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Abstract

We generalize the method of simultaneous linear estimation
of multiple view geometry and lens distortion, introduced by
Fitzgibbon at CVPR 2001 [6], to an omnidirectional (angle
of view larger than 180◦) camera. The perspective camera
is replaced by a linear camera with a spherical retina and
a non-linear mapping of the sphere into the image plane.
Unlike the previous distortion-based models, the new cam-
era model is capable to describe a camera with an angle of
view larger than 180◦ at the cost of introducing only one ex-
tra parameter. A suitable linearization of the camera model
and of the epipolar constraint is developed in order to ar-
rive at a Quadratic Eigenvalue Problem for which efficient
algorithms are known. The lens calibration is done from
automatically established image correspondences only. Be-
sides rigidity, no assumptions about the scene are made
(e.g. presence of a calibration object). We demonstrate
the method in experiments with Nikon FC–E8 fish-eye con-
verter for COOLPIX digital camera. In practical situations,
the proposed method allows to incorporate the new omnidi-
rectional camera model into RANSAC - a robust estimation
technique.

1. Introduction
Recently, a number of high quality, but cheap and widely
available lenses with an angle of view larger that180◦ ap-
peared, e.g. Nikon FC–E8 fish-eye converter ($200) for
COOLPIX digital camera or Sigma 8mm-f4-EX fish-eye
lens. Omnidirectional cameras with such an angle of view
have advantages in applications like surveillance, tracking,
structure from motion, and navigation. This work is mo-
tivated by the use of omnidirectional cameras for structure
from motion and 3D reconstruction.

Previous work on the estimation of a camera model with
lens distortion falls into two basic groups. The first one
includes methods which exploit prior knowledge about the
scene such as the presence of calibration patterns [3, 12]
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Figure 1: (a) Original image acquired by a Nikon FC–E8
fish-eye converter mounted on aCOOLPIX digital camera
with resolution 1600×1200 pixels. Yellow (smaller) and
green (larger) dashed rectangles depict standard perspective
cameras with the field of view90◦ and120◦ respectively.
The red circle depicts the field of view183◦. (b) The size of
undistorted images using approach by Fitzgibbon [6] goes
to infinity for the field of view approaching180◦. Not all
lines become straight since the model does not sufficiently
capture lens nonlinearity. (c)The complete field of view
can be represented on a sphere.

or plumb line methods for classical [18] and omnidirec-
tional cameras [4, 15]. The method developed in [5] relies
on the assumption that a lens nonlinearity introduces spe-
cific higher-order correlation in the frequency domain.

The second group covers the methods which do not use
knowledge about scene. This includes calibration meth-
ods from pure rotation for standard [6], and omnidirectional
cameras [9, 17], and calibration from rotation and transla-
tion for standard cameras [6, 13]. All the listed methods
calibrate cameras from point correspondences only.

In [6], Fitzgibbon dealt with the problem of nonlin-
ear lens distortion in the context of camera self-calibration
and structure from motion. Heintroduced a one-parameter
model for the radial distortion and suggested an algorithm
for simultaneous estimation of multiple view geometry and
lens distortion from point correspondences. His model,
however, cannot be directly used for omnidirectional cam-
eras with view angle above180◦ because it represents im-
ages by points in which rays intersect the image plane. The
problem of image representation is visualized in Figure 1.
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Figure 2: (a) Nikon FC–E8 fish-eye converter. (b) The opti-
cal axis of the lens is marked by the dash dotted line and the
optical center from which rays emanate is shown as the red
dot. The angle between a ray and the optical axis is denoted
by θ. (c) Notice, that the image taken by the lens to the pla-
nar sensorπ can be represented by intersecting a spherical
retinaρ with camera rays.

In this paper we generalize Fitzgibbon’s method [6] to
omnidirectional cameras, derive an appropriate omnidirec-
tional model, incorporating lens nonlinearity, and find an
algorithm for estimating the model from epipolar geome-
try. We assume that only point correspondences, informa-
tion about the field of view of the lens, and its corresponding
view angle are available.

The structure of the paper is the following. The full
omnidirectional camera model is introduced, simplified and
linearized in Section 2. An algorithm for model estimation
from epipolar geometry is suggested in Sections 3 and 4.
Experiments and summary are given in Sections 5 and 6.

2. Omnidirectional camera model
For cameras with angle of view larger than180◦, see Fig-
ure 2, images of all scene pointsX cannot be represented
by intersections of camera rays with one image plane. Every
line passing through an optical center intersects the image
plane in one point, but on one such line two scene points
can lie and they can be seen in an omnidirectional image at
the same time, see raysp and−p in Figure 2c. For that
reason, we will represent rays of the image as a set of unit
vectors inR

3 such thatone vector corresponds just toone
image of a scene point.

Let a scene pointX be projected intou′′ in a sensor
plane. Assume that the pointu′′ = (u′′, v′′)� in the sen-
sor plane, see Figure 3a, and a pointu′ = (u′, v′)� in a
digitized image, see Figure 3b, are related by an affine trans-
formation, thusAu′ + t = u′′, whereA ∈ R

2×2, t ∈ R
2×1.

We propose the model of an omnidirectional camera in the
form

∃α > 0 : αg(Au′ + t) = PX, (1)

which assigns a pointX ∈ R
4 of the scene to its digitized

imageu′ by a perspective projection matrixP ∈ R
3×4, a

change of a coordinate system in the imageA, t, and a non-
linear functiong : R

2 → R
3 defined in the sensor plane.
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Figure 3: Image formation and calibration of an omnidirec-
tional camera. An image (a) on a sensor plane in a met-
ric coordinate system is digitized to a digital image (b) re-
lated by an affine transformation, which can be estimated by
transforming an ellipse to a circle (c) up to a rotation around
the center of the circle and a scalar factor. From this precal-
ibrated image, 3D vectors (d) are computed by applying a
nonlinear functiong.
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Figure 4: The diagram of the construction of mappingf
from the sensor planeπ to the spherical retinaρ. The point
(u′′, v′′, 1)� in the image planeπ is transformed byf(.) to
(u′′, v′′, w′′)�, then normalized to(p′′, q′′, s′′)� with unit
length, and thus projected on the sphereρ.

By a calibration of the omnidirectional camera we un-
derstand the determination of the matrixA, the vectort, and
the nonlinear functiong so that all vectorsg(Au′ + t) (see
Figure 3d) fulfill epipolar geometry and the projection equa-
tion (1).

Let us further assume that a nonlinear functiong can be
expressed as

g(u′′, v′′) = (u′′, v′′, f(u′′, v′′))� , (2)

wheref(u′′) is rotationally symmetric with respect to a
point (u′′

0 , v′′0 )�. The ray passing through(u′′
0 , v′′0 )� is the

optical axis of the camera.
Functionf can have various forms determined by lens

construction [3, 10]. For instance, the modelθ = a′′r′′

holds approximately true for Nikon FC–E8 fish-eye lens,
wherea′′ is a parameter,θ is the angle between a ray and
the optical axis,r′′ =

√
u′′2 + v′′2 is the radius of a point

in the sensor plane with respect to(u′′
0 , v′′0 )�, and it holds

f(u′′) = r′′
tan θ , see Figure 4. A more precise model calls

for a nonlinear part. We use the division model

θ =
a′′r′′

1 + b′′r′′2
, r′′ =

a′′ −√
a′′2 − 4b′′θ2

2b′′θ
, (3)
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whereb′′ is an additional parameter.
As can be seen in Figure 4, an undistorted ray repre-

sented by unit vectorp′′ can be expressed as

p′′ = kg(u′′, a′′, b′′) = k


 u′′

v′′

w′′


 = k

(
Au′ + t

f(u′′, a′′, b′′)

)

f(u′′, a′′, b′′) =
r′′

tan θ
=

r′′

tan a′′r′′
1+b′′r′′2

, k > 0. (4)

The equation (4) captures the relationship between the
pointu′ in the digitized image and the vectorp′′ emanating
from the optical center to a scene pointX.

2.1. Model simplification
In [6], it is shown that using a division model withone pa-
rameter leads to solving a Quadratic Eigenvalue Problem
(QEP) [2, 16] for which efficient algorithms are available.
The model (1) has more parameters (a, b, u0, v0, A, t).
However, for omnidirectional cameras, the number of un-
known parameters can be reduced to formulate the calibra-
tion as QEP. The reduction of parameters can be performed
by taking into account thati) the view field is circular on the
sensor plane andii) the view angle is approximately known.

ad i) The vectort and the matrixA are obtained by trans-
forming the view field ellipse to a circle up to a rotation
R ∈ R

2×2 around the center of the circle and up to scale
β. A transformed pointu is related to the corresponding
point on the sensor planeu′′ by βu = Ru′′. Functionf is
rotationally symmetric

f(u′′, a′′, b′′) = f(βR−1u, a′′, b′′) = f(βu, a′′, b′′) =

=
βr

tan βa′′r
1+b′′β2r2

=
βr

tan ar
1+br2

= βf(u, a, b) (5)

p′′ =k

(
u′′

f(u′′, a′′, b′′)

)
=kβ

(
R−1u

f(u, a, b)

)
=kβ

(
R−1

1

)
p (6)

Equation (5) shows that unknown scaleβ is absorbed into
parameters of the model and does not increase the number
of the parameters. The reconstructed vectorp is related to
the vectorp′′ by a rotation and a nonzero scale. The vector
p represents a ray of the camera in an orthonormal coordi-
nate system.

ad ii) From i), the view angleθm, the radiusR of the
view field circle, and (3), parametera can be expressed as

a = (1+bR2)θm

R , what would lead, after linearization, to a
one parametric model and QEP like in [6]. When assuming
that θm andR are not known precisely, atwo parametric
model with a priori knowledgea0 = θm

R is obtained.
The reduction of the number of parameters to one allows

to estimate the model from 9 pointRANSAC as in [6] and
thus detect most of outliers in this preliminary test. Then,
the two parametric model and the 15 pointRANSAC can be
used to obtain more precise model.
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Figure 5: Comparison of the graph of original functionf
(thick blue curves) and its linearizatioñf (red lines). Left:
Change of parametera for fixed b = −0.2. Right: Change
b for fixed a = 3.5. Graphs are for radiir = 10 (upper),
100, 200, 300, 435 pxl (lower), wherermax = 435pxl ∼
91.5◦. Blue dots mean points of the Taylor expansion:a0 =
3.5, b0 = −0.2. Parametersa, b were changed by±50%.

2.2. Linearization of the model
The model (6) does not lead directly to QEP but it can be
linearized so that QEP is obtained. Functionf(r, a, b) is a
two parametric nonlinear function, which can be expanded
to Taylor series with respect toa andb at a0 andb0. By
omitting the nonlinear part of the Taylor series we obtain
functionf̃ , which is linear ina, b

f̃(r, a, b) = f(r, a0, b0) + fa(r, a0, b0)(a − a0)+
+ fb(r, a0, b0)(b − b0), (7)

where

fa(r, a0, b0) = −
r2

(
1 +

(
tan a0r

1+b0r2

)2
)

(
tan a0r

1+b0r2

)2

(1 + b0r2)
,

fb(r, a0, b0) = − ar2

(1 + b0r2)
fa(r, a0, b0)

are partial derivatives off(r, a, b) with respect toa, resp.b.
Functionsf̃ andf are shown for both parameters in Fig-

ure 5. As can be seen,b0 = 0 can be chosen thanks to the
linear character off(r, a0, b). We assume thata0 = θm

R is
known precisely enough to use it as a point of Taylor series
expansion.

3. Model estimation from epipolar ge-
ometry

The vectorp can be written by using (4) and (7) as follows

p =

[(
u
v

f(.) − a0fa(.) − b0fb(.) + afa(.) + bfb(.)

)]

=

[(
u
v
w

)
+ a

(
0
0
s

)
+ b

(
0
0
t

)]

� x + as + bt
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wherex, s andt are known vectors computed from image
coordinates. The epipolar constraint [7] for vectorsp in the
left and p̌ in the right image that correspond to the same
scene point reads as

p̌�Fp = 0

(x̌ + aš + bť)�F(x + as + bt) = 0

After arranging of unknown parameters into the vectorh
we obtain

(D1 + aD2 + a2D3)h = 0, (8)

where matricesDi and and vectorh are as follows

D1 = [ uǔ vǔ wǔ uv̌ vv̌ wv̌ uw̌ vw̌ ww̌

tǔ tv̌ uť vť tw̌ + wť tť ]
D2 = [ 0 0 sǔ 0 0 sv̌ uš vš sw̌ + wš

0 0 0 0 tš + sť 0 ]
D3 = [ 0 0 0 0 0 0 0 0 sš 0 0 0 0 0 0 ]
h = [ f1 f2 f3 f4 f5 f6 f7 f8 f9

bf3 bf6 bf7 bf8 bf9 b2f9 ]�

Equation (8) represents a Quadratic Eigenvalue Problem
(QEP) [2, 16], which can be solved by MATLAB using the
functionpolyeig.

The vectorh contains six dependent productsbfi. The
parameterb can be determined from any of them. Since
there is noise in data, we choose the one which best fits our
model in terms of minimum error, as it will be explained
further. From estimateda andb, real undistorted 3D vectors
can be computed and used for determining the fundamental
matrix F using one of standard algorithms [7]. The com-
putation ofF from undistorted vectors is more robust than
using the first six elements ofh.

We determine the vectorp according to (6) up to a ro-
tationR. The rotationR has no effect on the angle between
rays and the optical axis. Therefore, we obtain an essential
matrix (instead of a fundamental one) [7]. It allows us to
determine the relative rotation and the translation direction
of a pair of cameras.

Epipolar lines are represented by curves in original im-
ages. If we wanted to use the error by Hartley and Sturm [8]
we would have to recompute 3D vectors of rays back to the
image plane and determine distances from epipolar curves.

Since we have known parameters of model (6), and thus
angles between rays and the optical axis, we have obtained
a calibrated camera. We use the angle between a ray and
an epipolar plane, instead of the distance of a point from its
epipolar curve. Error for one pair of vectors has been given
by Oliensis [11] as follows

ε(p, p̌, F) = A/2 −
√

A2/4 − B, (9)

A = p�F�Fp + p̌�FF�p̌, B =
(
p̌�Fp

)2
, (10)

whereF is an essential matrix.

4. Algorithm
Algorithm for computing 3D rays and an essential matrix
follows

1. Find an ellipse corresponding to the view field of the
lens. Transform the image so that the ellipse becomes a
circle, determineA andt. Find correspondences{u ↔
ǔ} between two images.

2. Scale image pointsu := u/1000 to obtain better nu-
merical stability. Choose first estimatesa0 = R

θm
and

b0 = 0.

3. Create matricesD1, D2, D3 ∈ R
N×15, N is the num-

ber of correspondences. Solve equation (8) with in-
verted QEP due to singularity ofD3 [2]. Use MATLAB :
[H a] = polyeig(D�1 D3, D

�
1 D2, D

�
1 D1), H is a15 × 30

matrix with columnsh, a is a30 × 1 vector with el-
ements1/a. Six possible solutions ofb from last six
elements ofh appear.

4. Choosea 	= 0 anda < 10 (other solutions seem never
be correct), 1–4 solutions remain. For everya there are
6 solutions ofb. Create 3D rays froma andb and com-
puteF using a standard method. The set of possible
solutions{ai ↔ bi,1...6 ↔ Fi,1...6} arises.

5. Compute the error (9) for all triplets{a ↔ b ↔ F}
as a sum of errors for all correspondences. The triplet
with the minimum error is the solution anda, b, and
the essential matrixF are obtained .

5. Experiments
In this section, we apply the method to real data. Corre-
spondences were obtained by the commercial programbou-
jou [1]. Parameters of camera models and cameras trajec-
tories (up to magnitudes of translation vectors), were esti-
mated. Relative camera rotations and directions of transla-
tions used for trajectories estimations were computed from
essential matrices [7]. For obtaining the magnitudes we
would need to reconstruct the observed scene. It was not
the task of this paper. Instead, we assumed unit length of
translation vectors.

The first experiment shows a rotating omnidirectional
camera, see Figure 6. The camera was mounted on a
turntable such that the final trajectory of its optical center
was circular. Images were acquired every10◦, 36 images in
total. Three approaches to estimating the parametersa, b,
and essential matricesF were used. The first approach used
all correspondences and the essential matrixF was com-
puted for every pair independently froma, b estimated for
the given pair, see Figure 8a. The second approach esti-
mates onêa and onêb as the median of alla, b’s computed
for every consecutive pair of images in the whole sequence,

4



(a) (b)
Figure 6: The optical center is rotated on a circle. (a)
Nikon FC–E8 fish-eye converter is mounted on the PUL-
NIX TM1001 digital camera with resolution1017×1008
pixels. (Courtesy of J.Šivic.) (b) Correspondences between
two images. Circles mark points in one image, lines join
them to the matches in the next image. The images are su-
perimposed in red and green channel.
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Figure 7: Simultaneous estimation ofa andb for a circle
sequence. Blue crosses depict the approach when all image
correspondences are used,â = 3.80, b̂ = −0.16. Red dots
whenRANSAC is used,̂a = 3.47, b̂ = −0.30.

see Figure 7. MatricesF were then computed for each pair
using the samêa, b̂, see Figure 8b. The third approach dif-
fers from the second one such that a 9 pointRANSAC as
a pre-test to detect most of outliers and then a 15 point
RANSAC were performed to compute the parametersa, b
for every pair, see Figure 7 and estimated trajectory in Fig-
ure 8c. RANSAC leads to the best solution. A small error
between the end and the start point appears. It is a good
initial estimate for a bundle adjustment enforcing metrical
constraints on the reconstruction and including lens nonlin-
earity.

The next experiment calibrates the omnidirectional cam-
era from its translation in the direction perpendicular to the
optical axis, see Figure 9, and in the direction along the op-
tical axis, see Figure 10. Estimated trajectories are shown in
Figures 9a and 10a. The angular differences between esti-
mated and true motion directions for every pair are depicted
in Figures 9b and 10b. In fact, the errors are approximately
the same. The difference is under experimental error and
therefore, in this case, the side and the forward motion per-
form similarly.

(a) (b) (c)
Figure 8: Motion estimation for a circle sequence. Red◦
depicts the start position,× depicts the end position. (a)
Essential matrixF is computed from actual estimates ofa
andb. (b) F is computed froma, b determined from whole
sequence. (c)F is computed froma, b determined from
whole sequence usingRANSAC.
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Figure 9: Side motion. Nikon FC–E8 fish-eye converter
with COOLPIX digital camera with resolution1600 × 1200
pixels was used.(a) On the left hand side, a diagram of the
camera motion is depicted and on the right hand side a pic-
ture of the real setup is shown. The estimated trajectory is
shown below the diagram. (b) Angular error between the
direction of motion and theoptical axis for each pair, and
circle3σ is plotted.
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(a) (b)
Figure 10: Forward motion of the fish-eye lens. See Fig-
ure 9 for the explanation.

The next experiment shows the calibration from a gen-
eral planar motion. Figure 11a shows a mobile tripod with
an omnidirectional camera. Figure 11b shows an estimated
trajectory. We made a U-shaped trajectory with right an-
gles. Discontinuities of the trajectory were caused by hand
driven motion of the mobile tripod. Naturally, they have no
effect on the final estimate and the final trajectory has really
right angles.

The last experiment, see Figure 12, applied our model
and model introduced in [6] to an omnidirectional image. It
can be seen that the model [6] does not sufficiently capture
lens nonlinearity.
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(a) (b)
Figure 11: General motion of Nikon FC–E8 fish-eye con-
verter withCOOLPIX digital camera. (a) Setup of the exper-
iment. A mobile tripod with the camera. (b) The estimated
trajectory.

Figure 12: Image with120◦ angle of view reprojected to a
plane. Left: approach by [6]. Right: our method. Notice
that with our method all lines are straight.

6. Summary and Conclusions

The paper extended the non-linear lens model estimation
from epipolar geometry to omnidirectional cameras with
the angle of view larger than 180◦. All steps leading to the
full calibration of an omnidirectional camera were formu-
lated. The model of the omnidirectional camera, the method
for reduction of the number of parameters, and an algorithm
for estimation of the parameters from the epipolar constraint
was proposed. Experiments demonstrated that the method
is useful for estimating parameters of a camera model and
structure from motion with sufficient accuracy to be used as
a starting point for a bundle adjustment enforcing metrical
constraints on the reconstruction and including lens nonlin-
earity.

It is important to realize that it is the number of param-
eters, rather than the actual form of the non-linear function
in the camera model, allowing to formulate the calibration
process as QEP. We presented tests on one type of fish-eye
converter but the method is applicable to a large class of om-
nidirectional cameras, e.g. fish-eye lenses or mirrors [14]
possessing the central projection and providing view angle
above 180◦.

The important conclusion is that the suggested method
allows us to incorporate our omnidirectional camera model
into a robust estimation technique based on the 9 point fol-

lowed by the 15 pointRANSAC for outliers detection and
essential matrix computation.
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