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Abstract

W& generalize the method of simultaneouslinear estimation
of multipleview geometry and lensdistortion, introduced by
Fitzgibbon at CVPR 2001 [ 6], to an omnidirectional (angle
of view larger than 180°) camera. The perspective camera
is replaced by a linear camera with a spherical retina and
a non-linear mapping of the sphere into the image plane.
Unlike the previous distortion-based models, the new cam-
era model is capable to describe a camera with an angle of ;
view larger than 180° at the cost of introducing only one ex- Figure 1: (a) Original image acquired by a Nikon FC-E8
tra parameter. A suitable linearization of the camera model fish-eye converter mounted oncoLPix digital camera

and of the epipolar constraint is developed in order to ar- with resolution 16061200 pixels. Yellow (smaller) and

rive at a Quadratic Eigenvalue Problem for which efficient g een (jarger) dashed rectangles depict standard perspective
algorithms are known. The lens calibration is done from  cameras with the field of view0° and 120° respectively.
automatically established image correspondences only. Be- The red circle depicts the field of vietg3°. (b) The size of

sides rigidity, no assumptions about the scene are made | ngistorted images using approach by Fitzgibbon [6] goes
(e.g. presence of a calibration object). \\e demonstrate to infinity for the field of view approaching80°. Not all

the method in experiments with Nikon FC-E8 fish-eye con- lines become straight since the model does not sufficiently

verter for cooLpix digital camera. In practical situations, capture lens nonlinearity. (dJhe complete field of view

the proposed method allows to incor porate the new omnidi- can be represented on a sphere.

rectional camera model into RANSAC - a robust estimation

technique. or plumb line methods for classical [18] and omnidirec-
tional cameras [4, 15]. The method developed in [5] relies

1. Introduction on the assumption that a lens nonlinearity introduces spe-

cific higher-order correlation in the frequency domain.
Recently, a number of high quality, but cheap and widely  The second group covers the methods which do not use
available lenses with an angle of view larger th&d° ap-  knowledge about scene. This includes calibration meth-
peared, e.g. Nikon FC-EB8 fish-eye converter ($200) for ods from pure rotation for standard [6], and omnidirectional
cooLPIX digital camera or Sigma 8mm-f4-EX fish-eye cameras [9, 17], and calibratidrom rotation and transla-
lens. Omnidirectional cameras with such an angle of view tion for standard cameras [6, 13]. All the listed methods
have advantages in applications like surveillance, traCking,Ca|ibrate cameras from point Correspondences on|y_

structure from motion, and navigation. This work is mo- In [6], Fitzgibbon dealt with the problem of nonlin-
tivated by the use of omnidirectional cameras for structure ear lens distortion in the context of camera self-calibration
from motion and 3D reconstruction. and structure from motion. Hetroduced a one-parameter

Previous work on the estimation of a camera model with model for the radial distortion and suggested an algorithm
lens distortion falls into two basic groups. The first one for simultaneous estimation of multiple view geometry and
includes methods which exploit prior knowledge about the |ens distortion from point correspondences. His model,
scene such as the presence of calibration patterns [3, 12however, cannot be directly used for omnidirectional cam-

*This research was supported by the following projects: CTU 0209513, eras with view angle aboveB0° because it represents im-

GACR 102/01/0971, MSM 212300013, 3MT Kontakt 22-2003-04,  ades by points in which rays intersect the image plane. The
BENOGO-IST-2001-39184 problem of image representation is visualized in Figure 1.
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Figure 3: Image formation and calibration of an omnidirec-
(b) (c) tional camera. An image (a) on a sensor plane in a met-
Figure 2: (a) Nikon FC—EB8 fish-eye converter. (b) The opti- ric coordinate system is digitized to a digital image (b) re-
cal axis of the lens is marked by the dash dotted line and thejated by an affine transformation, which can be estimated by
optical center from which rays emanate is shown as the redtransforming an ellipse to a circle (c) up to a rotation around
dot. The angle between a ray and the optical axis is denotedhe center of the circle and a scalar factor. From this precal-

by 6. (c) Notice, that the image taken by the lens to the pla- jprated image, 3D vectors (d) are computed by applying a
nar sensorr can be represented by intersecting a sphericalnonlinear functiony.

retinap with camera rays.

Aw”(u”, v'") - opt.axis

In this paper we generalize Fitzgibbon’s method [6] to L W, 1)T -
omnidirectional cameras, derive an appropriate omnidirec- PR . o
. . . . . . ‘ < C(u 0w
tional model, incorporating lens nonlinearity, and find an )
algorithm for estimating the model from epipolar geome- —¢ =y ——
try. We assume that only point correspondences, informa- PERCANA N A
tion about the field of view of the lens, and its corresponding
view angle are available.

The structure of the paper is the following. The full

omnidirectional camera model is introduced, simplified and Figyre 4: The diagram of the construction of mappihg
linearized in Section 2. An algorithm for model estimation fom the sensor plane to the spherical retina. The point
from epipolar geometry is suggested in Sections 3 and 4.(uw” 0" 1)T in the image plane is transformed byf(.) to
Experiments and summary are given in Sections 5 and 6. (W, v",w")T, then normalized tdp”, ¢, s")T with unit

length, and thus projected on the sphere

2. Omnidirectional camera model

For cameras with angle of view larger thag0°, see Fig- By a calibration qf th.e omnidirectiqnal camera we un-
ure 2, images of all scene poir¥s cannot be represented derstanq the determlnatlon of the matkixhe vectot, and

by intersections of camera rays with one image plane. Everythe nonlinear function so that all vectorg(Au’ + t) (see
line passing through an optical center intersects the imageigure 3d) fulfill epipolar geometry and the projection equa-
plane in one point, but on one such line two scene pointst'On D). ) )

can lie and they can be seen in an omnidirectional image at L&t us further assume that a nonlinear functjoran be
the same time, see raysand —p in Figure 2c. For that €xpressed as

reason, we will represent rays of the image as a set of unit P vy T
vectors inR?3 such thatone vector corresponds just e g(u”,v7) = (7 %, fluten) (2)
image of a scene point. where f(u”) is rotationally symmetric with respect to a

Let a scene poinX be projected intau” in a sensor point (ufl,v{) . The ray passing through,v{)" is the
plane. Assume that the point’ = (u”,v”)" in the sen- optical axis of the camera.

sor plane, see Figure 3a, and a paint= (u/,v')" in a Function f can have various forms determined by lens
digitized image, see Figure 3b, are related by an affine transconstruction [3, 10]. For instance, the model= o”r"
formation, thustu’ + t = u”, whereA € R**?,t e R**'.  po|ds approximately true for Nikon FC—-E8 fish-eye lens,
We propose the model of an omnidirectional camera in thewherea” is a parameteﬁ is the ang|e between a ray and
form the optical axisy” = vu”? + v is the radius of a point
Ja > 0: ag(Au’ +t) = PX, (1) in the sensor plane with respect (@, vy) ", and it holds
f(”) = JW see Figure 4. A more precise model calls

which assigns a poirX € R* of the scene to its digitized
imageu’ by a perspective projection matrix € R3*4, a
change of a coordinate system in the image, and a non- a'r" a’ — a2 — ap'02

linear functiong : R2 — R3 defined in the sensor plane. 0= Tz r = 5578 , ()

for a nonlinear part. We use the division model




whereb” is an additional parameter. 06
As can be seen in Figure 4, an undistorted ray repre- — 0455
sented by unit vectgs” can be expressed as S o2 ‘
'U;N x\é 0
AU+t >
pl/ = kg(u/la al/v bN) =k UI/,/ =k (f(u", a//’ b")) 02
w
-0.4
7,,// 7,,//

fa”;a" v = tanf  tan 217 k>0. (4) Figure 5: Comparison of the graph of original functin
14677 (thick blue curves) and its linearizatigh(red lines). Left:
The equation (4) captures the relationship between theChange of parameterfor fixedb = —0.2. Right: Change

pointu’ in the digitized image and the vectpt emanating & for fixed a = 3.5. Graphs are for radit = 10 (upper),

from the optical center to a scene pakuit 100, 200, 300, 435 pxI (lower), wherer,,.. = 435pzl ~
91.5°. Blue dots mean points of the Taylor expansief=
2.1. Model simplification 3.5, bg = —0.2. Parameters, b were changed by-50%.

In [6], it is shown that using a division model witine pa-
rameter leads to solving a Quadratic Eigenvalue Problem 2 2 [ inearization of the modd

(QEP) [2, 16] for which efficient algorithms are available. The model (6) does not lead directly to QEP but it can be

The model (1) has more parameteus §, ug, vo, A, t). . . . . . .
(1) P i & o, vo ) linearized so that QEP is obtained. Functif(m, a,b) is a

However, for omnidirectional cameras, the number of un- ¢ i i functi hich b ded
known parameters can be reduced to formulate the calibra WO Parametric noninear function, which can be expande
o Taylor series with respect i@ andb at ag andby. By

tion as QEP. The reduction of parameters can be performec} itting th i ¢ of thTavl . btai
by taking into account tha} the view field is circular on the ?m| t!ng me r?‘oﬂ !nT_ar par Ob aylor series we obtain
sensor plane and) the view angle is approximately known. unctionf, which is linear ina,

adi) The vectort and the matri4 are obtained by trans- 7 by — b b _
forming the view field ellipse to a circle up to a rotation f(r.a,8) = 1(r, a0, b0) + falr, 0, bo)(a = a0)+

R € R2*2 around the center of the circle and up to scale + fo(r, a0, bo) (b = bo),  (7)
B. A transformed poinu is related to the corresponding \here
point on the sensor plan€’ by fu = Ru”. Functionf is ) wr )2
rotationally symmetric " (1 T (tan W) )
fa(r; ag, bO) = - D) ’
f”,a”b") = f(BR™Mu,a”,b") = f(Bu,a”,b") = (tan o ) (1+ bor?)
or
pr pr 2
= = = u,a,b 5 ar
tan % tan # 5.](.( » & ) ( ) fb('r, aop, bO) = —mfa(T, ap, bo)

v u” B R_lu _ R—1
p =k <f(u”, a”, b”)) =kp <f(u, a, b)> =kp ( 1) p (6) are partial derivatives of (r, a, b) with respect taz, resp.b.

Equation (5) shows that unknown scalds absorbed into Functionsf and f are shown for both parameters in Fig-
parameters of the model and does not increase the numbelltlre 5. As can be seety, = 0 can be chosen tha_m(;’”t(_) the
of the parameters. The reconstructed vegids related to Inear chara_cter of (r, ao, b). We_assume .thaio — RS
the vectorp” by a rotation and a nonzero scale. The vector known premsely enough to use it as a point of Taylor series
p represents a ray of the camera in an orthonormal coordj-&XPanston.
nate system. . . .

ad i) Fromi), the view anglef,,, the radiusk of the 3+ MOd€l estimation from epipolar ge-
view field circle, and (3), parametercan be expressed as ometry

a = (”L;)G’”, what would lead, after linearization, to a
one parametric model and QEP like in [6]. When assuming
that#,, and R are not known precisely, &vo parametric
model with a priori knowledge, = %= is obtained.

The reduction of the number of parameters to one allows

The vectomp can be written by using (4) and (7) as follows

< () = a0 fal) = bofo() + afa(.) + bfs() )1

to estimate the model from 9 poiRIANSAC as in [6] and u 0 0
thus detect most of outliers in this preliminary test. Then, = K v ) +a ( 0 ) +b < 0 )]
the two parametric model and the 15 paRaNSAC can be w s ¢
used to obtain more precise model. ~ x+as+bt



wherex, s andt are known vectors computed from image 4. Algor ithm

coordinates. The epipolar constraint [7] for vectpris the
left andp in the right image that correspond to the same
scene point reads as
p'Fp=0
(X +as+bt) "F(x+as+bt) =0

After arranging of unknown parameters into the vedior
we obtain
(Dl + (ZDQ + (Z2D3)h = 0, (8)

where matrice®; and and vectoh are as follows

Dy =[wi vi wi ud vb wd wd v WD
th to ul vf tw4wi t ]
Dg:[ 0 0 sa 0 0O sv us wv8 swW+ws
0 0 0 0 ti+st O]

D3=[0 0 0 0 0000 s 00000 O]

h=[fA Ff fs fo s fo fr fs fo
bfs bfe bfr bfs bfs b*fo ]T

Equation (8) represents a Quadratic Eigenvalue Problem
(QEP) [2, 16], which can be solved byAviLAB using the
functionpol yei g.

The vectorh contains six dependent produét§. The
parameteh can be determined from any of them. Since
there is noise in data, we choose the one which best fits our

Algorithm for computing 3D rays and an essential matrix
follows

1. Find an ellipse corresponding to the view field of the

lens. Transform the image so that the ellipse becomes a
circle, determine andt. Find correspondencés <
u} between two images.

. Scale image pointa := u/1000 to obtain better nu-

merical stability. Choose first estimates = % and
bo = 0. ’

. Create matriceB;,D,,D; € RN*1% N is the num-

ber of correspondences. Solve equation (8) with in-
verted QEP due to singularity 0§ [2]. Use MATLAB:
[Ha] = pol yei g(D/ D3, D{ D,,D,/ D;),His al5 x 30
matrix with columnsh, a is a30 x 1 vector with el-
ementsl/a. Six possible solutions df from last six
elements oh appear.

. Choose: # 0 anda < 10 (other solutions seem never

be correct), 1-4 solutions remain. For evetyere are

6 solutions ob. Create 3D rays from andb and com-
puteF using a standard method. The set of possible
solutions{a; < b; 1.6 < F;1..6} arises.

5. Compute the error (9) for all tripletss «— b — F}

as a sum of errors for all correspondences. The triplet
with the minimum error is the solution and b, and

model in terms of minimum error, as it will be explained
further. From estimated andb, real undistorted 3D vectors
can be computed and used for determining the fundamental
matrix F using one of standard algorithms [7]. The com- ;
putation ofF from undistorted vectors is more robust than S EXpe”mentS
using the first six elements &f. In this section, we apply the method to real data. Corre-
We determine the vectgs according to (6) up to aro-  spondences were obtained by the commercial progam
tationR. The rotatiork has no effect on the angle between jou [1]. Parameters of camera models and cameras trajec-
rays and the optical axis. Therefore, we obtain an essentiakories (up to magnitudes of translation vectors), were esti-
matrix (instead of a fundamental one) [7]. It allows us to mated. Relative camera rotations and directions of transla-
determine the relative rotation and the translation direction tions used for trajectories estimations were computed from
of a pair of cameras. essential matrices [7]. For obtaining the magnitudes we
Epipolar lines are represet by curves in original im-  would need to reconstruct the observed scene. It was not
ages. If we wanted to use the error by Hartley and Sturm [8] the task of this paper. Instead, we assumed unit length of
we would have to recompute 3D vectors of rays back to the translation vectors.
image plane and determinestinces from epipolar curves. The first experiment shows a rotating omnidirectional
Since we have known parameters of model (6), and thuscamera, see Figure 6. The camera was mounted on a
angles between rays and the optical axis, we have obtainequrntable such that the finalajectory of its optical center
a calibrated camera. We use the angle between a ray anqlas circular. |mages were acquired eve@y, 36 images in
an epipolar plane, instead of the distance of a point from itstotal. Three approaches to estimating the parametelis
epipolar curve. Error for one pair of vectors has been given gnd essential matric&swere used. The first approach used
by Oliensis [11] as follows all correspondences and the essential maftiwas com-
y ST 5 puted for every pair independently from b estimated for
€(p,p.F) = 4/2 -/ A?/4 - B, ©) the given pair, see Figure 8a. The second approach esti-
A=p'F'Fp+p FF'p, B=(p Fp)’, (10) matesona and one as the median of att, b's computed
for every consecutive pair of images in the whole sequence,

the essential matrik are obtained .

whereF is an essential matrix.
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Figure 8: Motion estimation for a circle sequence. Red
depicts the start positions depicts the end position. (a)
Essential matrix is computed from actual estimates of
andb. (b)F is computed fromu, b determined from whole

(a) (b) sequence. (cF is computed fromu, b determined from
Figure 6: The optical center is rotated on a circle. (a) whole sequence USIrRANSAC.
Nikon FC—ES8 fish-eye converter is mounted on the. P
NIX TM1001 digital camera with resolutioh017x 1008
pixels. (Courtesy of &ivic.) (b) Correspondences between

. 0.02)
two images. Circles mark points in one image, lines join %D? < |
them to the matches in the rntémage. The images are su- g0

—-0.02|

perimposed in red and green channel.

4 0

a8 s -0.02 rgd 0.02

3.6 -0.4] (a) (b)

s < Figure 9: Side motion. Nikon FC-EB8 fish-eye converter

. e with cooLPix digital camera with resolutioh600 x 1200

82 08 pixels was used.(a) On the left hand side, a diagram of the

3 m 5 % -1 T R—T m camera motion is depicted and on the right hand side a pic-
pairs pairs ture of the real setup is shown. The estimated trajectory is

Figure 7: Simultaneous estimation @fandb for a circle shown below the diagram. (b) Angular error between the
sequence. Blue crosses depict the approach when all imagéirection of motion and theptical axis for each pair, and
correspondences are uséds= 3.80, b = —0.16. Red dots  circle 3¢ is plotted.

whenRANSAC is usedg = 3.47, b = —0.30.

see Figure 7. MatriceB' were then computed for each pair - .
using the same, b, see Figure 8b. The third approach dif- — ) [ LS L.
fers from the second one such that a 9 p&RANSAC as o

a pre-test to detect most of outliers and then a 15 point -0.02

RANSAC were performed to compute the parameters X e ooz 0 002
for every pair, see Figure 7 andtenated trajectory in Fig- @) (b;ad

ure 8c. RANSAC leads to the best solution. A small error
between the end and the start point appears. It is a goo
initial estimate for a bundle ag§tment enforcing metrical
constraints on the reconstruction and including lens nonlin- The next experiment shows the calibration from a gen-
earlty. i . . eral planar motion. Figure 11a shows a mobile tripod with
The next experiment calibrates the omnidirectional cam- 4y gmnidirectional camera. Figure 11b shows an estimated
era from its translation in the direction perpendicular to the trajectory. We made a U-shaped trajectory with right an-
optical axis, see Figure 9, and in the direction along the op-gjes. Discontinuities of the trajectory were caused by hand
tical axis, see Figure 10. Estimated trajectories are shown ingriven motion of the mobile tripod. Naturally, they have no

Figures 9a and 10a. The angular differences between estixftect on the final estimate and the final trajectory has really
mated and true motion directions for every pair are deplctedright angles.

in Figures 9b and 10b. In fact, the errors are approximately
the same. The difference is under experimental error and
therefore, in this case, the side and the forward motion per-
form similarly.

d:igure 10: Forward motion of the fish-eye lens. See Fig-
ure 9 for the explanation.

The last experiment, see Figure 12, applied our model
and model introduced in [6] to an omnidirectional image. It
can be seen that the model [6] does not sufficiently capture
lens nonlinearity.



lowed by the 15 poinRANSAC for outliers detection and
essential matrix computation.
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