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State of the art in 6D object pose estimation?

Unclear, because:

1. No standard evaluation methodology
2. New methods usually compared with only a few competitors on

a small number of datasets
3. Scores on the most commonly used Linemod dataset are saturated
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The Task
6D localization of a single instance of a single object (SiSo)



4

The Task
6D localization of a single instance of a single object (SiSo)

Training data
for object o

3D model Synthetic/real training images

OR ...

Method



5

The Task
6D localization of a single instance of a single object (SiSo)

Test RGB-D image with
at least one instance of object o

Training data
for object o

3D model Synthetic/real training images

OR ...

Method



6

The Task
6D localization of a single instance of a single object (SiSo)

Test RGB-D image with
at least one instance of object o

Training data
for object o

3D model Synthetic/real training images

OR

Estimated 6D pose
of any instance of object o...

Method



7

The Task
6D localization of a single instance of a single object (SiSo)

● SiSo is the common denominator of all 6D localization variants:

Test RGB-D image with
at least one instance of object o

Training data
for object o

3D model Synthetic/real training images

OR

Estimated 6D pose
of any instance of object o...

Method

Si
So

Si
M

o

M
iS

o

M
iM

o



8

The Task
6D localization of a single instance of a single object (SiSo)

● SiSo is the common denominator of all 6D localization variants:

● SiSo allows evaluation of all recent methods out of the box
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Eight datasets in a unified format
● Texture-mapped 3D models of 89 objects
● 277K training RGB-D images of isolated objects

(mostly synthetic images)
● 62K test RGB-D images of scenes with graded complexity
● High-quality ground-truth 6D object poses for all images
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Linemod (LM), Linemod-Occluded (LM-O)
15 objects, 20K rendered training and 18K test RGB-D images

Texture-less objects with discriminative size, shape or color

Standard benchmark - used for evaluation of most recent methods
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Hinterstoisser et al. (ACCV’12), Brachmann et al. (ECCV’14)
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T-LESS
30 objects, 38K real and 77K rendered train. images, 10K test images

No significant texture, no discriminative reflectance properties, 
symmetries and mutual similarities in shape or size
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Hodaň et al. (WACV’17)
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Rutgers APC (RU-APC) - reduced version
14 objects, 36K rendered training and 6K real test images

Textured objects from the Amazon Picking Challenge
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Rennie et al. (RAL’16)
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Tejani et al. (IC-MI), Doumanoglou et al. (IC-BIN)
6 objects, 8K rendered training and 2K test RGB-images

Multiple instances of textured and texture-less objects with clutter
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Tejani et al. (ECCV’14), Doumanoglou et al. (CVPR’16)
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TU Dresden Light (TUD-L) - new
3 objects, 38K real and 5K rendered training images, 24K test images

8 lighting conditions (strong ambient light, strong point light etc.)
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Michel et al. Technische Universität Dresden, 2017
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Toyota Light (TYO-L) - new
21 objects, 52K rendered training images, 2K test images

5 lighting conditions, 4 backgrounds (textured / texture-less)
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Manhardt et al. Technische Universität München, 2017
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Visible Surface Discrepancy (VSD)

● Visibility masks are obtained by comparing     and     with

● Estimated pose is considered correct if
● Pose error is calculated only over the visible part of the surface

⇒ Indistinguishable poses are treated as equivalent

Test image Estimated pose GT pose

RGB Depth Depth Visibility VisibilityDepth

-15° 0° 15°

Front view:

Top view:

← Indistinguishable poses
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Visible Surface Discrepancy (VSD) ‒ examples

● The estimated pose is in blue, the ground truth in green

● Default parameter settings:
○ misalignment tolerance ᶦ = 20 mm
○ correctness threshold ᶚ = 0.3

0.04 0.08 0.11 0.19 0.28 0.34 0.40 0.44

0.47 0.54 0.57 0.64 0.66 0.76 0.76 0.95
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Evaluated methods
Methods based on point pair features
● Drost et al., Model globally, match locally: Efficient and robust 3D object recognition, CVPR 2010
● Vidal et al., 6D pose estimation using an improved method based on point pair features,

ICCAR 2018

Template matching method
● Hodan et al., Detection and fine 3D pose estimation of texture-less objects in RGB-D images,

IROS 2015

Learning-based methods
● Brachmann et al., Learning 6D object pose estimation using 3D object coordinates, ECCV 2014
● Brachmann et al., Uncertainty-driven 6D pose estimation of objects and scenes from a single 

RGB image, CVPR 2016
● Tejani et al., Latent-class hough forests for 3D object detection and pose estimation, ECCV 2014
● Kehl et al., Deep learning of local RGB-D patches for 3D object detection and 6D pose estimation, 

ECCV 2016

Methods based on 3D local features
● Buch et al., Local shape feature fusion for improved matching, pose estimation and 3D object 

recognition, SpringerPlus 2016
● Buch et al., Rotational subgroup voting and pose clustering for robust 3D object recognition,

ICCV 2017
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Experimental setup
● The methods were evaluated by their authors

● Parameters of each method were fixed for all objects and datasets

● Test target = a pair (I, o), where image I shows at least one instance
of object o

● The performance was measured by recall, i.e. the fraction of test 
targets for which a correct object pose was estimated
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Methods based on point pair features, Template matching methods,
Learning-based methods, Methods based on 3D local features

● Occlusion is a challenge – recall on LM is at least 30% higher than on LM-O
● Object symmetries and similarities (T-LESS) cause problems to methods 

based on 3D local features and learning-based methods
● Varying lighting conditions present a challenge for methods that rely on 

synthetic training RGB images rendered with fixed lighting
● Noisy depth images in RU-APC present problems to all methods
● Methods were optimized primarily for recall, not for speed
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Evaluation results (2/2) 

● Poses estimated by most methods are either of a high quality or totally off 
– recall grows only slightly if ᶦ is increased from 20 to 80 mm, or if ᶚ > 0.3
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Evaluation results (2/2) 

● Poses estimated by most methods are either of a high quality or totally off 
– recall grows only slightly if ᶦ is increased from 20 to 80 mm, or if ᶚ > 0.3

● Recall scores drop swiftly already at low levels of occlusion



Online evaluation system

bop.felk.cvut.cz

Up-to-date leaderboards

Form for continuous submission of new results

Datasets converted to a unified format

Python toolbox
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