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Abstract

We have implemented a ferns-based classifier in MATLAB and ap-
plied it in image matching, object detection and tracking applications.
We improve recognition performance, especially for scale changes. Ad-
ditional modifications should help to overcome Harris corner detector
inaccuracy and improve RANSAC homography estimation. We per-
formed experiments with various real-world images and we show that
our classifier is able to handle significant perspective changes.
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1 Introduction

Image recognition, matching and tracking belong to the most frequent com-
puter vision tasks. We have implemented a complete classifier framework in
MATLAB capable of these applications and thoroughly tested it. Sample
output of our classifier is on Figure 1.

At first, distinctive image locations – keypoints – are determined by the
Harris corner detector [3]. Descriptors are based on comparison of image
intensities in randomly chosen pixel pairs around these keypoints. Finding
tentative matches is based on Naive Bayesian classifier. In object detection
and tracking applications, RANSAC [2] is used for fitting of geometrical
model.

The key component of the learning and classification process is the patch
description. Patches around keypoints are evaluated by comparison of inten-
sities in randomly formed pixel pairs called binary features. Many learning
samples are generated for each class (patch) during offline learning phase by
transforming the model image. The patches are evaluated in each transfor-
mation and probabilities of certain values of the features are used as patch
descriptors. Joint probability of all binary features would require extreme
amount of memory, as 2N values (N represents number of binary features)
would have to be stored for each class. Assuming independence of all binary
features would rapidly reduce necessary amount of memory, but it completely
ignores the correlation between features. The compromise consists in parti-
tioning binary features into M groups of size S = N

M
called ferns. Further

information can be found in [1] and in [4], section III.

2 Ferns: Learning and Classification

In this section, we will describe the algorithm we used for learning and clas-
sification. Source code description will follow in section 3. The algorithms
were implemented in MATLAB version 7.8 and tested in MATLAB version
7.8 and 7.9.

2.1 Learning

At first, the model image is converted to greyscale (if necessary) and sur-
rounded with free space (black pixels) to prevent index overflow when eval-
uating the patches in transformed image samples.

After that, Harris corner detector finds keypoints in the model image.
Keypoints too close to the image borders (closer than half of the patch size
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Figure 1: Finding correspondences (yellow lines), object detection (green
rectangle). Blue crosses in the query image represent Harris keypoints. Green
stars in the model image are correctly classified classes, while the red ones
are incorrect.

in respective direction) are removed, the rest represent classes. Classes are
identified by index in a variable containing their coordinates.

The model image is transformed in many ways to simulate possible ap-
pearance of the object in query images (scenes). Affine transformation ma-
trices are generated for all combinations of given values of θ, φ and λ1,2 in
the formula

T = RθR−φdiag(λ1, λ2)Rφ , (1)

where R represents rotation by the subscripted angle, λ1,2 represent scaling.

For a given patch size, the coordinates of pixel pairs forming binary fea-
tures are randomly chosen in range from −hx to hx horizontally and from
−hy to hy vertically (where h represents half size of a patch in respective
direction) and randomly partitioned to ferns.

Now, we describe the main loop over all generated transformations. At
first, the image and the keypoints’ coordinates are transformed by the given
transformation matrix. Gaussian noise with zero mean and large variance 25
(for intensity values from 0 to 255) is added to image intensities to increase
robustness. Additionally, Gaussian smoothing with a mask of 7×7 is applied.

The core of the algorithm consists in classification of patches in the given
transformation. Binary features within a fern are evaluated, i.e., the intensi-
ties of the two pixels within a binary feature are compared and evaluation is
returned – 1 if the intensity of the first pixel in the pair is smaller than the
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intensity of the other one, 0 otherwise. Binary number formed by ‘concate-
nating’ evaluations of features within a fern is converted to decimal represen-
tation and 1 is added, so that the evaluation can be used as index. This is
done with all ferns on all patches (classes). The number of occurences of par-
ticular fern evaluations is stored for each fern of each class and finally, after
repeating the whole process for all transformations, recalculated to probabil-
ity (all values are divided by a constant: number of samples + 2fern size). The
evaluations that have never occured are treated as if they have occured once
to prevent classification failure when calculating product of probabilities.

If requested, all classes’ coordinates are translated by a given value in all
eight directions (horizontally, vertically and diagonally), thus the core of the
learning algorithm is run eight more times. This improvement should help
overcome possible Harris detector inaccuracy.

To improve classification, we added post-scaling, which extends and refines
the scaling range given by λ1,2 values in (1). To make the classification faster,
the post-scale probabilities are calculated already in the learning phase. The
scale change is simulated by resizing ferns. It can be also described as learning
ferns on different patch sizes. Resizing is done by the same coefficient in both
directions (i.e., aspect ratio is retained).

2.2 Classification

After learning the ferns probability model, classification can be run in one of
the three modes: matching, finding object in a scene and tracking.

Matching mode is used to find correspondences between keypoints in
the model (classes) and in the query image (yellow lines on Figure 1). By
default, the most similar class is found for each patch around keypoints in the
query image. Our classifier also allows matching in opposite direction, where
the most similar keypoint in the query image is found for each class. As
there are usually less classes than keypoints in the query image, the opposite
approach is generally faster, but the recognition rate decreases.

Finding mode is intended for object detection applications. RANSAC
is used to estimate homography (transformation matrix) from found corre-
spondences between model classes and keypoints in the query image. As
a by-product, correctly matched correspondences are determined as inliers,
incorrect as outliers. The computed homography essentially finds exact lo-
cation of the sought object, see the green rectangle in Figure 1.

Tracking mode is suitable for object tracking in image sequences, where
the difference of successive images is rather small. This mode extends the
finding mode by restriction of keypoints translation between two succeeding
images (maximal translation may be set by user). Additionally, the object
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is first searched in surrounding of its position in the previous image in the
sequence. If the object is not found in the restricted area, the whole image
is searched through (as in the finding mode).

Now, we describe the classification process. Firstly, the image to be clas-
sified is converted to greyscale (if necessary) and keypoints – Harris corners
are detected (in bounded area in the tracking mode according to previous
object location, else in the whole image). Keypoints too close to the im-
age borders (closer than half of the patch size in respective direction) are
removed.

Correspondences between classes in the model image and keypoints in the
query image are determined this way: Patches around all keypoints are eval-
uated using the same ferns that were used for learning. The prior (learned)
probabilities of the acquired evaluations of all ferns are loaded for each class
and multiplied, the particular keypoint (patch) is then assigned to the class
with the largest product. This can be formulated as finding

ĉi = argmax
ci

M∏
k=1

P (fk | C = ci) , (2)

where fk represents evaluation of kth fern, ci represents ith class and M is
number of ferns. Maximum translation of each keypoint between the cur-
rent and previously classified image is limited in the tracking mode, which
restrains classes the keypoint can be assigned to.

In the finding and tracking mode, if not enough inliers were found to be
sure that RANSAC returned correct homography (e.g. less than 10 inliers),
the whole process is repeated for succeeding post-scales. In case that all
post-scales were tried and the given number of inliers was achieved for none
of them, the post-scale with the highest number of inliers is taken as the
best. Classification of the next image in the tracking mode will begin with
the best post-scale used for the last image.

If the refine mode is on, the classification may be re-run with higher
RANSAC iteration limit to achieve better results when not sure about the
correctness of the previously calculated homography. More about the refine
mode can be found in section 3.2.

3 Implementation

As the process of image recognition consists of two main phases, learning
and classification, there are two main functions, f learn for learning and
f find for classification. Demonstration scripts are also distributed, detailed
description can be found in the succeeding sections.
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Brief overview The script demo ferns.m provides a brief overview of ob-
ject detection using our classifier. The image specified in input image is
displayed, user selects the object to be learned by dragging a rectangle with
mouse. After the learning and classification process finishes, the result is
displayed. The estimated object position is marked green. Blue crosses in
the query image indicate found keypoints (Harris corners). Red stars in the
model image represent classes that were determined by RANSAC as outliers,
while green stars are inliers. Matching of correctly classified pairs (inliers) is
drawn as yellow lines (Figure 1).

Sample data We recommend downloading ground truth image sequences1

to take full advantage of the demonstration scripts. Each of the * img and
* gt archives should be extracted to separate directory. Directory structure
for downloaded archives extraction is already prepared in this package in
the directory testdata. Images used for learning named img learn.jpg are
stored in * img directories in testdata in this package.

3.1 Learning

Function f learn is used to learn ferns model on an input image. The syntax
is
model = f learn(im, par),
where im is a model image (to be learned) represented as uint8 matrix. Color
image will be automatically converted to greyscale. It is possible to set the
pathname of the image instead, then the image is automatically read in the
required format. Structure par contains parameters for learning. Description
of the parameters can be found in the beginning of f learn.m. All parameters
are compulsory.

The fields of the output structure model are also described in the begin-
ning of f learn.m, but none of the fields has to be handled by user.

Sample configuration of learning is in demo learn.m. The script consists
of setting all parameters and calling the function f learn in the end. The
learned model is stored in the variable model. It can be saved by the MAT-
LAB command
save filename model

and later reloaded and repeatedly used for classification by calling
load filename.
This is beneficial to save time.

1http://cmp.felk.cvut.cz/demos/Tracking/linTrack/data/index.html
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3.1.1 Transformation parameters

The image is transformed in the learning phase in various ways to ensure
robustness. Transformation parameters used in (1) are set in the struc-
ture par.tform. All combinations of values in the fields of par.tform

(theta values, phi values, lambda1 values, lambda2 values) are gener-
ated. It means that the time necessary for learning rapidly increases when
setting more values. Total number of learning samples can be calculated as
the product of sizes of all par.tform fields.

If you would like to use random values in par.tform fields instead of
setting them explicitly, you can generate them by the supplied function
gen rand. This function takes three parameters:
rand array = gen rand(min value, max value, count),
where the number range is specified by min value and max value. The func-
tion generates 1-by-count array of random numbers in the given range.

3.1.2 Post-scaling

Post-scales used for better coping with the searched object’s scale changes
(see 2.1) are set in the field par.post resize as a row vector. For instance,
the value 0.5 represents resizing the image to half size. It is important to
leave 1 as the first value in the vector. Sample setting can be found in
demo learn.m.

Post-scaling can be turned off by setting
par.post resize = 1.

3.2 Classification

After learning ferns (or loading a previously learned model), it is possible
to begin the classification. Function f find, which is the main function for
classification, supports three modes: matching, finding object in a scene and
tracking.

The syntax of the function is
[corners f data] = f find(im, model, par, par cl),
where im is the image to be classified. As in f learn, it can be either
uint8 matrix or a pathname of the image, color image will be automatically
converted to greyscale. Variable model is the learned ferns model (output
from f learn), par are parameters used for learning. If par is no more in
the variable environment (e.g. when loading saved model), it can be fully
restored from model.par.

Parameters for classification are set in the structure par cl. Unlike in the
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learning phase, all the parameters are optional. Anyway, we strongly recom-
mend setting the essential values manually. Detailed parameters description
and default values, which are used if the parameters are not explicitly set,
can be found in the beginning of f find.m.

Function f find has two output arguments: corners and f data. The
variable corners is a 4×2 matrix, in each row there are x- and y-coordinates
of the corner of the estimated area, where the object should be located. If
the object is not found (or in the matching mode), corners is filled by zeros.

Matched pairs are stored in the variable f data.matching data in form of
6-by-N matrix, where first two rows contain class coordinates (in the model),
4th and 5th row contain keypoint coordinates (in the query image). If not in
the matching mode, it is possible to extract the pairs that were classified by
RANSAC as inliers. These ‘correct’ pairs (correspondences) are stored in the
variable f data.corresp, which is of the same structure as matching data.

Other fields of f data are described in the beginning of f find.m.

Refine mode In the refine mode, if less than par cl.ransac inls good

inliers are found, f find is recalled with higher RANSAC iteration limit
set in par cl.ransac max iter fine. If par cl.ransac inls refine all

or less inliers were found in the first run, f find tries all post-scales in the
second run, otherwise it takes only the best post-scale from the first run (the
one with the most inliers). The refine mode is turned on by explicitly setting
the par cl.ransac max iter fine value. This mode increases recognition
performance, but decreases speed. It is available in the finding and tracking
mode.

3.2.1 Matching

One of the possible usages of f find is matching, i.e., finding correspondences
between keypoints in the model (classes) and in the query image.

Sample matching task is in demo match. The image for classification is
selected by setting path (PATH IMG) and index (IMG INDEX). The function
f find is run in matching mode by setting
par cl.matching mode = true.

The script demo match shows a figure with found correspondences (Figure
2). Matched pairs can be displayed by calling
disp(f data.matching data).

9



Figure 2: Matching mode – sample output.

Figure 3: Finding mode – sample output.
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3.2.2 Finding object in a scene

Using f find to find an object in a scene is demonstrated in demo find. This
script also uses some features of tracking. Unlike the other two modes, no
specification of finding mode usage in par cl is necessary as this mode is
taken as default.

The script runs a test sequence on images in directory PATH IMG start-
ing with MIN INDEX and continuously increasing the index by STEP until
MAX INDEX is reached. The images are classified and corners from f find

are compared with ground truth stored in PATH GT directory. The variable
CORR DIST LIMIT is used to set the maximum position difference (both hori-
zontally and vertically) of all corners in comparison to the ground truth. The
area defined by corners is drawn green if it matches ground truth, otherwise
the color is red. Blue crosses in the query image indicate found keypoints
(Harris corners). Red stars in the model represent classes that were deter-
mined by RANSAC as outliers, while green stars are inliers. Matching of
correctly classified pairs (inliers) is drawn as yellow lines (Figure 3).

Classification statistics are saved during the test sequence to the variable
results. As the script finishes, brief summary is displayed and a figure
shows, how many times was each class classified as inlier. Detailed results
can be displayed by typing
parse results(results).
Used post-scale indicates the index of the scale in par.post resize that was
finally used. If RANSAC returned enough inliers (par cl.ransac inls good

or more), the index is stored as it is. The value is increased by 100 to indicate
that RANSAC found less than par cl.ransac inls good inliers, i.e., f find

tried all post-scales and enough inliers were found in none of them.

It is possible to save displayed figures as EPS images and results as a text
file for later inspection by setting
SAVE OUTPUT = true.
All files are saved to the directory specified in PATH OUT. Please note that
the output directory has to be manually created.

3.2.3 Tracking

Tracking mode is similar to the finding mode. The demonstration script
demo track uses cell mode, which enables the user to easily re-run only the
classification by evaluating the last cell ‘Classification’ with different param-
eters without repetitive learning. This script goes through the whole process
of learning and recognition, i.e., no previous learning using demo learn is
necessary (unlike the preceding scripts).
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Figure 4: Tracking mode – sample output.

The script starts with a figure showing image defined in im getrect,
where the user has to drag a rectangle to choose the model for learning. After
the learning finishes, the classification proceeds similarly as in the finding
mode.

The main difference between this mode and the finding mode consists
in restriction of keypoints translation between two succeeding images and
restriction of the image area, where keypoints are searched for (as can be
seen on Figure 4 – blue crosses representing keypoints are only in the close
surrounding of the object). Tracking mode is enabled by
par cl.tracking mode = true.

Tracking mode is temporarily turned off if the object is lost. This happens
if par cl.ransac inls bad or less inliers are found. The value should be
selected carefully, because otherwise the classification will repeatedly fail
when trying to find the object near the last correct position, where it is no
more located though.

It is recommended to set the value par cl.tracking dist, which limits
the maximum position difference of all keypoints (in both directions) between
two succeeding images. If the value is not set, default value from f find is
used. Harris keypoints detection area has to be passed to f find as a param-
eter in the par cl.tracking crop variable. Calculation of the area is im-
plemented in the script demo track. If the variable par cl.tracking crop

is not set, Harris corners are searched in the whole image by default.
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  a    b    c

Figure 5: Generated transformations experiment – images: a – animals, b –
costume, c – museum. Yellow rectangle specifies the object that is localized
in transformed images.

4 Experiments

We performed experiments on various image sets to evaluate our classifier
and the modifications not described in [4] that we introduced – post-scaling,
refine mode, selecting pairs with the highest probability values for RANSAC,
finding correspondences for model classes instead of query image keypoints
and keypoints translation in the learning stage.

4.1 Tracking and object detection

4.1.1 Generated transformations

In this experiment, we wanted to evaluate our classifier on basic transforma-
tions as scale and rotation. Aditionally, we tested how selecting a number of
pairs with the highest probability product for evaluation by RANSAC affects
the recognition rate. At first, we selected objects in the images on Figure
5 (marked yellow). Then we generated several transformations and let our
classifier determine the objects’ positions in the transformed images.

The transformation matrix is calcuated using (1). This allows us to easily
observe the influence of rotation and scaling on the recognition rate. Addi-
tionally, we can precisely determine the correct object position in the trans-
formed image, because we know the transformed object coordinates.

Learning on 900 samples took about 5 minutes, training transformations
consisted of rotation from 0 to 360◦ with step 10◦ and scaling from 0.5 to
1.5 with step 0.25 in both directions. Shear was not used in this experiment
(φ = 0 in (1)). 32×32 px patches were evaluated by 30 ferns of size 11. Using
non-MEX Harris corner detector with threshold 10000, 51 classes were found
on image animals, 62 classes on image costume and 39 classes on image
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museum. Post-scaling coefficients variable (par.post resize) was set to
[1 0.5 0.75 1.25 1.5 1.75 2], translation of Harris corners was disabled
(par.surrounding = 0).

Classification ran in finding mode with default parameters except for
RANSAC maximum iterations thresholds that were set to ransac max iter

= 1000 and ransac max iter fine = 20000 (which implies that the refine
mode was on). Query image was evaluated as correct if all four corners were
found correctly with tolerance of 20 pixels (both horizontally and vertically).

Table 1 shows results of classification for rotation with no scaling (100 %),
resizing to 75 % and 150 %. It is obvious that rotation has no negative
effect on the object finding success. Some detection failures for the image
museum in rotations combined with scaling could be caused by lower number
of classes and by repetitive objects – windows, which make the classification
more difficult.

Simple scaling (without rotation) yielded rather worse results (Table 2).
The object was correctly found on none of the 3× enlarged images, simi-
larly for the reduced images animals and museum. This is mainly caused
by the Harris corner detector behavior, as the number and position of found
Harris corners considerably differs for various scales. Better results may be
achieved by changing the Harris detector threshold for extensive scale differ-
ences. Stable keypoints selection in the learning phase would help overcome
this problem, which is one of the most important improvements to be imple-
mented in the future.

We also tried choosing only the best correspondences for RANSAC. The
number of pairs with the highest probability product to be evaluated by
RANSAC is determined in the field n best matches for ransac of the pa-
rameters structure par cl. The image museum was used for this experiment.
Recognition performance rapidly decreased for very low values (about 1.5×
number of classes and less), but for values about 2.5× number of classes,
we achieved better results than without this feature. There is no general
recommendation whether to use this feature and what value should be set,
but recognition performance improvement may be achieved with carefully
selected n best matches for ransac value.

4.1.2 Ground truth sequences

Three ground truth image sequences (Figure 6) available on2 – mouse pad
(6946 VGA images), phone (2300 VGA images) and towel (3231 VGA images)
– were used for object finding and tracking experiments. The objects are ma-

2http://cmp.felk.cvut.cz/demos/Tracking/linTrack/data/index.html
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Table 1: Generated transformations experiment results – rotation (with scal-
ing). Symbol + represents correct classification, – incorrect.

Scale Rotation (degrees counterclockwise)

100 % 5 15 25 30 45 60 90 135 180 225 270 305 350 355
Animals + + + + + + + + + + + + + +
Costume + + + + + + + + + + + + + +
Museum + + + + + + + + + + + + + +

75 % 5 15 25 30 45 60 90 135 180 225 270 305 350 355
Animals + + + + + + + + + + + + + +
Costume + + + + + + + + + + + + + +
Museum – + + + + + + + + + + + + +

150 % 5 15 25 30 45 60 90 135 180 225 270 305 350 355
Animals + + + + + + + + + + + + + +
Costume + + + + + + + + + + + + + +
Museum – – + – – + + + – + + + + –

Table 2: Generated transformations experiments results – scaling. Symbol
+ represents correct classification, – incorrect.

Scale 33 % 50 % 75 % 100 % 150 % 200 % 300 %
Animals – – + + + – –
Costume + + + + + + –
Museum – – + + – – –

  a    b    c

Figure 6: Ground truth data sets: a – mouse pad, b – phone, c – towel.
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nipulated in many ways in the sequences – rotated, taken further and closer,
tilted, partially covered etc. We wanted to evaluate the impact of tracking
mode, refine mode, post-scaling and their combinations on the recognition
performance. With the provided ground truth data (corner coordinates of the
searched objects), it is easy to automatically determine whether the object
was found correctly or not.

The classifier was learned on the img learn.jpg image for each sequence,
which can be found in respective * img directories under testdata dis-
tributed within this package. We used 30 ferns of size 11, Gaussian filter
standard deviation was 2, patches were 32 × 32 pixels in size and we used
non-MEX Harris corner detector with threshold 5000, which resulted in 60
classes on mouse pad, 183 classes on phone and 112 classes on towel data set.
13068 training samples were generated by rotation all around with step 10◦,
shear (φ in (1)) 0 and two random values from 0 to 180◦ and scaling from
0.5 to 1.5 with step 0.1 both horizontally and vertically. The translation of
Harris corners (par.surrounding) was set to 0 (no translation) and the post-
scaling coefficients (par.post resize) were [1 0.5 0.75 1.25 1.5 1.75

2]. Learning with these parameters takes about 90 minutes on a standard
desktop computer.

All sequences were classified in five scenarios to compare results dependent
on the usage of tracking/finding mode (t+/t−), refine mode on/off (r+/r−)
and post-scaling on/off (p+/p−). Scenarios’ parameters are summarized in
Table 3. Supplied scripts demo find (scenarios t−r+p+, t−r−p+ and t−r−p−)
and demo track (scenarios t+r+p+ and t+r−p+) were used for classification.
Each 5th image in the sequences was classified, which reduced the compu-
tation time to one fifth while the results were still enough reliable. We
used default par cl values except for RANSAC maximum iterations thresh-
olds, which were set to ransac max iter = 1000 and, in scenarios t−r+p+

and t+r+p+, ransac max iter fine = 20000. The tracking was run with
tracking dist = 80. The script demo track was modified to better meet
the requirements of this experiment, i.e., the learning stage was removed and
the initial corners’ coordinates were set manually (instead of retrieving them
automatically using getrect when selecting the object to learn). The value
of par cl.ransac inls bad was manually increased by one from the default
value in the tracking mode (i.e., in scenarios t+r+p+ and t+r−p+), because
we found out that ‘resetting’ the tracking mode (temporarily turning it off,
when the object position is lost) even when 5 inliers are found produces much
better results. Using the default value, it keeps ‘wrong’ tracking much longer,
because with only 4 inliers, RANSAC often returns senseless homography.

Recognition performance of our classifier for each data set, i.e., in how
many images was the object correctly found, is summarized in Table 4. An
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image is determined as correctly classified if all estimated corners’ coordinates
match the ground truth corners’ coordinates with maximum difference of 50
pixels both vertically and horizontally. Such a high position tolerance is
necessary because of the fact that the learned model image (img learn.jpg)
corners are being localized in the query images (as it would be useful in
real applications), but the ground truth data contain crosses’ coordinates
in the mouse pad and phone sequences. This issue doesn’t affect the towel
sequence, but we want to keep the value the same for all experiments for
better comparison.

Post-scaling is enabled in scenario t−r−p+ and disabled in scenario t−r−p−,
while all other parameters are the same. Here we show that the post-scaling
we used in our implementation improved the results by 52 % for mouse pad,
by 359 % for phone and by 112 % for towel data set. Time consumption of
re-running RANSAC with very limited number of iterations (1000, because
the refine mode is off in scenarios t−r−p+ and t−r−p−) is quite low.

The refine mode provides even much better results, which is obvious from
comparison of the values in columns t−r+p+ and t−r−p+ (finding mode), or
in columns t+r+p+ and t+r−p+ (tracking mode). Whether to enable the re-
fine mode or not depends on the speed requirements of a certain application.
Using non-MEX Harris corner detector, one image is generally classified in
hundreds of milliseconds if the refine mode is disabled, but it may take sec-
onds if the refine mode is on and refine is requested. For instance, on the
data set mouse pad, it takes about 200–400 ms if the first used scale returned
enough inliers or about 800 ms if all post-scales were tried, but it takes about
5–6 seconds if refine is requested in the refine mode. (Only the computation
time is measured, not the disk and graphics operations.)

The tracking mode is useful in combination with disabled refine mode
(scenario t+r−p+). It saves time (because Harris corners are generally searched
for on a smaller area; even less than 100 ms may be necessary for an image)
and produces slightly better results than the finding mode (scenario t−r−p+).
If the refine mode is on, even a bit worse results are returned, when the track-
ing mode is on (scenario t+r+p+). This could be caused by tracking failure,
which spoils some images that are classified correctly in the finding mode
(scenario t−r+p+), as RANSAC has enough iterations to estimate the cor-
rect homography even without the support of tracking mode restrictions.

4.1.3 Ladybug sequences

Coping with high resolution real world images, background changes, low light
conditions and partial visibility of various objects were to be evaluated in
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Table 3: Ground truth data sets experiments – parameters (+ on, – off).

t−r+p+ t−r−p+ t−r−p− t+r+p+ t+r−p+

Tracking mode – – – + +
Refine mode + – – + –
Post-scaling + + – + +

Table 4: Ground truth data sets experiments – recognition performance (%).

t−r+p+ t−r−p+ t−r−p− t+r+p+ t+r−p+

Mouse pad 92.16 76.33 50.14 90.50 79.86
Phone 48.70 31.96 8.91 47.17 35.65
Towel 93.82 88.56 78.98 92.43 91.19

another set of experiments done with ladybug image sequences. As Ladybug33

is a spherical multiple view motion camera, some experiments were done on
sequences from a single camera, the others were run on panoramatic images.

Two data sets were used: vrakoviste taken on a scrapyard and dvorana
from the school yard. Single camera shots were 1232 × 1616 pixels in size,
panoramatic images were 5400 × 2700 pixels large. We used slightly mod-
ified demo track with 30 ferns of size 11, patches were 40 × 40 pixels in
size. Harris threshold was set to 10000 in most cases (non-MEX Harris
corner detector was used), but it was decreased in few cases to get more
classes on dark objects. Learning on 441 samples with rotation 0 and 15◦

both clockwise and counterclockwise, shear (φ in (1)) 0, 15◦ and 165◦ and
scaling from 0.7 to 1.3 with step 0.1 both horizontally and vertically took
about 2–3 minutes. The rotation range was extended by additional values
for sequences with larger rotation changes. Translation of Harris corners
(par.surrounding) was set to 0 (no translation) and the post-scaling coef-
ficients (par.post resize) were [1 0.5 0.75 1.25 1.5 1.75 2]. Default
par cl values were used except for RANSAC maximum iterations thresholds,
which were set to ransac max iter = 1000 and ransac max iter fine =

20000, ransac inls bad was set to 5. The variable tracking dist was set
to 100.

Figure 7 shows results of experiments on images from a single camera on
the vrakoviste data set. Experiments a and b show a car with high contrasts

3http://www.ptgrey.com/products/ladybug3/index.asp
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Figure 7: Ladybug experiments – vrakoviste data set, single camera.
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and many classes, which gave very good results. Even when half of the car
is out of the scene, it can still be recognized. In image set c, we show that
ferns are very efficient for sign recognition, as the text and pictograms on
the sign provide many unambiguous classes. The sign is recognized well even
when partially covered. On the other hand, dark objects with too few Harris
corners (d), particularly in combination with considerably changing learned
surrounding (e), returned worse results, we were able to track them only for
a few frames of the sequences.

Results of single camera experiments from the dvorana data set are cap-
tured on Figure 8. A kneeling person (a) is tracked well while slightly chang-
ing the point of view until the person stands up, then it differs too much
from the learned model and the track is lost. Experiment b demonstrates,
how background change affects the classification. The background is initially
dark left of the person and bright right of the person, but as the viewpoint
changes, the situation reverses. Because of that, only the patches in the mid-
dle maintain correct classification until the rotation exceeds learned rotation
range, then the tracking finally fails. Tracking a window (c), which is specific
by many Harris corners and high contrasts, outperforms tracking any other
objects from this data set. The window was correctly found in all images of
the tested part of the sequence, although less than half of the window was
visible in the last frames (as can be seen on the third image of Figure 8 –
c). Dark object and rather low light conditions resulted in very fast tracking
failure (d). Considerable decreasing the Harris threshold is the only way to
get at least satisfactory results.

Figures 9 and 10 show results of experiments on panoramatic images. The
results were generally worse than on single camera images, as the panora-
matic picture distortion represents transformations that our classifier is not
learned for. As we found out, 64-bit environment and large amount of mem-
ory is required for very high resolution images (because of the Harris corner
detector requirements). Finally, we tried to track a window on one of the
buildings over the whole sequence (Figure 10 – c). An object was found on
219 of 401 images, on most of them the window was found correctly. The
classifier was repeatedly able to recover from track loss (successful recovery
is captured on the second and third image on Figure 10 – c). Once, the
neighbouring window was found, but it changed to the correct one after few
frames. Classification of one image took from 300 ms to 2 seconds, but when
the tracking mode was temporarily left (because of track loss), it took about
30 seconds to classify a single image.
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Figure 8: Ladybug experiments – dvorana data set, single camera.
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a
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c

Figure 9: Ladybug experiments – vrakoviste data set, panoramatic view.

a

b

c

Figure 10: Ladybug experiments – dvorana data set, panoramatic view.

22



4.2 Matching

Using the generated images from section 4.1.1, we performed a few exper-
iments also in the matching mode. Parameters for learning remained the
same. Recognition rate, i.e., how many classes from the learned model were
correctly found in the query image, was measured for certain transformations.

We also tested our modifications – finding correspondences for model
classes instead of query image keypoints and translation of keypoints in the
learning stage – which were not described in [4].

The classification in matching mode was performed with default f find

parameters. A class was evaluated as correctly classified if any keypoint
in the query image was correctly matched with the given class (admitting
inaccuracy of 5 pixels both horizontally and vertically). There are generally
more keypoints in the query image than in the learned object (which is
usually smaller than the query image). The most probable class is assigned
to each keypoint, hence one class may be paired with more keypoints. If
par cl.corr from model is set to true, the best keypoint in the query image
is found for each class, therefore at most one keypoint can be paired with one
class. This yields worse results than default finding the best class for each
keypoint in the query image, unless the query image contains less keypoints
than number of classes. Our experiment confirms this, we got better results
using the default approach for all transformations except for resizing to 33
%.

Comparison of recognition rate for different scales is on Figure 11, the
effect of rotation is shown on Figure 12. We used three scenarios to determine
the effect of our modifications. The experiments in scenario def were run with
par cl.corr from model = false and par.surrounding = 0. We changed
par cl.corr from model to true in scenario cfm to find out, how direction
of correspondence finding affects the classification. Scenario trk differs from
default settings in scenario def by setting par.surrounding = 1, as we tested
the effect of learning with translation of keypoints in the model.

The results of classification when finding the best keypoint for each class
(scenario cfm) were much worse than with the default settings (scenario
def) except for resizing to 33 % because of the previously mentioned rea-
sons. Learning with translation of keypoints (scenario trk), which makes the
learning stage approx. 5× longer, brought slightly better results on average.
However, there is no general recommendation whether to use learning with
translation or not, as the classifier was in some cases less successful than in
scenario def.
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Figure 11: Transformed images experiment – results for scaling. Scenarios:
def – default settings, cfm – finding correspondences for keypoints in the
model image, trk – translation of keypoints in the learning stage.
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Figure 12: Transformed images experiment – results for rotation. Scenarios:
def – default settings, cfm – finding correspondences for keypoints in the
model image, trk – translation of keypoints in the learning stage.

24



5 Conclusion

We have successfully implemented a classifier using random ferns for image
matching and object tracking. Some modifications and improvements were
introduced and evaluated in experiments. Post-scaling and the refine mode
showed up to have appreciable positive effect on the recognition performance,
while the effect of selecting pairs with the highest probability values for
RANSAC and finding correspondences for model classes instead of query
image keypoints is disputable. Learning with translation (moving patches by
one pixel in all eight directions) should increase the recognition rate in the
matching mode in most cases.

Tracking mode improves results in combination with disabled refine mode,
which could be effective in applications requiring fast classification. If the
refine mode is on (RANSAC maximum iterations threshold is high enough),
we didn’t achieve better results using the tracking mode instead of the finding
mode.

Performance of the classifier is dependent on the Harris corner detector. It
performs well on objects with high contrasts, because enough classes (Harris
corners) are found and the patches are very different, while dark objects
with nearly uniform surface yield unsatisfactory results. Both learning and
classification parameters have to be adjusted for each application, there is
no configuration working well in all situations.

Further improvements like stable keypoint selection in the learning stage
or adaptive learning would make the classifier more powerful.
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