enhancement ofRANSAC, the locally optimizedRANSAC (LO-RANSAC), is intro-
duced. It has been observed that, to find an optimal solution (with a given probability),
the number of samples drawn inRANSAC is significantly higher than predicted from the
mathematical model. This is due to the incorrect assumption, that a model with parame-
ters computed from an outlier-free sample is consistent with all inliers. The assumption
rarely holds in practice. The locally optimizedRANSAC makes no new assumptions
about the data, on the contrary - it makes the above-mentioned assumption valid by
applying local optimization to the solution estimated from the random sample.

The performance of the improvedRANSAC is evaluated in a number of epipolar
geometry and homography estimation experiments. Compared with standardRANSAC,
the speed-up achieved is two to three fold and the quality of the solution (measured by
the number of inliers) is increased by 10-20%. The number of samples drawn is in good
agreement with theoretical predictions.

1 Introduction

Many computer vision algorithms include a robust estimation step where model param-
eters are computed from a data set containing a significant proportion of outliers. The
RANSAC algorithm introduced by Fishler and Bolles in 1981 [3] is possibly the most
widely used robust estimator in the field of computer vision.RANSAC has been applied
in the context of short baseline stereo [13, 12], wide baseline stereo matching [9, 15,
10, 6], motion segmentation [13], mosaicing [7], detection of geometric primitives [2],
robust eigenimage matching [5] and elsewhere.

In a classical formulation ofRANSAC, the problem is to find all inliers in a set of
data points. The number of inliersI is typically not known a priori. Inliers are data
points consistent with the ’best’ model, e.g. epipolar geometry or homography in a two
view correspondence problem or line or ellipse parameters in the case of detection of
geometric primitives. TheRANSAC procedure finds, with a certain probability, all inliers
and the corresponding model by repeatedly drawing random samples from the input set
of data points.
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RANSAC is popular because it is simple and it works well in practice. The reason is
that almost no assumptions are made about the data and no (unrealistic) conditions have
to be satisfied forRANSAC to succeed. However, it has been observed experimentally
thatRANSAC runs much longer (even by an order of magnitude) than theoretically pre-
dicted [11]. The discrepancy is due to one assumption ofRANSAC that is rarely true in
practice: it is assumed that a model with parameters computed froman uncontaminated
sampleis consistent withall inliers.

In this paper we propose a novel improvement ofRANSAC exploiting the fact that
the model hypothesis from an uncontaminated minimal sample is almost always suf-
ficiently near the optimal solution and a local optimization step applied to selected
models produces an algorithm with near perfect agreement with theoretical (i.e. opti-
mal) performance. This approach not only increases the number of inliers found and
consequently speeds up theRANSAC procedure by allowing its earlier termination, but
also returns models of higher quality. The increase of average time spent in a single
RANSAC verification step is minimal. The proposed optimization strategy guarantees
that the number of samples to which the optimization is applied is insignificant.

The main contributions of this paper are (a) modification of theRANSAC that si-
multaneously improve the speed of the algorithm and and the quality of the solution
(which is near to optimal) (b) introduction of two local optimization methods (c) a rule
for application of the local optimization and a theoretical analysis showing the local
optimization is applied at mostlog k times, wherek is the number of samples drawn. In
experiments on two image geometry estimation (epipolar geometry and homography)
the speed-up achieved is two to three fold.

The improvement proposed in this paper requires no extra input information or prior
knowledge, and it does not interfere with other modifications of the algorithm, theMLE-
SAC [14], R-RANSAC [1] and NAPSAC [8]. MLESAC, proposed by Torr and Zisserman,
defines a cost function in the maximal likelihood framework.

The structure of this paper is as follows. First, in Section 2, the motivation of this
paper is discussed in detail and the general algorithm of locally optimizedRANSAC

is described. Four different methods of local optimization are proposed in Section 3.
All methods are experimentally tested and evaluated through epipolar geometry and
homography estimation. The results are shown and discussed in Section 4. The paper is
concluded in Section 5.

2 Algorithm

The structure of theRANSAC algorithm is simple but powerful. Repeatedly, subsets
are randomly selected from the input data and model parameters fitting the sample are
computed. The size of the random samples is the smallest sufficient for determining
model parameters. In a second step, the quality of the model parameters is evaluated
on the full data set. Different cost functions may be used [14] for the evaluation, the
standard being the number of inliers, i.e. the number of data points consistent with the
model. The process is terminated [3, 13] when the likelihood of finding a better model
becomes low, i.e. the probabilityη of missing a set of inliers of sizeI within k samples
falls under predefined threshold

η = (1− PI)k. (1)



Repeatuntil the probability of finding better solution falls under predefined threshold, as in (1):

1. Select a random sample of the minimum number of data pointsSm.
2. Estimate the model parameters consistent with this minimal set.
3. Calculate the number of inliersIk, i.e. the data points their error is smaller

than predefined thresholdθ.
4. If new maximum has occurred (Ik > Ij for all j < k), run local optimiza-

tion. Store the best model.

Algorithm 1: A brief summary of theLO-RANSAC

SymbolPI stands for the probability, that an uncontaminated sample of sizem is ran-
domly selected fromN data points

PI =

(
I
m

)(
N
m

) =
m−1∏
j=0

I − j

N − j
≈ εm, (2)

whereε is the fraction of inliersε = I/N . The number of samples that has to be drawn
to ensure givenη is

k = log(η)/ log(1− PI).

From equations (1) and (2), it can be seen, that termination criterion based on prob-
ability η expects that a selection of a single random sample not contaminated by outliers
is followed by a discovery of whole set ofI inliers. However, this assumption is often
not valid since inliers are perturbed by noise. SinceRANSAC generates hypotheses from
minimal sets, the influence of noise is not negligible, and the set of correspondences the
size of which is smaller thanI is found. The consequence is an increase in the num-
ber of samples before the termination of the algorithm. The effect is clearly visible in
the histograms of the number of inliers found by standardRANSAC. The first column
of Figure 2 shows the histogram for five matching experiments. The number of inliers
varies by about 20-30%.

We propose a modification that increases the number of inliers found near to the
optimumI. This is achieved via a local optimization of so-far-the-best samples. For
the summary of the locally optimizedRANSAC see Algorithm 1. The local optimization
step is carried out only if a new maximum in the number of inliers from the current
sample has occurred, i.e. when standardRANSAC stores its best result. The number of
consistent data points with a model from a randomly selected sample can be thought of
as a random variable with unknown (or very complicated) density function. This density
function is the same for all samples, so the probability thatk-th sample will be the best
so far is1/k. Then, the average number of reaching the so-far-the-best sample withink
samples is

k∑
1

1
x
≤

∫ k

1

1
x

dx + 1 = log k + 1.

Note, that this is the upper bound as the number of correspondences is finite and dis-
crete and so the same number of inliers will occur often. This theoretical bound was
confirmed experimentally, the average numbers of local optimization over an execu-
tion of (locally optimized)RANSAC can be found in Table 3. For more details about
experiments see Section 4.
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Fig. 1.The average error (left) and the standard deviation of the error for samples of 7,8,9, 14 and
all 100 points respectively with respect to the noise level.

3 Local Optimization Methods

The following methods of local optimization have been tested. The choice is motivated
by the two observations that are given later in this section.

1. Standard.The standard implementation ofRANSAC without any local optimization.
2. Simple.Take all data points with error smaller thanθ and use a linear algorithm to
hypothesize new model parameters.
3. Iterative. Take all data points with error smaller thatK · θ and use linear algorithm
to compute new model parameters. Reduce the threshold and iterate until the threshold
is θ.
4. Inner RANSAC. A new sampling procedure is executed. Samples are selected only
form Ik data points consistent with the hypothesised model ofk-th step ofRANSAC.
New models are verified against whole set of data points. As the sampling is running on
inlier data, there is no need for the size of sample to be minimal. On the contrary, the
size of the sample is selected to minimize the error of the model parameter estimation.
In our experiments the size of samples are set tomin(Ik/2, 14) for epipolar geometry
(see results in Section 3) and tomin(Ik/2, 12) for the case of homography estimation.
The number of repetitions is set to ten in the experiments presented.
5. Inner RANSAC with iteration. This method is similar to the previous one, the dif-
ference being that each sample of the innerRANSAC is processed by method 3.

The local optimization methods are based on the two following observations.

Observation 1: The Size of Sample
The less information (data points) is used to estimate the model parameters in the pres-
ence of noise, the less accurate the model is. The reason forRANSAC to draw minimal
samples is that every extra point exponentially decreases the probability of selecting an
outlier-free sample, which is approximatelyεm wherem is the size of the sample (i.e.
the number of data points included in the sample).

It has been shown in [13], that the fundamental matrix estimated from a seven point
sample is more precise than the one estimated form eight points using a linear algorithm
[4]. This is due to the singularity enforcement in the eight point algorithm. However,



the following experiment shows, that this holds only for eight point samples and taking
nine or more points gives more stable results than those obtained when the fundamental
matrix is computed from seven points only.
Experiment: This experiment shows, how the quality of a hypothesis depends on the
number of correspondences used to calculate the fundamental matrix. For seven points,
the seven point algorithm was used [13] and for eight and more points the linear algo-
rithm [4] was used. The course of experiment was as follows. Noise of different levels
was added to the noise-free image points correspondences divided into two sets of hun-
dred correspondences. Samples of different sizes were drawn from the first set and the
average error over the second was computed. This was repeated 1000 times for each
noise level. Results are displayed in Figure 1.

This experiment demonstrates, that the more points are used to estimate the model
(in this case fundamental matrix) the more precise solution is obtained (with the ex-
ception of eight points). The experiment also shows that the minimal sample gives
hypotheses of rather poor quality. One can use different cost functions that are more
complicated than simply the number of inliers, but evaluating this function only at pa-
rameters arising from the minimal sample will get results at best equal to the proposed
method of local optimization.

Observation 2: Iterative Scheme
It is well known from the robust statistic literature, that pseudo-robust algorithms that
first estimate model parameters from all data by least squares minimization, then re-
move the data points with the biggest error (or residual) and iteratively repeat this pro-
cedure do not lead to correct estimates. It can be easily shown, that a single far–outlying
data point, i.e. leverage point, will cause a total destruction of the estimated model pa-
rameters. That is because such a leverage point overweights even the majority of inliers
in least-squares minimization. This algorithm works only well, when the outliers are
not overbearing, so the majority of inliers have bigger influence on the least squares.

In local optimization method 3 there are no leverage points, as each data point has
error belowK · θ subject to the sampled model.

4 Experimental Results

The proposed algorithm was extensively tested on the problem of estimation of the two
view relations (epipolar geometry and homography) from image point correspondences.
Five experiments are presented in this section, all of them on publicly available data,
depicted in Figures 3 and 4. In experiments A and B, the epipolar geometry is estimated
in a wide-baseline setting. In experiment C, the epipolar geometry was estimated too,
this time from short-baseline stereo images. From the point of view ofRANSAC use, the
narrow and wide baseline problems differ by the number of correspondences and inliers
(see Table 1), and also by the distribution of errors of outliers. Experiments D and E try
to recover homography. The scene in experiment E is the same as in experiment A and
this experiment could be seen as a plane segmentation. All tentative correspondences
were detected and matched automatically.

Algorithms were implemented in C and the experiments were ran on AMD K7
1800+ MHz processor. The terminating criterion based on equation (1) was set
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Fig. 2. Histograms of the number of inliers. The methods 1 to 5 (1 stands for standardRANSAC)
are stored in rows and different dataset are shown in columns (A to E). On each graph, there is a
number of inliers on the x-axis and how many times this number was reached within one hundred
repetitions on the y-axis.

to η < 0.05. The thresholdθ was set toθ = 3.84σ2 for the epipolar geometry and
θ = 5.99σ2 for the homography. In both cases the expectedσ was set toσ = 0.3.

The characterization of the matching problem, such as number of correspondences,
the total number of inliers and expected number of samples, are summarized in Table 1.
The total number of inliers was set to the maximal number of inliers obtained over all
methods over all repetitions. The expected number of samples was calculated according
to the termination criterion mentioned above.

Performance of local optimization methods 1 to 5 was evaluated on problems A to
E. The results for 100 runs are summarized in Table 2. For each experiment, a table con-
taining the average number of inliers, average number of samples drawn, average time
spent inRANSAC (in seconds) and efficiency (the ratio of the number of samples drawn
and expected) is shown. Table 3 shows both, how many times the local optimization has
been applied and the theoretical upper bound derived in Section 2.

The method 5 achieved the best results in all experiments in the number of samples
and differs slightly from the theoretically expected number. On the other hand standard
RANSAC exceeds this limit 2.5 – 3.3 times. In Figure 2 the histograms of the sizes of
the resulting inliers sets are shown. Each column shows results for one method, each
row for one experiment. One can observe that the peaks are shifting to the higher values
with the increasing identification number of method.

Method 5 reaches the best results in terms of sizes of inlier sets and consequently in
number of samples before termination. This method should be used when the fraction
of inliers is low. Resampling, on the other hand, might be quite costly in the case of high
number of inliers, especially if accompanied by a small number of correspondences in
total) as could be seen in experiment A (61 % of inliers out of 94 correspondences). In
this case, method 3 was the fastest. Method 3 obtained significantly better results than
the standardRANSAC in all experiments, the speed up was about 100%, and slightly
worse than for method 5. We suggest to use method 5. Method 3 might be used in real-



Fig. 3. Image pairs and detected points used
in epipolar geometry experiments (A - C).
Inliers are marked as dots in left images and
outliers as crosses in right images.

Fig. 4. Image pairs and detected points used
in homography experiments (D and E). In-
liers are marked as dots in left images and
outliers as crosses in right images.

A B C D E
# corr 94 94 1500 160 94
# inl 57 27 481 30 17
ε 61% 29% 32% 19% 18%
# sam 115 34529885228733837

Table 1. Characteristics of experiments A-
E. Total number of correspondences, maximal
number of inliers found within all tests, fraction
of inliers ε and theoretically expected number
of samples.

1 2 3 4 5
inl 49.7 53.9 55.9 56.0 56.2

A sam 383 205 129 117 115
time 0.018 0.010 0.007 0.010 0.019
eff 3.35 1.79 1.12 1.02 1.01

inl 23.3 24.4 25.0 25.5 25.7
B sam 9081663391499624401639886

time 3.911 2.729 2.154 1.901 1.731
eff 2.63 1.84 1.45 1.27 1.16

inl 423.5 446.2 467.5 468.9 474.9
C sam 25205165641193210947 9916

time 4.114 2.707 1.971 1.850 1.850
eff 2.85 1.87 1.35 1.24 1.12

inl 23.9 26.7 28.1 28.8 29.0
D sam 8652 5092 3936 3509 3316

time 0.922 0.543 0.423 0.387 0.391
eff 3.01 1.77 1.37 1.22 1.15

inl 13.5 14.6 15.3 15.7 15.9
E sam 12042 8551 6846 5613 5254

time 0.979 0.696 0.559 0.463 0.444
eff 3.14 2.23 1.78 1.46 1.37

Table 2.The summary of local optimization ex-
periments: average number of inliers (inl) and
samples taken (sam), average time in seconds
and efficiency (eff). The best values for each
row are highlighted in bold. For more details
see the description in text in Section 4.

time procedures when a high number of inliers is expected. Methods 2 and 4 are inferior
to methods with iteration (3 and 5 respectively) without any time saving advantage.

5 Conclusions

An inprovement of theRANSAC algorithm was introduced. The number of detected
inliers increased, and consequently the number of samples drawn decreased. In all ex-
periments, the running-time is reduced by a factor of at least two, which may be very



1 2 3 4 5
A 3.0 5.9 2.6 5.3 2.0 4.9 1.9 4.8 1.8 4.7
B 6.4 11.46.1 11.15.9 10.86.0 10.75.9 10.6
C 7.7 10.16.8 9.7 6.5 9.4 6.7 9.3 6.5 9.2

1 2 3 4 5
D 5.2 9.1 4.8 8.5 4.5 8.3 4.4 8.2 4.0 8.1
E 4.8 9.4 4.3 9.1 4.2 8.8 4.0 8.6 3.9 8.6

Table 3. The average number of local optimizations ran during one execution ofRANSAC and
logarithm of average number of samples for comparison.

important in real-time application incorporating aRANSAC step. It has been shown
and experimentally verified that the number of local optimization steps is lower than
logarithm of the number of samples drawn, and thus local optimization does not slow
the procedure down. Four different methods of local optimization were tested and the
efficiency of method 5 is almost 1. The proposed improvement allows to make pre-
cise quantitative statements about the number of samples drawn inRANSAC. The local
optimization step applied to selected models produces an algorithm with near perfect
agreement with theoretical (i.e. optimal) performance.

References

1. O. Chum and J. Matas. Randomized ransac with T(d,d) test. InProceedings of the British
Machine Vision Conference, volume 2, pages 448–457, 2002.

2. J. Clarke, S. Carlsson, and A. Zisserman. Detecting and tracking linear features efficiently.
In Proc. 7th BMVC, pages 415–424, 1996.

3. M. Fischler and R. Bolles. Random sample consensus: A paradigm for model fitting with
applications to image analysis and automated cartography.CACM, 24(6):381–395, June
1981.

4. R. Hartley. In defence of the 8-point algorithm. InICCV95, pages 1064–1070, 1995.
5. A. Leonardis and H. Bischof. Robust recognition using eigenimages.Computer Vision and

Image Understanding: CVIU, 78(1):99–118, Apr. 2000.
6. J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide baseline stereo from maximally

stable extremal regions. InProc. of the BMVC, volume 1, pages 384–393, 2002.
7. P. McLauchlan and A. Jaenicke. Image mosaicing using sequential bundle adjustment. In

Proc. BMVC, pages 616– 62, 2000.
8. D. Myatt, P. Torr, S. Nasuto, J. Bishop, and R. Craddock. Napsac: High noise, high dimen-

sional robust estimation - it’s in the bag. InBMVC02, volume 2, pages 458–467, 2002.
9. P. Pritchett and A. Zisserman. Wide baseline stereo matching. InProc. International Con-

ference on Computer Vision, pages 754–760, 1998.
10. F. Schaffalitzky and A. Zisserman. Viewpoint invariant texture matching and wide baseline

stereo. InProc. 8th ICCVon, Vancouver, Canada, July 2001.
11. B. Tordoff and D. Murray. Guided sampling and consensus for motion estimation. InProc.

7th ECCV, Copenhagen, Denmark, volume 1, pages 82–96. Springer-Verlag, 2002.
12. P. Torr, A. Zisserman, and S. Maybank. Robust detection of degenerate configurations while

estimating the fundamental matrix.CVIU, 71(3):312–333, September 1998.
13. P. H. S. Torr.Outlier Detection and Motion Segmentation. PhD thesis, Dept. of Engineering

Science, University of Oxford, 1995.
14. P. H. S. Torr and A. Zisserman. MLESAC: A new robust estimator with application to

estimating image geometry.Computer Vision and Image Understanding, 78:138–156, 2000.
15. T. Tuytelaars and L. Van Gool. Wide baseline stereo matching based on local, affinely in-

variant regions. InProc. 11th British Machine Vision Conference, 2000.


