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Abstract

The problem of model parameters estimation from data with a presence of outlier measurements
often arises in computer vision and methods of robust estimation have to be used. The RANSAC

algorithm introduced by Fishler and Bolles in 1981 is the a widely used robust estimator in
the field of computer vision. The algorithm is capable of providing good estimates from data
contaminated by large (even significantly more than 50%) fraction of outliers. RANSAC is an
optimization method that uses a data-driven random sampling of the parameter space to find the
extremum of the cost function. Samples of data define points of the parameter space in which
the cost function is evaluated and model parameters with the best score are output.

This thesis provides a detailed analysis of RANSAC, which is recast as time-constrained op-
timization – a solution that is optimal with certain confidence is sought in the shortest possible
time.

Next, the concept of randomized cost function evaluation in RANSAC is introduced and its
superiority over the deterministic evaluation is shown. A provably optimal strategy for the ran-
domized cost function evaluation is derived.

A known discrepancy, caused by noise on inliers, between theoretical prediction of the time
required to find the solution and practically observed running times is traced to a tacit assump-
tions of RANSAC. The proposed LO-RANSAC algorithm reaches almost perfect agreement with
theoretical predictions without any negative impact on the time complexity.

A unified method of estimation of model and its degenerate configuration (epipolar geome-
try and homography of a dominant plane) at the same time without a priori knowledge of the
presence of the degenerate configuration (dominant plane) is derived.

Next, it is shown that using oriented geometric constraints that arise from a realistic model of
physical camera devices, saves non-negligible fraction of computational time. No negative side
effect are related to the application of the oriented constraints.

An algorithm exploiting (possibly noisy) match quality to modify the sampling strategy is
introduced. The quality of a match is an often freely available quantity in the matching prob-
lem. The approach increases the efficiency of the algorithm while keeping the same robustness
as RANSAC in the worst-case situation (when the match quality is unrelated to whether a corre-
spondence is a mismatch or not).

Most of the algorithms in the thesis are motivated by (and presented on) estimation of a multi-
view geometry. The algorithms are, however, general robust estimation techniques and can be
easily used in other application areas too.
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1 Introduction

In the last few years, the field of computer vision has made significant advances in practical
application of its theory. Many applications have emerged in numerous fields, including 3D
reconstruction (Fig. 1.1) in architecture and telecommunications, augmented reality in the film
industry, object recognition (Fig. 1.2), tracking in traffic surveillance, registration of medical
images and others. Commonly the applications require (implicitly or explicitly) solving the
so-called correspondence problem: finding correspondences in two or more images of a 3D
scene taken from arbitrary viewpoints viewed with possibly different cameras and in different
illumination conditions.

Obtaining correspondence in sets of images includes many steps: detection of regions (points)
of interest [18, 1, 60, 38, 32, 35], tentative matching of detected regions [32, 60, 35] based on
local (affine invariant) descriptors [17, 32, 49]. It is generally accepted that incorrect matches
– outliers – cannot be avoided in the stage of the matching process where only local image
descriptors are compared. The mismatches, due to phenomena like occlusions, depth disconti-
nuities and repetitive patterns, are detected and removed by robust methods. In a final step of the
matching process, the robust estimators search for sets of matches consistent with some global
geometric constraint that arises from the fact that the same 3D scene was observed in all images.
Robust estimation is the topic of this thesis.

The problem of parameter estimation from data contaminated by outliers is known as robust
estimation in the field of robust statistics [24, 46]. The RANSAC1 algorithm introduced by Fishler
and Bolles in 1981 [15] is the most widely used robust estimator in the field of computer vision.
RANSAC and similar techniques [57, 39, 3] have been applied in the context of short baseline
stereo [54, 58], wide baseline stereo matching [45, 60, 47], motion segmentation [54], mosaicing
[37], detection of geometric primitives [11], robust eigenimage matching [31] and elsewhere.

The algorithm is capable of providing good estimates from data contaminated by large (even
significantly more than 50%) fraction of outliers. RANSAC is an optimization method that uses a
data-driven random sampling of the parameter space to find the extremum of the cost function.
Samples of data define points of the parameter space in which the cost function is evaluated.
Finally, model parameters with the best score are output.

1.1. Goals of the Thesis

The goal of the thesis is to provide a comprehensive description of the RANSAC algorithm to-
gether with detail analysis of the behavior and drawbacks of the method; design novel techniques

1RANdom SAmple Consensus
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1. Introduction

Figure 1.1.: Automatic 3D reconstruction from images. Three images from the image sequence
(top row), reconstructed points (bottom left), reconstructed surface (bottom middle), and tex-
tured 3D model (bottom right). The images were taken from [12].

enhancing the algorithm and eliminating or reducing the drawbacks. In particular, the following
weaknesses of RANSAC are addressed:

• sensitivity to the noise on inliers;

• sensitivity to the presence of degenerate configurations;

• issues of the speed of the algorithm, addressing both the hypothesis generation and model
verification.

1.2. Contributions of the Thesis

This thesis contributes to the state of the art in robust estimation of geometric models. First, it
provides a detailed analysis of RANSAC, which is formulated as time-constrained optimization.
A solution that is optimal with certain confidence is sought in the shortest possible time.

As a second contribution, the concept of randomized cost function evaluation in RANSAC is
introduced and its superiority over the deterministic evaluation is shown. A provably optimal
strategy for the randomized cost function evaluation is derived.

Third, a known discrepancy (caused by noise on inliers) between theoretical prediction of
the time required to find the solution and practically observed running times is traced to a tacit

2



1.3. Structure of the Thesis

Figure 1.2.: Object recognition: Where is the book? A scanned cover of a book (left, 712×1024)
and an image acquired by an uncalibrated camera (right, 1600× 1200).

assumptions of RANSAC. The algorithm is modified to reach almost perfect agreement with
theoretical predictions without any negative impact on the time complexity.

Fourth, an unified approach estimating model and its degenerate configuration (epipolar ge-
ometry and homography of a dominant plane) at the same time without a priori knowledge of
the presence of the degenerate configuration (dominant plane) is derived.

As another contribution, it is shown that using oriented geometric constraints that arise from a
realistic model of physical camera devices, saves non-negligible fraction of computational time.
No negative side effect are related to the application of the oriented constraints.

Finally, an algorithm exploiting (possibly noisy) match quality to modify the sampling strat-
egy is introduced. The quality of a match is an often freely available quantity in the matching
problem. The approach increases the efficiency of the algorithm while keeping the same robust-
ness as RANSAC in the worst-case situation (when the match quality is unrelated to whether a
correspondence is a mismatch or not).

Most of the algorithms in the thesis are motivated by (and presented on) estimation of a multi-
view geometry. The algorithms are, however, general robust estimation techniques and can
be easily used in other application areas as well (with the exception of the oriented geometric
constraints).

1.3. Structure of the Thesis

RANSAC A detailed description of the original RANSAC algorithm is presented in chapter 3.
Conditions under which RANSAC works worse than expected or even fails to find the solution
are explained. The literature on RANSAC and robust estimation techniques based on or similar
to RANSAC is reviewed in chapter 4. Each method is analyzed and compared with the standard
RANSAC algorithm.

LO-RANSAC An extension of the RANSAC procedure is proposed in chapter 5. By applying
local optimization (LO) to models with a score (quality) better than all previous ones, an al-

3



1. Introduction

gorithm with the following desirable properties is obtained: (i) a near perfect agreement with
theoretical (i.e. optimal) performance and (ii) lower sensitivity to noise and poor conditioning.
The LO is shown to be executed so rarely that it has minimal impact on the execution time.

The concept of LO-RANSAC is further generalized in section 5.3, where the desired model is
estimated via an approximating model with a simpler model (in terms of degrees of freedom).
Such an approach significantly decreases the computational complexity of the algorithm. The
potential of the generalized algorithm is demonstrated on two new matching algorithms that
are straightforward application of LO-RANSAC: (i) an algorithm for simultaneous estimation of
epipolar geometry and radial distortion and (ii) an algorithm estimating epipolar geometry from
three region-to-region correspondences.

DEGENSAC In chapter 6, a RANSAC-based algorithm for robust estimation of epipolar geome-
try from point correspondences in the possible presence of a dominant scene plane is presented.
The algorithm handles scenes with (i) all points in a single plane, (ii) majority of points in a
single plane and the rest off the plane, (iii) no dominant plane. It is not required to know a priori
which of the cases (i) – (iii) occurs.

The algorithm exploits a theorem that if five or more of seven correspondences are related by
a homography then there is an epipolar geometry consistent with the seven-tuple as well as with
all correspondences related by the homography. This means that a seven point sample consisting
of two outliers and five inliers lying in a dominant plane produces an epipolar geometry which
is wrong and yet consistent with a high number of correspondences. The theorem explains why
RANSAC often fails to estimate epipolar geometry in the presence of a dominant plane.

Rather surprisingly, the theorem also implies that RANSAC-based homography estimation is
faster when drawing non-minimal samples of seven correspondences than minimal samples of
four correspondences.

PROSAC In chapter 7, the Progressive Sampling Consensus (PROSAC) is introduced. The
PROSAC algorithm exploits the linear ordering defined on the set of correspondences by a sim-
ilarity function used in establishing tentative correspondences. Unlike RANSAC, which treats
all correspondences equally and draws random samples from the full set, PROSAC samples are
drawn from progressively large sets of top-ranked correspondences. Under the mild assumption
that the similarity measure predicts correctness of a match better than random guessing, we show
that PROSAC achieves large computational savings.

R-RANSAC (Td,d, SPRT) In chapter 8, a randomized cost function evaluation strategy for
RANSAC is presented. The method finds, like RANSAC, a solution that is optimal with user-
specified probability. Computational savings are achieved by evaluating a statistical test on only
a fraction of data points. Two tests are discussed in the chapter. A non-optimal, but simple and
intuitive, Td,d test is introduced first. A provably optimal model verification strategy is designed
for the situation when the contamination of data by outliers is known, i.e. the algorithm is the
fastest possible (on average) of all randomized RANSAC algorithms guaranteeing confidence in
the solution. The derivation of the optimality property is based on Wald’s theory of sequential

4



1.4. How to Read the Thesis

decision making. Finally, the R-RANSAC with Sequential Probability Ratio Test (SPRT), which
does not require the a priori knowledge of the fraction of outliers and has results close to the
optimal strategy, is introduced.

Oriented constraints The efficiency of epipolar geometry estimation by RANSAC is im-
proved by exploiting the oriented epipolar constraint in chapter 9. Performance evaluation shows
that the enhancement brings up to a two-fold speed-up. The orientation test is simple to imple-
ment, is universally applicable and takes negligible fraction of time compared with epipolar
geometry computation.

1.4. How to Read the Thesis

The RANSAC algorithm is described and analyzed in chapter 3 in detail. Further chapters build
on this chapter and often refer to it. Starting from chapter 5, each chapter addresses one robust
estimation problem. The problems are demonstated and the proposed algorithms are tested on
two-view geometry estimation. Basic knowledge on the level of [22] of the two-view geometry
is expected. These chapters can be read on their own.

1.5. Authorship

I hereby certify that the results presented in this thesis were achieved during my own research in
cooperation with my thesis advisor Jiřı́ Matas, published in [5, 34, 6, 36, 7, 8, 9, 3], with Štěpán
Obdržálek, published in [36, 7], with Tomáš Werner, published in [8, 9], and Josef Kittler,
published in [3].
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2 Notation and Concepts

The mathematical notation used in the thesis is summarized in the following table.

a, b, λ, . . . scalars
x, e, l,C, . . . vectors
F, H, . . . matrices
R, R+, R+

0 real, positive real, and non-negative real numbers respectively
Rn, Pn n-dimensional spaces
U , S, . . . sets
|S| cardinality of the set
‖a‖ vector norm
‖A‖ Frobenius norm
A+ matrix pseudoinverse
a ∼ b, A ∼ B vectors (matrices) are equal up to a non-zero scale factor: ∃λ ∈

R \ {0} : λa = b
a 6∼ b, A 6∼ B for all λ ∈ R : λa 6= b
a +∼ b, A +∼ B vectors (matrices) are equal up to a positive scale factor: ∃λ ∈ R+ :

λa = b
[e]× : e ∈ R3 a matrix satisfying [e]×x = e× x for all x ∈ R3

Table 2.1.: Used fonts and symbols.

Let X be a universum of observations (data points) and U be a finite set of data points xi ∈ X,
i = 1 . . . N . Let ΘM be a space of parameters of some model M .

In the description of RANSAC, a notion of a data point being consistent with model with
parameters θ is required. We assume that an error function

ρM (θ,x) : ΘM × X → R+
0

is given together with a threshold ∆M ∈ R+
0 . A data point x is consistent with (supports) a

model with parameters θ iff
ρM (θ,x) ≤ ∆M .

We drop the subscript M in the following definitions since only one model is thought at a time.
Let the support of the model with parameters θ be denoted by function

S(θ) : Θ → exp(U),

6



so that
S(θ,U ,∆) = {x ∈ U| ρ(θ,x) ≤ ∆}.

We further assume that a function

f(M) : Xm → ΘO(1)

giving a finite set T of model parameters that fit a set M of m data points from X is given. The
set M is called a sample. The size of the sample m must be sufficient to generate only a finite
set of the model parameters ‘fit’ the sample. From computational reasons, discussed later, m is
typically chosen to be the smallest possible.

Example. Consider line fitting to points in 2D. In this task, the universum of data points
would be X = R2. There are many possibilities, how to parameterize a line in 2D, for example
Θ = {(φ, d), φ ∈ 〈0, π), d ∈ R+}, where φ is the angle between the line and the abscissa and d
is the perpendicular distance between the line and the origin. The error function ρ would be the
distance between a line and a point. The constant m = 2 as there is an infinite number of lines
passing through a single point, and two distinct points define a line uniquely.

For epipolar geometry, the data points are correspondences in two images, X = P2×P2. The
parameter space Θ are fundamental matrices F ∈ R3×3 so that rank F = 2. There are several
choices of the error function, for example the algebraic error

ρ(F,x ↔ x′) =
(

1
‖F‖

x′>Fx
)2

.

Other options are Sampson’s or reprojection error [22, 21]. Seven point correspondences in
general position define up to three fundamental matrices [22], therefore m = 7.

Mostly, a model of two-view geometry (epipolar geometry or homography) is considered in
the thesis. The observations (data points) are called correspondences and are often denoted
as x ↔ x′, where x ∈ P2 is measured in one image and x′ ∈ P2 is measured in the other.
Correspondences obtained by matching of local features are called tentative correspondences.
Tentative correspondences are either matches or mismatches. Data points consistent with the
optimal model parameters θ∗ are called inliers and the rest of the data are called outliers. Typ-
ically, RANSAC is used to reveal correct matches, which implies assumption, that the set of
correct matches is identical with the set of inliers and that mismatches do not conspire to mimic
a competitive structure. The assumption is formalized and discussed in detail in section 3.1.

7



2. Notation and Concepts

Symbol Meaning Epipolar geometry
X universum of data points X = P2 × P2

U finite input data set U ⊂ X tentative correspondences
Θ parameter space fundamental matrices F, rank(F) = 2,

||F|| = 1
ρ(θ,x) error function Θ× X → R+ Sampson’s error
f(M) function that computes a set of param-

eters that exactly fit a set of data points
exp(X) → exp(Θ)

seven-point algorithm

m minimal number of points that defines
model parameters ‘uniquely’

m = 7

∆ error bound for inliers user-defined threshold
S(θ) a support of model parameters, i.e.

data points with error under ∆
correspondences that are consistent
with given F

JS(θ) standard cost function Θ → N+,
JS(θ) = |S(θ)|

the number of correspondences con-
sistent with given F

Table 2.2.: Symbols used in the description of RANSAC and RANSAC-like algorithms and in-
stances of the symbols for the case of epipolar geometry estimation.

8



3 RANSAC

The RANSAC algorithm has become one of the most popular robust estimators in computer vision
community [22]. In this section, the basic algorithm introduced in 1981 by Fischler and Bolles
[15] is reviewed.

The input of the RANSAC algorithm is a set U of measurements, here called data points. An
unknown proportion of the data points is consistent with a model with unknown parameters from
a parameter space Θ. Such data points are called inliers. The rest of the data points are erroneous
(outliers). The goal is to find model parameters θ∗ from a parameter space Θ that maximize a
cost function JS(θ,U ,∆). In the standard formulation, the cost function JS is the size of the
support of the model with parameters θ, i.e. how many data points from U are consistent with
it. Data points with the error smaller than ∆ are considered to be consistent or to support the
model. An error function ρ(θ,x) representing a distance of a data point to a model is typically
given. The threshold ∆ is an input parameter to RANSAC. Notation is summarized in Tab. 2.2,
and the precise definitions of the symbols can be found in chapter 2.

The RANSAC algorithm carries out the maximization of JS as follows. Two steps are executed
repeatedly: (i) a hypothesis generation step and (ii) the verification step. (i) In the hypothesis
generation step, a hypothesis θk of the model parameters is computed from a subset Sk (so called
sample) selected from the input data points U at random. The probability that a sample contains
at least one outlier increases exponentially with the size of the sample – see equation (3.4).
Hence, the size of the sample m = |S| is chosen to be as small as feasible to determine the
model parameters uniquely. For example, a line is defined by two distinct points (m = 2) and a
fundamental matrix1 are defined by seven point-to-point correspondences in a general position
(m = 7). (ii) In the verification step, the quality of the hypothesized model parameters is
calculated. The cost function JS is the cardinality of the support (consensus set) of the model
with parameters θk. Under assumptions discussed in section 3.1, the maximum of the cost
function JS is recovered with a user predefined probability (confidence) 1 − η0 (typically set
to 95%), where η0 is the probability of returning a bad solution. The structure of the RANSAC

algorithm is summarized in Alg. 1.

On the number of hypothesis tested. There are two types of samples: contaminated, those that
contain at least one outlier, and uncontaminated (all-inlier or outlier-free) samples. Only the
latter ones are of interest, as the model parameters computed from data points including outliers
are arbitrary. Let P be the probability that an uncontaminated sample of size m is randomly

1In fact one to three fundamental matrices.
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3. RANSAC

Input: U , ∆, η0

Output: θ∗, I∗

Repeat until the probability η (eq. (3.2)) of finding model with support larger than I∗k−1 in k-th
step falls under threshold η0 :

1. Hypothesis generation
a Select a random sample of minimum size m from U .
b Estimate model parameters θk fitting the sample.

2. Verification
a Calculate the support Ik = J(θk) of the model.
b Set I∗k = max(I∗k−1, Ik), and if I∗k > I∗k−1 (i.e. when a new maximum is reached),

then store the current model parameters θk.

Algorithm 1: The structure of RANSAC (Fischler and Bolles [15]).

selected from a set U of N data points

P (I) =

(
I
m

)(
N
m

) =
m−1∏
j=0

I − j

N − j
≤ εm, (3.1)

where ε is the fraction of inliers ε = I/N .
The number of inliers I is not known beforehand. Let I∗k be the largest support of a hypothe-

sized model found up to k-th sample inclusively, I∗k = |I∗k |. The sampling process is terminated
[15, 58] when the likelihood of finding a better model (with larger support than I∗k ) falls under a
threshold, i.e. when the probability η of missing a set of inliers I+ of size |I+| ≥ I∗k within k
samples falls under a predefined threshold η0 ,

η = (1− P (I∗k))k. (3.2)

The number of samples that has to be drawn to satisfy η ≤ η0 is

kη0
(I∗k) =

ln(η0)
ln(1− P (I∗k))

. (3.3)

The approximate numbers of samples for various sample sizes m and different fractions ε of
inliers are shown in Tab. 3.1.
Note: (On the sampling process) The uniform sampling of m correspondences can be also seen
as a non-uniform sampling of the parameter space Θ. There is

(
N
m

)
possible samples out of

which
(

I
m

)
are located close to the optimal model parameters θ∗, whereas the rest of the samples

(contaminated samples) generate models with parameters scattered over the Θ. This observation
is also exploited in Hough Transformation [23, 25], see also 4.7.

3.1. Assumptions

There are two tacit assumptions in derivation of the number of trials (eq. 3.3) needed to guarantee
the confidence 1− η0 in the RANSAC solution.
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3.1. Assumptions

15% 20% 30% 40% 50% 70%
2 132 73 32 17 10 4
4 5916 1871 368 116 46 11
7 1.75 · 106 2.34 · 105 1.37 · 104 1827 382 35
8 1.17 · 107 1.17 · 106 4.57 · 104 4570 765 50

12 2.31 · 1010 7.31 · 108 5.64 · 106 1.79 · 105 1.23 · 104 215
18 2.08 · 1015 1.14 · 1013 7.73 · 109 4.36 · 107 7.85 · 105 1838
30 ∞ ∞ 1.35 · 1016 2.60 · 1012 3.22 · 109 1.33 · 105

40 ∞ ∞ ∞ 2.70 · 1016 3.29 · 1012 4.71 · 106

Table 3.1.: Number of samples for different model complexity m and the fraction of inliers ε.

Assumption 1 (A1) An all-inlier sample generates model consistent with all inliers.

Assumption 2 (A2) A model consistent with a sample contaminated by at least one outlier has
small support.

Assumption A1 is used in equation (3.2) where the probability that a good model is not found
is identified with the probability 1−P (I) that an all-inlier sample is not drawn. The assumptions
A2 assures that it is possible to distinguish between correct and incorrect solution based on the
size of the support.

The RANSAC algorithm works as predicted by eq. (3.3) if the two assumptions A1 and A2
hold. In the case when one or both of the assumptions are violated, the quality of the solution is
affected and/or the running time is longer. Such a situation is not a rare theoretical case. Fig. 3.1
shows the case of line estimation when the assumptions A1 and A2 are violated respectively.

The assumption A1 does not hold in Fig. 3.1a. Due to the noise in the measured data points,
even some all-inlier sample defines model that is not consistent with all inliers. This reduces the
estimated number of inliers I∗. The number of samples is increased (the running time is longer)
according to equations (3.2) and (3.3) as a consequence.

In Fig. 3.1b, the set of data points contains a cloud of points that are close to each other. All
data points from the cloud are consistent with any line passing through it. Such a configuration
of points that is consistent with infinite number of models (lines in this case) is called a degen-
erate configuration. A line defined by an outlier and a point from the degenerate configuration
(as in Fig. 3.1b) is both well conditioned and supported by a high number of data points. Such
a sample violates the assumption A2. Moreover, since the solution is well conditioned, it ap-
pears difficult to recognize such a case. Note also that due to the presence of the degenerate
configuration in Fig. 3.1b, the assumption A1 does not hold either. A line defined by two points
from the degenerate configuration is ill-conditioned and can have arbitrary direction. As a result,
wrong model (a line) that includes the degenerate configuration can be selected as an output by
RANSAC.

11



3. RANSAC

(a) (b)

Figure 3.1.: Two examples of point configurations that cause RANSAC to output non-optimal
result.

3.2. Detail Analysis of RANSAC

The probability of drawing (without replacement) an uncontaminated sample, eq. (3.1), is of-
ten approximated by P (I) = εm for simplification. Such an approximation would be exact if the
sampling is done with replacement, or with infinite number of data points (i.e. limN→∞ P (εN) =
εm). The equality P (I) = εm is a good approximation for large values of N .

3.2.1. Time to the First Success

Under assumption A1, the probability of finding the optimal model parameters that are consistent
with all inliers is the same as the probability P (I) of drawing an uncontaminated sample. Since
the samples are independent, the probability of drawing the first uncontaminated sample in k-th
draw follows the geometric distribution

Pk = P (I)(1− P (I))k−1.

The average number of random samples drawn before the first uncontaminated sample occurs,
i.e. the mean value E(k) =

∑∞
k=1 kPk, is [43]

k̄ =
1

P (I)
≈ 1

εm
. (3.4)

The symbol kη0
is used for the number of samples that have to be drawn to ensure a confidence

1 − η0 in the solution when there are I inliers U , i.e. kη0
(I) = ln(η0)/ ln(1 − P (I)). It is

interesting to observe the relation between the average number of samples before the first un-
contaminated sample is drawn k̄ and the number of samples kη0

needed to ensure the confidence
1 − η0 in the solution. Using the inequality e−x ≥ 1 − x in the form of −x ≥ ln(1 − x) we
obtain

kη0
≤ ln(η0)
−P (I)

,

12



3.2. Detail Analysis of RANSAC

and finally

k̄ ≤ kη0
≤ − ln(η0)k̄. (3.5)

Note, that the approximation −x ≈ ln(1 − x) is close for small positive x. Since P (I) ≈ εm,
the approximation

kη0
≈ − ln(η0)k̄ (3.6)

is close for small εm.
Since one uncontaminated sample is drawn within k̄ samples on average, the number of un-

contaminated samples within kη0
samples is given by

kη0
/k̄ ≤ − ln(η0). (3.7)

It follows from equation (3.7) that for for η0 = 0.05 there are less than 3 uncontaminated samples
drawn on average before the 95% confidence in the solution is obtained.

3.2.2. The Average Running Time

What is the average number of samples drawn before the RANSAC algorithm terminates? With
the probability 1 − η0 the set of inliers is found up to kη0

-th sample. We will assume that any
model that is not consistent with the set of inliers I will have significantly smaller support, and
hence would not cause the termination of the algorithm. Then, after kη0

steps, the algorithm is
terminated as soon as an uncontaminated sample is drawn, in k̄ samples on average. The relation
for the average number k̂ of samples drawn before termination is summarized in the following
equation

k̂ = (1− η0)kη0
+ η0(kη0

+ k̄) = kη0
+ η0 k̄ ≈ (η0 − ln(η0))k̄. (3.8)

3.2.3. The Best Sample So Far

RANSAC tries to find a single global maximum, i.e. a sample with the largest support. Therefore,
samples with support lager than support of previously drawn samples (the-best-so-far samples)
are the only candidates to become a final solution. How often may a new maximal support for an
hypothesis during the sampling occur? Or how often does RANSAC store its the-best-so-far result
in the 2b step of the algorithm (Alg. 1)? The number of data points consistent with a model from
a randomly selected sample can be thought of as a random variable with an unknown density
function. This density function is the same for all samples, so the probability that k-th sample
will be the best so far is 1/k. The average number of maxima reached within k samples is thus

k∑
x=1

1
x
≤
∫ k

1

1
x

dx + 1 = ln k + 1. (3.9)
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3. RANSAC

3.3. Enhancing RANSAC

Two classes of enhancements to RANSAC are described in the rest of the thesis. First, the focus
is turned towards the class of algorithms that improve the quality of the solution and/or make the
applicability broader and more robust. Approaches that speed the RANSAC algorithm up while
preserving the quality of the solution fall into the other class.

3.3.1. Robustifying RANSAC

As discussed in section 3.1, RANSAC relays on two assumptions. To make RANSAC robust to
the violation of the assumptions, two approaches are proposed and discussed in the thesis. The
assumptions are not fully removed, but replaced by a weaker assumptions.

Assumption 3 (A1’) All-inlier sample, even in the presence of noise, gives a model that is close
to the optimal one. A local optimization of the model parameters reaches the optimal model that
is supported by all inliers.

Details of the LO-RANSAC algorithm that includes the Local Optimization step are discussed in
chapter 5.

Violation of assumption A2 is caused by the presence of a degenerate configuration (other-
wise we speak of a multiple occurrence of the model in the data, such as two independent mo-
tions). With increasing dimension of the data points it becomes less likely that the degenerate
configuration is consistent with an incorrect model, unless the data points from the degenerate
configuration are included in the sample.

Assumption 4 (A2’) A model consistent with a sample that is contaminated by at least one
outlier and does not contain a degenerate configuration as a subset has small support.

An algorithm called DEGENSAC that examines samples with high support in order to avoid
problems caused by degenerate configurations is described in chapter 6. The algorithm can, in
fact, exploit the presence of degenerate configuration to speed the estimation up.

3.3.2. Beyond Random Sample and (Deterministic) Consensus

Two principal modification to the original algorithm are introduced in the thesis in order to
reduce the time complexity of the procedure, one considering the hypothesis generation and the
other the verification step.

The standard RANSAC algorithm treats all data points equally, since the samples are drawn
uniformly from the input set of data points. However, a typical construction of data points
provides / is based on some quality measure of the data points. In the correspondence problem,
instances of such a quality measure are the cross-correlation score of the neighbourhoods of the
interest points, or Euclidean (or Mahalanobis) distance of image transformation (affine) invariant
descriptors of the interest points (regions). The quality measure implies ordering on the input
data. Natural approach would be to concentrate only on the high-quality data points (this actually
is the case of many algorithms for the correspondence problem: only correspondences with the
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3.3. Enhancing RANSAC

quality higher than a threshold are input to the robust geometry estimation stage). A hypothesis
generator exploiting the ordering can significantly speed up the RANSAC procedure, as shown in
chapter 7.

In chapter 8, the speed-up of RANSAC is achieved by randomization of the verification step.
During the course of the algorithm, majority of the model parameters are influenced by outliers.
Those ‘bad’ models typically have only small consensus set. Therefore, to reject such models, it
is not necessary to execute the verification step on all data. It is sufficient to perform a statistical
test on only a small number of data points.
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4 State of the art

In this chapter, previous work on robust estimation algorithms similar to RANSAC is reviewed.
We focus on methods that are generally applicable.

4.1. MLESAC

The MLESAC algorithm is an example of RANSAC that uses different cost function than the car-
dinality of the support. The algorithm was introduced by Torr and Zisserman [57] and further
improvements were made by Tordoff and Murray [53] (see also section 4.2). Instead of maxi-
mizing the support of the model, the likelihood of the model is maximized. The error distribution
is represented as a mixture of inlier and outlier distributions. The distribution of the residuals
ri is supposed to be Gaussian N(0, σ) with known σ for the inlier data points, and uniform in
〈0, Z〉 on outliers.

p(ri|θ) = ε

(
1

σ
√

2π
e−

r2
i

2σ2

)
+ (1− ε)

1
Z

(4.1)

The hypothesis generation phase is identical to RANSAC. The cost function evaluated in the
verification steps is

JMLE(θ) =
N∑

i=1

log p(ri|θ).

In [57], the JMLE(θ) is calculated while the unknown mixing parameter ε is estimated using the
EM algorithm [14, 48]. The mixing parameter ε describes how large fraction of data point came
from the inlier distribution, i.e. gives the estimate of the fraction of inliers. This estimate is used
to determine the number of samples as in standard RANSAC.

In tasks where the likelihood function on the model parameters has a strong peak, such as
wide baseline matching, the cost functions JS and JMLE will be closely related. Since only
three uncontaminated samples are drawn on average (see section 3.2.1) during the execution of
RANSAC (as well as MLESAC), both cost functions are likely to select the same model as a result.
On the other hand, the MLESAC algorithm benefits in tasks where the likelihood is flat and when
it is not possible to sharply distinguish inliers and outlier. A typical instance of such a task is
narrow baseline matching.

The following variant of MLESAC [57, 41] has been proposed for a narrow baseline matching,
when a high fraction of correct matches is expected. The random sampling generates a fixed
number of hypotheses. The number has to be high enough, so that the parameter space is sampled
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with sufficient density around the optimal model parameters. Note that the fixed number of
samples imposes a restriction on the fraction of inliers. Each hypothesized model is then scored
by the JMLE cost function and the model that maximizes the likelihood is selected as a result of
the algorithm. This approach proved to be successful and suitable for a real time narrow baseline
matching [40].

4.2. Guided Sample and Consensus

In [53], Tordoff and Murray introduced two extensions to the MLESAC algorithm which guide
the selection of data points. It has been shown that the guided matching reduced the number of
iterations required for a given confidence in the solution in a narrow baseline stereo matching.

In the paper, an observation that better hypothesis have better score JMLE for any mixing
parameter was presented. Hence, it is not necessary to solve for it using the EM algorithm. To
select the best hypothesis, it is sufficient to use a fixed mixing parameter for all the hypotheses,
ε = 0.5 for example.

Instead of using a global mixing parameter ε as in equation (4.1), it is preferable to use in-
dividual priors on a correspondence being correct if available. The unobservable property of
correctness of i-th correspondence is denoted as vi. Knowing the probabilities p(vi), the equa-
tion (4.1) is rewritten as

p(ri|θ) = p(vi)
(

1
σ
√

2π
e−

r2
i

2σ2

)
+ (1− p(vi))

1
Z

(4.2)

In a narrow baseline stereo matching problem, it is possible to learn the prior probabilities from
the number of possible matches and the match scores. Let i-th feature have ni possible matches
with correctness denoted as vij : j = 1 . . . ni and quality (correlation score) sij . It was shown
in [53], that in many narrow baseline image pairs the distribution of sij of mismatches (v̄ij)
followed the following distribution

p(sij |v̄ij) ≈
3(1− s2

ij)
4

. (4.3)

The correlations scores of correct matches (vij) were distributed as

p(sij |vij) = a
1− sij

α2
e

2(1−sij)

α , (4.4)

where α is a ‘compactness’ and a is a normalization constant, such that the area under the curve
is unity. The probabilities are plotted in Fig. 4.1. Assuming that any of ni possible matches of
i-th feature is a priori equally likely (including the case that none is correct), the priors are set to
p(vij) = 1/(ni + 1) and p(v̄ij) = ni/(ni + 1). Finally, the probability that a tentative match ij
is correct given the scores of all tentative matches is

p(vij |si,1..ni) =
p(vij |sij)

∏ni
k 6=j p(v̄ik|sik)∑ni

l=1

(
p(vil|sil)

∏ni
k 6=l p(v̄ik|sik)

)
+
∏ni

k=1 p(v̄ik|sik)
. (4.5)
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Figure 4.1.: Probabilities p(sij |v̄ij) and p(sij |vij).

The probability p(vij |si,1..ni) is used as an estimate of the prior probability p(vi) in equation
(4.2).

The hypothesis generation step is made more efficient by replacing the uniform random sam-
pling of data by Monte-Carlo sampling with probabilities proportional to p(vi), i.e. that the
correspondences with higher a priori probability to be inliers are sampled more often.

4.3. NAPSAC

The algorithm of NAPSAC [39] (N Adjacent Points SAmple Consensus) focused on the efficiency
of the sampling strategy. The idea is that inliers tend to be closer to one another than outliers,
and the sampling strategy can be modified to exploit the proximity of inliers. This might bring
efficient robust recovery of high dimensional models, where the probability of drawing an un-
contaminated sample becomes very low even for data sets with relatively low contamination of
outliers.

Let us consider estimation of d-dimensional manifold in n-dimensional space. Let the mea-
sured data points U come from a bounded region only. Note that an epipolar geometry represents
a bilinear 3-dimensional variety in a 4-dimensional joint image coordinate space, which is nat-
urally bounded by the size of the images (not omnidirectional). Let the outliers be uniformly
distributed within that region and the inliers be uniformly distributed on the manifold within the
same region. Now, imagine a hyper-sphere with radius r centered at some point of the manifold.
Within the hyper-sphere, the number of inliers is proportional to rd where as the number of out-
liers to rn, where n > d. Hence, with decreasing radius r the probability of outlier appearance in
the hyper-sphere decreases faster than the probability of inlier appearance. However, estimation
of the radius with higher fraction of inliers is not trivial. In [39], the derivation of optimal radius
r is shown for two dimensional case.

The sampling phase of the algorithm is summarized in Alg. 2. First, an initial data point x0 is
selected at random. Then, if possible, the sample is topped up by m − 1 data points selected at
random from those, that are closer than r to x0.
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4.4. Preemptive RANSAC

a Select initial data point x0 from U at random
b Find pointsRx0 ⊂ U \{x0} lying within a hyper-sphere of radius r centered

on x0

c Fail if |R| < m − 1 or form a sample Sk from x0 and m − 1 data points
selected from Rx0 at random

Algorithm 2: The sampling phase of NAPSAC.

4.4. Preemptive RANSAC

Preemtive RANSAC by Nistér [41] exploits the idea of randomizing the model verification step
that was introduced in [5] and is described in detail in chapter 8.

The overall speed of the RANSAC algorithm is a product of the number of hypotheses gener-
ated and the time spent while processing each hypothesis. The number of hypotheses depends on
the size of the sample and the fraction ε of inliers within the data. The time to process a hypoth-
esis consists of the time needed to generate the hypothesis θ and from the evaluation of the cost
function J(θ) over all data points in U . The evaluation of the cost function is linearly dependent
on the number N of data points. For large numbers of points, the algorithm may spent most of
the time in the verification part. In RANSAC, the majority of the samples are contaminated, as
shown in equation (3.4). Hence, if one was able to reject bad (contaminated) hypotheses as soon
as possible then the whole process could be speeded up.

The preemptive RANSAC is based on comparing hypotheses after evaluating each hypothesis
on just a fraction of the data points and rejecting those having worse scores. The algorithm
uses a non increasing function t(i), i ∈ 0 . . . N that determines how many hypotheses are left
‘alive’ after the cost function was evaluated on i data points. The data points to be verified
are selected at random, with replacement. The algorithm proceeds as follows. First, k = t(0)
hypotheses are generated. Then, one data point is chosen for each active hypothesis, and the cost
function is updated using that data point. After i data points were verified for each hypothesis,
t(i) best hypotheses are kept, and the others are rejected. The procedure stops when only a
single hypothesis is kept, i.e. t(i) = 1, or after verifying all N data points for each surviving
hypothesis.

1 Generate all k = t(0) hypotheses
2 For i = 1 to N

- evaluate the cost function for randomly chosen (with replacement) data
point for all t(i− 1) hypotheses left
- keep t(i) hypotheses with the highest value of the cost function over i
data points

Algorithm 3: The structure of preemptive RANSAC

Note: The algorithm described here is very efficient when one has to find some result within
given fixed time. This is exactly the task the preemptive RANSAC was designed for [40]. Pre-
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emptive RANSAC can fail, when the fraction of inliers is too low for the given k hypothesis to
contain a uncontaminated one.

4.5. MINPRAN

The goal of RANSAC is to find a model that maximizes the number of data points with error
smaller than user defined threshold ∆. In some problems, it might not be possible to know
the error bound ∆ for inlier data beforehand. In MINPRAN [51], this parameter of RANSAC is
replaced by an assumption of uniform distribution of outliers. The MINPRAN algorithm selects
model that MINimizes the Probability of RANdomness as a solution.

Let residuals of outliers be uniformly distributed within values 〈0, Z〉 and let the residuals in
k-th iteration be rk(i) for i = 1 . . . N and let the residuals be sorted, i.e. let rk(i) ≤ rk(j) for
i < j. Then the probability of randomness of first i residuals is expressed as

Fk(i) =
N∑

j=i

(
N

j

)(
rk(i)
Z

)j (
1− rk(i)

Z

)N−j

. (4.6)

From the definition (4.6), Fk(i) < Fl(i) if and only if rk(i) < rl(i) for any fixed i ∈
{1 . . . N}. Hence, to be able to determine mink,iFk(i) it is sufficient to keep only values
mink rk(i) for all i. The algorithm then proceeds as follows: in the verification step, the er-
ror function is evaluated in O(N). Then, the residuals are sorted (O(N log N)). For each
i = 1 . . . N minimal residual rk(i) is kept (O(N)). Finally, the probability of randomness (4.6)
is evaluated (O(N2)) and the solution with the minimal probability of randomness is selected.
The total time complexity after k iterations of the algorithm is O(N2 + kN log N).
Note: (On the time complexity.) Consider the following sorting algorithm when uniform distri-
bution of residuals is assumed. First, divide residuals into O(N) buckets and then use sorting
algorithm in O(n log n) for each bucket. When an contaminated sample was drawn, the proba-
bility p(n) of falling n data points into a single bucket is driven by a multinomial distribution,
which is marginalized by binomial distribution (inside / outside the bucket) as follows

p(n) ≤
(

N

n

)
1

Nn

(
1− 1

N

)N−n

≤
(

N

n

)
1

Nn
=

N !
(N − n)! n! Nn

≤ 1
n!

.

The average time to sort data points in a single bucket is then

N∑
n=1

p(n)n log n ≤
N∑

n=1

n log n

n!
= O(1).

Therefore, the sorting of all data points can be done in O(N) when a contaminated sample
is drawn. Let c denote the number of times when an all-inlier sample was drawn. When an
all-inlier sample is drawn, all data points can fall into a single bucket and the sorting will take
O(N log N). In practical situations, we can assume that c log N < k (see section 3.2.1). Then,
the time complexity of the algorithm would be O(N2 + kN).
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4.6. Least Median of Squares

In LMS [46], it is assumed that at least half (or, more generally, a given α-quantile) of the
data points are inliers. Therefore, the parameter ∆ representing an error bound for inliers is not
needed. The model with the smallest median (α-quantile) error is output as a result. The number
of samples drawn must be sufficient to ensure certain confidence that in the worst case (if the
proportion of inliers was exactly half (α) of the data) at least one all-inlier sample was drawn.

In some tasks, such as the correspondence problem, it is more reasonable to expect a knowl-
edge of the error bound ∆ (precision of the detector, maximal acceptable error for purposes of
reconstruction, etc) than of the minimal fraction of inlier.

4.7. Hough Transform

Under two conditions, (the approximations of) all local extrema of the cost function J(θ) can be
recovered efficiently. The first condition is that the cost function must be a sum of contributions
of all data points. Second, there must be an efficient procedure enumerating all parameters θ
consistent with a single data point. Hough transform [23, 25] then proceeds as follows. First,
the permissible part of the parameter space Θ is discretised into a grid and an accumulator is
allocated for each point of the grid. Then, every data point casts a vote for all bins that contain
parameters of a model consistent with the data point. The votes from different data points are
summed in the bins.

The Hough transform deals easily with the presence of multiple objects, which often happens
in the detection of geometric primitives in the image. Conversely, Hough transformation is
not suitable for detection of high-dimensional models, as the space needed to represent the
discretised parameter space grows exponentially with the dimension of the model. Hence, the
Hough transform is suitable for example for line detection (2 dimensional model), less suitable
for the detection of an affine transformation (6 D) and intractable for the detection of a trifocal
tensor (18 D).

A number of variants of Hough transform has been published. Randomized Hough Transform
[63, 27] lies somewhere between Hough transform and RANSAC. Randomized Hough Transform
generates samples in the same manner as RANSAC does. The parameters of all hypothesized
models are stored in a data structure allowing finding similar parameters. When some of the
parameters appeared a non-random number times, the inliers to those parameters are detected
in the same was as in the verification step of RANSAC. The detected inliers of the model are
removed from further sampling and the procedure continues.
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5 LO-RANSAC

The termination criterion of RANSAC tacitly assumes (assumption A1, section 3.1), that every
all-inlier (uncontaminated) sample is ‘good’, i.e. that every model computed from an uncontam-
inated sample is consistent with all inliers. This favorable situation is rare in practice, as shown
in Fig. 3.1. The invalidity of assumption A1 results in an instability (different model parameters
and different inliers are output by the algorithm) of the solution, and in an increase in the num-
ber of samples drawn before the termination of the algorithm. Such a behavior of RANSAC in
epipolar geometry estimation has been observed experimentally in [53].

The discrepancy between the predicted and observed RANSAC running times can be explained
in terms of cardinalities of the set B of ‘good’ samples and the set A of all-inlier samples. Since
RANSAC generates hypotheses from minimal sets, both noise in the data and poor conditioning
of the model computation can ‘remove’ an uncontaminated sample from the set B. Problems
occur when the cardinality of A is significantly larger than the cardinality of B, i.e. when the
probability of drawing a sample from B becomes too small compared with the probability of
drawing a sample fromA. A sample fromA\B has smaller consensus set than a sample from B,
and hence the termination criterion based on the largest support so far requires higher number of
samples. The effect is clearly visible in the histograms of the number of inliers found by standard
RANSAC. The first column of Fig. 5.2 shows the histogram for five matching experiments. The
number of inliers varies by about 20-30%, which leads to an increase in the number of RANSAC

cycles by a factor of two to three. In the case of epipolar geometry estimation from three region-
to-region correspondences (analyzed in Section 5.3), the ratio of cardinalities of B and A is so
low that it renders the approach, in connection with standard RANSAC, impractical.

The LO-RANSAC is based on the observation (transferred into assumption A1’, section 3.3.1)
that virtually all models estimated from an uncontaminated minimal sample contain large frac-
tion of inliers within their support. An optimization1 process starting from the the-best-so-far
hypothesized model is therefore inserted into RANSAC. Applying the proposed optimization
step produces an algorithm with a near perfect agreement with theoretical (i.e. optimal) perfor-
mance. In other words, LO-RANSAC makes the sets A and B almost identical. Therefore eq.
(3.2) becomes valid for LO-RANSAC. Moreover, it is shown in section 5.1.1 that the cost of the
additional step in negligible.

The potential of the proposed extension of the RANSAC algorithm is supported by two new
matching algorithms exploiting LO-RANSAC:

First, an algorithm estimating epipolar geometry from three region-to-region correspondences

1Note, that the LO-RANSAC does not try to compete with the bundle adjustment methods. The aim is to provide a
better starting point for the bundle adjustment than standard RANSAC in shorter time.
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5.1. LO-RANSAC Algorithm

Figure 5.1.: Correspondences established by the proposed algorithm on the ‘Flower’ pair. Ten-
tative correspondences contained only 7% of inliers. Some of the corresponding points are
connected between the images to visualize the correspondence.

is introduced (section 5.3). Exploiting the affine-invariant local frames described in [36], three
point-to-point correspondences are found for each region-to-region correspondence. The ex-
pected run-time then falls fromO(ε−7) toO(ε−3). The straightforward consequence is a signif-
icant enlargement of the class of problems that are solvable. The idea of using multiple points
in the estimation process is in principle simple. However, since the three points associated with
a single region are in close proximity, the precision of the estimated epipolar geometry may be
questioned. The experiments confirmed, that acquisition of a new local optimization step into
the RANSAC algorithm was essential to solve the problem.

Second, a modified algorithm for simultaneous estimation of epipolar geometry (EG) and
radial distortion (RD) [16] is described in section 5.4. Experimental validation shows that the
new estimator is superior to known algorithms in quality (the number of detected matches),
precision and speed of the matching.

5.1. LO-RANSAC Algorithm

The LO-RANSAC proceeds as RANSAC, only one (LO) step is added. The local optimization
step is carried out only if a new maximum in the number of inliers from the current sample has
occurred, i.e. when standard RANSAC stores its best result. For a detailed description of the
locally optimized RANSAC see Alg. 4.
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5. LO-RANSAC

Repeat until the probability (3.2) of finding model with support larger than I∗ in k-th step falls
under predefined threshold η0:

1. Select a random sample of minimum size m from U .
2. Estimate model parameters consistent with the sample.
3. Calculate the support Ik of the model, i.e. the data points with error smaller than a

predefined threshold θ. If Ik > Ij for all j < k (i.e. when a new maximum is reached),
then run:
LO step. Apply optimization. Store the best model found and its support I∗ (I∗ ≥ Ik

due to the optimization).

Algorithm 4: The structure of LO-RANSAC. Note, that the algorithm is terminated based on
the optimized support I∗, whereas execution of the LO step depends on supports of sampled
hypotheses Ij .

5.1.1. The Additional Computational Cost

The LO step is carried out only if a new maximum in the number of inliers is reached. It was
shown in section 3.2.3, that the best-so-far sample is only drawn log k times, where k is the
number of samples drawn – eq. (3.9).

Note, that this is the upper bound as the number of correspondences is finite integer and so the
same number of inliers will occur often. This theoretical bound was confirmed experimentally,
the average numbers of local optimization over an execution of (locally optimized) RANSAC can
be found in Table 5.3.

The logarithmic growth of the number of LO step invocations as a function of the number of
hypothesize-and-verify cycles allows application of relatively computationally expensive opti-
mization methods without an impact on the overall speed of the algorithm.

5.1.2. LO Methods

The choice of the optimization method depends on the type of the model that is being fit, on the
(type of) error on inliers and possibly on other factors. We have tested the following methods of
local optimization on EG and homography estimation. The re-sampling method (inner RANSAC)
is generally applicable, since it uses the same principles as RANSAC.

1. Standard. The standard implementation of RANSAC without any local optimization.
2. Simple. Take all data points with error smaller than ∆ and use a linear algorithm to hypothe-
size new model parameters.
3. Iterative Scheme. Take all data points with error smaller that K ·∆ and use linear algorithm
to compute new model parameters. Reduce the threshold and iterate until the threshold is ∆.
4. Inner RANSAC. A new sampling procedure is executed. Samples are selected only form Ik

data points consistent with the hypothesised model of k-th step of RANSAC. New models are
verified against whole set of data points. As the sampling is running on inlier data, there is no
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5.2. Experiments on EG and Homography Estimation

need for the size of sample to be minimal. On the contrary, the size of the sample is selected to
minimize the error of the model parameter estimation. In our experiments the size of samples
are set to min(Ik/2, 14) for epipolar geometry (see results in Appendix A) and to min(Ik/2, 12)
for the case of homography estimation. The number of repetitions is set to ten in the experiments
presented.
5. Inner RANSAC with iteration. This method is similar to the previous one, the difference
being that each sample of the inner RANSAC is processed by method 3.

The choice of the local optimization method can be application dependent. The methods
described in this section tend to be general methods. The justification of the chosen methods
follows.

Iterative Scheme. It is well known from the robust statistic literature [46], that pseudo-robust
algorithms that first estimate model parameters from all data by least squares minimization, then
remove the data points with the biggest error (or residual) and iteratively repeat this procedure
do not lead to correct estimates. It can be easily shown, that a single far–outlying data point, i.e.
leverage point, will cause a total destruction of the estimated model parameters. That is because
such a leverage point overweights even the majority of inliers in least-squares minimization.
This algorithm works only well, when the outliers are not overbearing, so the majority of inliers
have bigger influence on the least squares.

In local optimization method 3 (and 5) there are no leverage points, as each data point has
error below K ·∆ subject to the sampled model.

Inner RANSAC. Let parameters of the best so far model are denoted θk and the consensus set
of this model Sk. If the sample giving the parameters θk to arise was an all-inlier sample then,
according to the assumption A1’, the optimal parameters θ∗ should be located ”close” to θk

in the parameter space. A sampling of Sk efficiently generates hypothesis of model parameters
”close” to θk for reasonable (continuous) models and sufficiently small threshold ∆ (that decides
whether a data point supports or not a given model).

Since Sk is a consensus set Sk (of the model with parameters θk), the fraction of outliers
should be low. Therefore, samples of non-minimal size drawn from Sk will not suffer from the
contamination by outliers. The advantage of drawing non-minimal samples is in higher precision
of the estimated model parametres, the more data points are used the lower the influence of the
noise. It has been mentioned in [54] that estimates of epipolar geometry from seven points
are more precise than those from eight points. Our experiment in appendix A confirms this
observation and shows that the eight point algorithm with nine or more correspondences yields
better estimates of EG whan the seven point algorithm. For details see appendix A.

5.2. Experiments on EG and Homography Estimation

The proposed algorithm was extensively tested on the problem of estimation of the two view
relations (epipolar geometry and homography) from image point correspondences. Five experi-
ments are presented in this section, all of them on publicly available data, depicted in Figures 5.3
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5. LO-RANSAC

A B C D E
# corr 94 94 1500 160 94
# inl 57 27 481 30 17
ε 61% 29% 32% 19% 18%
# sam 115 34529 8852 2873 3837

Table 5.1.: Characteristics of experiments A-E. Total number of correspondences, maximal num-
ber of inliers found within all tests, fraction of inliers ε and theoretically expected number of
samples.

and 5.4. In experiments A and B, the epipolar geometry is estimated in a wide-baseline setting.
In experiment C, the epipolar geometry was estimated too, this time from short-baseline stereo
images. From the point of view of RANSAC use, the narrow and wide baseline problems differ
by the number of correspondences and inliers (see Table 5.1), and also by the distribution of
errors of outliers. Experiments D and E try to recover the homography. The scene in experiment
E is the same as in experiment A and this experiment could be seen as a plane segmentation. All
tentative correspondences were detected and matched automatically.

Algorithms were implemented in C and the experiments were run on AMD K7 1800+ MHz
processor. The terminating criterion based on equation (3.2) was set to η < 0.05. The threshold
θ was set to θ = 3.84σ2 for the epipolar geometry and θ = 5.99σ2 for the homography. In both
cases the expected σ was set to σ = 0.3.

The characterization of the matching problem, such as number of correspondences, the total
number of inliers and expected number of samples, are summarized in Table 5.1. The total
number of inliers was set to the maximal number of inliers obtained over all methods over
all repetitions. The expected number of samples was calculated according to the termination
criterion mentioned above.

Performance of local optimization methods 1 to 5 was evaluated on problems A to E. The
results for 100 runs are summarized in Table 5.2. For each experiment, a table containing the
average number of inliers, average number of samples drawn, average time spent in RANSAC

(in seconds) and efficiency (the ratio of the number of samples drawn and expected) is shown.
Table 5.3 shows both, how many times the local optimization has been applied and the theoretical
upper bound derived in Section 6.3.

The method 5 achieved the best results in all experiments in the number of samples and differs
slightly from the theoretically expected number. On the other hand, standard RANSAC is 2.5 –
3.3 slower. In Fig. 5.2 the histograms of the sizes of the resulting inliers sets are shown. Each
column shows results for one method, each row for one experiment. One can observe that the
peaks are shifting to the higher values with the increasing identification number of method.

Method 5 reaches the best results in terms of sizes of inlier sets and consequently in number
of samples before termination. This method should be used when the fraction of inliers is low.
Resampling, on the other hand, might be quite costly in the case of high number of inliers,
especially if accompanied by a small number of correspondences in total) as could be seen in
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5.2. Experiments on EG and Homography Estimation

1 2 3 4 5
inl 49.7 53.9 55.9 56.0 56.2

A sam 383 205 129 117 115
time 0.018 0.010 0.007 0.010 0.019
eff 3.35 1.79 1.12 1.02 1.01
inl 23.3 24.4 25.0 25.5 25.7

B sam 90816 63391 49962 44016 39886
time 3.911 2.729 2.154 1.901 1.731
eff 2.63 1.84 1.45 1.27 1.16
inl 423.5 446.2 467.5 468.9 474.9

C sam 25205 16564 11932 10947 9916
time 4.114 2.707 1.971 1.850 1.850
eff 2.85 1.87 1.35 1.24 1.12
inl 23.9 26.7 28.1 28.8 29.0

D sam 8652 5092 3936 3509 3316
time 0.922 0.543 0.423 0.387 0.391
eff 3.01 1.77 1.37 1.22 1.15
inl 13.5 14.6 15.3 15.7 15.9

E sam 12042 8551 6846 5613 5254
time 0.979 0.696 0.559 0.463 0.444
eff 3.14 2.23 1.78 1.46 1.37

Table 5.2.: The summary of local optimization experiments: average number of inliers (inl) and
samples taken (sam), average time in seconds and efficiency (eff). The best values for each row
are highlighted in bold. For more details see the description in text in Section 5.2.
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Figure 5.2.: Histograms of the number of inliers. The methods 1 to 5 (1 stands for standard
RANSAC) are stored in rows and different dataset are shown in columns (A to E). On each graph,
there is a number of inliers on the x-axis and how many times this number was reached within
one hundred repetitions on the y-axis.

1 2 3 4 5
A 3.0 5.9 2.6 5.3 2.0 4.9 1.9 4.8 1.8 4.7
B 6.4 11.4 6.1 11.1 5.9 10.8 6.0 10.7 5.9 10.6
C 7.7 10.1 6.8 9.7 6.5 9.4 6.7 9.3 6.5 9.2
D 5.2 9.1 4.8 8.5 4.5 8.3 4.4 8.2 4.0 8.1
E 4.8 9.4 4.3 9.1 4.2 8.8 4.0 8.6 3.9 8.6

Table 5.3.: The average number of local optimizations ran during one execution of RANSAC and
logarithm of average number of samples for comparison.

experiment A (61 % of inliers out of 94 correspondences). In this case, method 3 was the fastest.
Method 3 obtained significantly better results than the standard RANSAC in all experiments, the
speed up was about 100%, and slightly worse than for method 5. We suggest to use method
5. Method 3 might be used in real-time procedures when a high number of inliers is expected.
Methods 2 and 4 are inferior to methods with iteration (3 and 5 respectively) without any time
saving advantage.

5.3. 3LAF LO-RANSAC: EG from Three Correspondences

In wide-baseline matching, the process of selection of tentative correspondences often produces
region-to-region mappings. However, the strong constraints the mappings provide are ignored
in the EG estimation stage. The fundamental matrix is computed from seven point-to-point
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5.3. 3LAF LO-RANSAC: EG from Three Correspondences

Figure 5.3.: Image pairs and detected points used in epipolar geometry experiments (A - C).
Inliers are marked as dots in left images and outliers as crosses in right images.
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5. LO-RANSAC

Figure 5.4.: Image pairs and detected points used in homography experiments (D and E). Inliers
are marked as dots in left images and outliers as crosses in right images.

correspondences, with each region-to-region mapping providing just a single point-to-point cor-
respondence [60, 45, 36] .

In this section, we assume that a set of region-to-region tentative matches is available, and that
three independent point-to-point matches can be obtained per each. In experiments, we used the
output of the method published in [36], where the triplet of points originating from one region
is called ’local affine frame’ (LAF).

The algorithm is a straightforward application of LO-RANSAC. To hypothesize a model of
epipolar geometry, random samples of three region correspondences are drawn. Three region
correspondences give nine point correspondences. These are used to estimate the fundamental
matrix F using the linear eight-point algorithm [19]. The LO step is applied (as always) only to
the models that are so far the best and includes both the ‘inner’ RANSAC and iterative polishing,
as described in Section 6.3. A region correspondence is consistent with a hypothesized epipolar
geometry iff all three points are consistent.

5.3.1. Experiments

To highlight the advantage of 3LAF LO-RANSAC, tests were carried out on two image pairs
(Fig. 5.1 and 5.6) with only about 7% and 20% of tentative correspondences correct respectively.
The bookshelf test pair (Fig. 5.5) represents an indoor scene with large scale difference between
the two views.

Results of the conducted experiments are summarized in Tab. 5.4. For the ’Flower’ pair, the
fraction of inliers is so low that the standard seven-point method failed. In the other two pairs, a
significant speed-up measured by the number iterations was achieved.
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5.4. LO-RANSAC-RD: Estimating Radial Distortion

Figure 5.5.: Epipolar lines and 84 detected correspondences (markers) superimposed over the
‘Bookshelf’ pair.

Figure 5.6.: Epipolar lines and correspondences superimposed over ‘Ascona’ pair. Close-ups
with regions and LAFs highlighted are shown in the middle.

It is important to note that when applying the 3-frame RANSAC without the LO step (called
3LAF RANSAC), the set of detected inliers is significantly smaller, as shown in the middle column
of Tab. 5.4. We believe that this is due to the fact that local affine frames are typically very small
and the three points from a single region lie in near proximity. Consequently, the EG estimated
from a minimal number of correspondences, as well as its support set, are unstable.

Clearly, application of the LO step is a very important ingredient of the newly proposed al-
gorithm. As a final remark, we note that requiring all three point-to-point correspondence that
form a region-to-region correspondence to obey the EG constraint also reduces the number of
false positive matches, as the probability that a random correspondence will satisfy the epipolar
constraint is decreased.

5.4. LO-RANSAC-RD: Estimating Radial Distortion

The benefits of exploiting a more complex model within the LO step can be demonstrated on
the problem of simultaneous estimation of EG and radial distortion (RD). RD is a deviation
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Method EG consist. iterations
Flower, 518 tentative corr., 7% inliers

7pt LO-RANSAC N/A ≈ 684 000 000
3LAF RANSAC 25 47 668
3LAF LO-RANSAC 36 14 880

Bookshelf, 201 tentative corr., 42% inliers
7pt LO-RANSAC 83 1705
3LAF RANSAC 47 245
3LAF LO-RANSAC 84 41

Ascona, 584 tentative corr., 20% inliers
7pt LO-RANSAC 116 284 868
3LAF RANSAC 65 2 867
3LAF LO-RANSAC 116 384

Table 5.4.: Summary of experimental results. Number of correspondences found consistent with
the epipolar geometry and the number of RANSAC iterations required to reach the solution. Note
that all the numbers are random variables.

from the pinhole model commonly encountered in cameras, especially with wide-angle lenses.
Fitzgibbon [16] introduced an algorithm for joint estimation of EG and RD given 9 point cor-
respondences. It follows from eq. (3.1) that the price paid for the inclusion of Fitzgibbon’s RD
estimation is an increase in the number of samples drawn by a factor of 1/ε2. Since typically
ε ∈ [0.1, 0.5], the nine point RANSAC for EG and RD estimation (9pt RANSAC) is 4 to 100
slower than the standard 7pt RANSAC.

We present the simultaneous estimation of EG and RD as an algorithm in the LO-RANSAC

framework. The algorithm draws 7 correspondence samples to estimate EG without RD in the
hypothesize-verify loop and includes RD model in the LO step. Such sampling strategy ensures
that LO-RANSAC-RD has the same time complexityO(ε−7) as the 7pt RANSAC. To parameterize
the RD model, we have chosen the division model [16]

p =
1

1 + λ|x|2
x,

where λ is the only model parameter, x stands for the measured point, |x| for the distance of
x to the optical center (center of the image) and p for the undistorted point so that the epipolar
constraint can be written as p′Fp = 0. EG and RD were simultaneously estimated in the LO

step solving quadratic eigenvalue problem as in [16].

5.4.1. Experiments

Performance of three algorithms, 7pt LO-RANSAC (A), 9pt RANSAC (B) and LO-RANSAC-RD

(C), was compared on image pairs with low RD (Orange house, Fig. 5.7) and high RD (Courtyard
QY, Fig. 5.8). The number of detected inliers is shown in Fig. 5.9. Alg. B finds more inliers

32



5.4. LO-RANSAC-RD: Estimating Radial Distortion

RANSAC 7pt LO 9pt LO–RD

Orange house 5 528 31 456 790
Courtyard QY 1 861 6 863 432

Table 5.5.: The average number of samples drawn over 100 runs of different RANSAC algorithm.
Almost 40 times speed-up between 9pt RANSAC and LO-RANSAC-RD was observed.

than A because it uses a more precise model. Alg. C finds more inliers than B due to the LO step.
The speed of A,B and C is measured by the number of samples drawn (Tab. 5.5). Alg. B is the
slowest, as its time complexity isO(ε−9), compared withO(ε−7) of A and C. As a consequence
of eq. (3.3), C terminates much earlier than A since it finds a higher number of inliers. Finally,
the stability of the radial distortion estimation was measured. The graphs of the distribution of
estimated parameter λ, depicted in Fig. 5.10, show that C is more stable than B – the variation
of λ is smaller.

(a) (b)

(c) (d)

Figure 5.7.: A low radial distortion example, ’Orange house’ in Venice, 45% of inliers. Orig-
inal image pair (top row) was taken by a compact digital camera. The radial distortion (with
parameter λ = −0.27) was removed (bottom row) from the images.
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(a) (b)

(c) (d)

Figure 5.8.: High radial distortion example: ’Courtyard QY’ image pair, 48% of inliers. Central
part (1400 x 1400 pixels, view field 100◦) of the fish-eye images (top row). The radial distortion
(with parameter λ = −3.6) was removed (bottom row) from the images.
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Orange house Courtyard QY
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Figure 5.9.: Histograms of the numbers of inliers detected by different RANSAC algorithms: A -
7pt LO-RANSAC with no RD estimation, B - 9pt RANSAC, C - LO-RANSAC-RD.
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Figure 5.10.: The distribution of estimated parameter λ of radial distortion for 9pt RANSAC (B
dashed) and LO-RANSAC-RD (C solid).
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Figure 5.11.: The ‘Lobby’ pair, 28% of inliers. Central parts of the fish-eye images. Original first
image on the left, the second image with radial distortion removed on right. Correspondences
detected by 3LAF LO-RANSAC-RD superimposed over the images (markers).

5.5. 3LAF LO-RANSAC-RD: All-in-one

Estimation of RD and the idea of using LAFs for EG estimations can be applied at the same
time. The 3LAF LO-RANSAC-RD algorithm estimates EG from three region-to-region correspon-
dences as 3LAF LO-RANSAC, then uses the same LO step as LO-RANSAC-RD. The Courtyard
QY problem Fig. 5.8 is solved by 3LAF LO-RANSAC-RD after less then 30 samples (compare
with Tab. 5.5) with the same precision as when using LO-RANSAC-RD. A more complicated
matching with only 28% of inliers (see Fig. 5.11) was solved after only 133 RANSAC cycles.

5.6. Conclusions

In the chapter, the LO in RANSAC algorithm was introduced. The number of detected inliers
increased due to the local optimization, and consequently the number of samples drawn de-
creased. In all experiments, the running-time is reduced by a factor of at least two, which may
be very important in real-time application incorporating a RANSAC step. It has been shown and
experimentally verified that the number of local optimization steps is lower than logarithm of
the number of samples drawn, and thus local optimization does not slow the procedure down.
Three applications demonstrating the properties of LO-RANSAC framework were presented.

First, LO-RANSAC-RD, an algorithm for joint estimation of the epipolar geometry and radial
distortion was presented. We showed, that the algorithm: 1. has the same complexity as the
7pt RANSAC, i.e. O(ε−7), 2. produces more inliers than the 7pt LO-RANSAC and hence can
be terminated earlier, and 3. is more stable than the 9pt RANSAC (both the number of detected
inliers and the estimated parameter of radial distortion have smaller variance).
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Second, 3LAF LO-RANSAC – a new algorithm for the correspondence problem – was de-
scribed. Exploiting output of the processes proposed in [36] for computation of affine-invariant
local frames, three point-to-point correspondences were found for each region-to-region corre-
spondence and used in epipolar geometry estimation. We have experimentally shown that: 1.
3LAF LO-RANSAC estimates epipolar geometry in time that is orders of magnitude faster than
the standard method, 2. that the precision of the 3LAF LO-RANSAC and the standard method
are comparable, and 3. that RANSAC without the LO step applied to triplets of points from a
single region is significantly less precise than the new 3LAF LO-RANSAC algorithm. The pre-
sented matching method is pushing the limit of solvable problems, allowing EG estimation in
correspondence problems with the ratio of inliers below 10%.

Finally, the combination of the previous two algorithms was tested. The 3LAF LO-RANSAC-
RD algorithm has advantages of both LO-RANSAC-RD and 3LAF LO-RANSAC. The simultaneous
estimation of EG and RD increases the precision and the number of correct matches, the time
complexity is reduced to O(ε−3). This compares favourably with the O(ε−9) complexity of the
state-of-the-art.
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6 Degenerate Configurations

The topic of this chapter is robust estimation of epipolar geometry (EG) from image point cor-
respondences in the possible presence of a dominant scene plane. A novel RANSAC-based algo-
rithm is presented that handles in a unified manner the following three classes of scenes:

1. all points belong to a single scene plane,
2. majority of points belong to a dominant plane and the rest is off the plane,
3. minority or no points lie in a scene plane (a general scene).

In the first case, only a plane homography is computed, in the other cases, a correct EG is
computed. It need not be known a priori which class the input scene belongs to, and still the
computations are not slower than in EG estimation by plain RANSAC for a general scene.

Figure 6.1.: The LAMPPOST scene with 97% of correct tentative correspondences lying in or near a
dominant plane. In 100 runs, RANSAC fails to find a single inlier on the lamp 83 times; in the remaining
17, no more than 4 out of the 10 correspondences on the lamppost are found. Points on the lamppost
are far from the dominant plane and therefore critically influence the precision of epipolar geometry and
egomotion estimation. The DEGENSAC algorithm, with the same computational complexity as RANSAC,
found the 10 lamppost inliers in all runs. Corresponding points lying in the dominant plane are dark,
off-the-plane points are light, and the points on the lamp are highlighted by line segments.

The algorithm is based on the following theorem from two-view geometry, proved in the
chapter. If five or more correspondences in a sample of seven correspondences are related by
a homography (we refer to such a sample as H-degenerate), there always exists an EG consis-
tent with both the seven correspondences and all correspondences related by the homography,
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6.1. H-degenerate Configurations

including those not in the seven-tuple (that is, not used in the EG estimation). For example,
given five correspondences related by a homography and two other arbitrary correspondences,
there is an EG consistent with all correspondences related by the homography and with the two
other correspondences. H-degeneracy is not necessarily indicated by ill-conditioned fundamental
matrix estimation in the seven-point algorithm.

In robust EG estimation, it is standard practice to measure the quality of the EG by the number
of inliers [22] or some closely related quantity such as robust likelihood [57]. It has been ob-
served that in scenes where most points lie in a plane, standard EG estimation algorithms often
return an EG with a high number of inliers that is however totally incorrect. This behavior is
explained by the proved geometric theorem, since a high inlier count can be obtained even if the
seven-point sample includes two outliers. Such a number of inliers can cause the termination
of RANSAC before a non-degenerate all-inlier sample is drawn. In general, the problem cannot
be overcome by ex-post local optimization such as bundle adjustment, since the solution does
not include off the plane correspondences, and therefore is likely to converge to a wrong local
optimum.

Exploiting properties of H-degenerate samples, we also present a RANSAC-based algorithm
for homography estimation that draws non-minimal samples. Contrary to the common practice
of drawing minimal samples in RANSAC, the expected running time of the algorithm is lower
than if minimal samples of four correspondences are drawn. This rather counter-intuitive result
is explained by statistical analysis of the algorithm.

The planar degeneracy problem has been addressed before. In [55], different criteria for model
selection are studied. The PLUNDER algorithm, which estimates multiple models separately and
then performs model selection, was proposed in [58]. A method for correct feature tracking
in a video sequence containing degenerate subsequences is designed in [56]. The method was
extended in [44], where complete metric reconstruction is obtained. The proposed algorithm is
novel since, unlike the previous approaches, it does not separately search for the two models
(homography, epipolar geometry). Instead, it detects both competing models simultaneously,
and the detection is not slower than direct estimation of the correct (but unknown) model.

The rest of the chapter is organized as follows. In section 6.1, degenerate samples are clas-
sified by the number of correspondences consistent with a homography, and properties of each
class are discussed. The H-degeneracy test is developed in section 6.2. A novel DEGENSAC algo-
rithm for EG estimation unaffected by a dominant plane is presented (section 6.3). Section 6.3.3
shows how homography can be estimated efficiently exploiting H-degeneracy. The performance
of DEGENSAC is evaluated on two views of a scene with a dominant plane (section 6.4).

6.1. H-degenerate Configurations

Corresponding point pairs (x1,x′1), . . . , (xn,x′n) from two images taken by pinhole cameras
satisfy the EG constraint [22]

(∀i = 1, . . . , n) x′>i Fxi = 0, (6.1)

where the 3× 3 fundamental matrix F has rank 2.
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6. Degenerate Configurations

Up to scale, there are 3 fundamental matrices consistent with n = 7 correspondences in
general position, of which 2 may be complex conjugates. They are computed by the 7 point
algorithm [22] as follows. Matrices F satisfying seven equations (6.1) form a 2-dimensional
linear space, F ∼ λF1 + (1 − λ)F2. Requiring F to have rank 2 imposes an additional cubic
constraint

|λF1 + (1− λ)F2| = 0. (6.2)

A homography, represented by a 3× 3 matrix H, is said to be consistent with EG represented
by F if all point pairs satisfying x′ ∼ Hx simultaneously satisfy x′>Fx = 0. This happens if and
only if matrix H>F is skew-symmetric [22].

The contribution of the chapter is based on the following fact from geometry of two uncal-
ibrated images. Let a set X of n correspondences be related by a unique homography, but
otherwise in general position. If n = 7 or n = 6, then any EG consistent with X is also
consistent with the homography. If n = 5, one of the three EGs defined by X and two more
correspondences is consistent with the homography. A configuration of 7 correspondences, of
which 5, 6 or 7 are homography related, is called an H-degenerate configuration1.

To prove this, we start with two rather general theorems.

Theorem 1 Let x1, . . . ,x4 be points in a plane. The locus of such points e that the cross-ratio
of the line pencil (e× x1, . . . , e× x4) is constant is a conic passing through x1, . . . ,x4.

Proof. This is a well-known theorem from the projective geometry, sometimes called Chasles’
theorem [13]. ut

Theorem 2 Let x1, . . . ,xn be 5 or more points in a plane, no three of them collinear. Let
H be a non-singular homography. The set of epipole pairs consistent with correspondences
{(x1, Hx1), . . . , (xn, Hxn)} is given by E = Ep ∪ Ec where

Ep = { (e, He) | e is arbitrary },

Ec = { (e, e′) | points Hx1, . . . , Hxn, He, e′ are conconic }.

Proof. Assume without loss of generality H = I, that is, x′i ∼ xi. Then the theorem is a trivial
consequence of what is called Chasles’ theorem in [22, Theorem 22.3]. However, since Chasles’
theorem is usually stated only for four points (Theorem 1 in this chapter), we will give an explicit
proof.

An epipole pair (e, e′) is consistent with the correspondences if line pencil e(x1, . . . ,xn) is
projectively related to line pencil e′(x1, . . . ,xn). That is, the pencil joining e with any four
points of {x1, . . . ,xn} must have the same cross-ratio as the pencil joining e′ with the same
four points.

Let us choose e arbitrarily. By Theorem 1, e′ must lie on the conic passing through points
{x1, . . . ,x4, e} and, at the same time, on the conic passing through {x2, . . . ,x5, e}. If these two
conics are different, their common points are {x2,x3,x4, e}. There cannot be more common

1H-degeneracy should not be confused with the term degenerate configuration, which we use in the usual meaning
to denote a configuration of 7 correspondences consistent with an infinite class of EGs.
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6.1. H-degenerate Configurations

points since two different non-singular conics have at most four intersections. By induction
on other 4-tuples of {x1, . . . ,xn}, we obtain that either e′ ∼ e or, if points {x1, . . . ,xn} are
conconic, that e and e′ both lie on this common conic. ut

Theorem 2 states that a set of 6 or more homography-related point pairs not lying on a single
conic is consistent with the same class of EGs as is the whole homography. However, if the
points are conconic (which is always the case for 5 pairs), there is another class of EGs besides
the one consistent with the homography, namely the class defined by epipoles lying anywhere
on the respective conics.

In the theorem, the former class is denoted by Ep. This stands for the planar part of E, since
given (e, e′) ∈ Ep, 3D reconstruction of the correspondences lies in a plane. The latter part
is denoted by Ec. This stands for cubic part of E since the 3D reconstruction of the corre-
spondences lies on a twisted cubic along with the two camera centers. The cubic part is closely
related to the horopter theorem [22].

If the points are conconic, it can be shown that set E corresponds to the set of fundamental
matrices given by

F = { F | F = H−>([v]× + λQ), |F| = 0, v ∈ R3, λ ∈ R },

where matrix Q represents the Steiner conic [22, Section 9.4] passing through the points. Taking
λ = 0 yields the planar part Ep, whereas λ 6= 0 yields the cubic part Ec.

The rest of this section applies Theorem 2 to prove the above facts about H-degenerate con-
figurations.

6.1.1. All 7 Pairs Related by Homography

If all 7 out of 7 correspondences are related by a homography, the class of EGs consistent with
them is the same as the class consistent with the homography. The EGs are parametrized by the
position of one epipole.

Theorem 3 Let points x1, . . . ,x7 contain no collinear triplet and not lie on a conic. Let H be
a non-singular homography. Then all fundamental matrices consistent with correspondences
{(x1, Hx1), . . . , (x7, Hx7)} are consistent with H. In detail, these fundamental matrices form a
set

F7 = { [e′]×H | e′ ∈ R3 }.

Proof. Straightforward by Theorem 2. Since the points are not conconic, it is Ec = ∅ and
E = Ep. ut

For this configuration, the linear space of matrices F satisfying (6.1) has dimension 3 (rather
than 2 as for a 7-tuple in a general position) and all these matrices have rank 2. It follows that
F7 is a 3-dimensional linear space.

41



6. Degenerate Configurations

6.1.2. 6 of 7 Pairs Related by Homography

If 6 of 7 pairs are related by a homography, the class of EGs consistent with them is the
class consistent with the homography and one additional pair off the homography. The class
is parametrized by the position of one epipole which has to be collinear with the last pair.

Theorem 4 Let points x1, . . . ,x6 contain no collinear triplet and not lie on a conic. Let
H be a non-singular homography. All fundamental matrices consistent with correspondences
{(x1, Hx1), . . . , (x6, Hx6)} are consistent with H. In detail, for any (x7,x′7), fundamental ma-
trices consistent with correspondences {(x1, Hx1), . . . , (x6, Hx6), (x7,x′7)} form set

F6 = { [e′]×H | e′ ∈ R3, e′>(Hx7 × x′7) = 0 }.

Proof. Straightforward by applying Theorem 2 on the first 6 points. This yields E = Ep. Part of
Ep consistent with (x7,x′7) contains pairs (e, He) for e being collinear with the 7th point pair.
ut

For this configuration, the linear space of matrices F satisfying (6.1) has dimension 2. How-
ever, unlike for a 7-tuple in a general position, all matrices in this space have rank 2. In other
words, coefficients in the polynomial (6.2) are identically zero. Therefore,F6 is a 2-dimensional
linear space.

6.1.3. 5 of 7 Pairs Related by Homography

The class of EGs consistent with the configuration of 5 homography related pairs and 2 more
pairs off the homography always contains an EG consistent with the homography. This follows
straightforwardly from the plane-and-parallax algorithm [26, 22], which linearly computes EG
from a homography and additional 2 point pairs off the homography.

Not so obviously, this configuration is non-degenerate in the usual sense because, like a gen-
eral configuration of 7 points, it yields 3 solutions for EG. In contrast, the configurations in the
previous two subsections are degenerate.

By Theorem 2, the class of EGs consistent with this configuration is the same as the class
consistent with a point-wise corresponding pair of conics and two additional point pairs off the
homography fixed by the conics.

Theorem 6 bellow will summarize these facts. Before stating it, we give another theorem
needed for its proof. It defines the class of EGs consistent with two point-wise corresponding
conics and a single additional point pair (the theorem assumes H = I, hence only one conic is
mentioned).

Theorem 5 Let Q be a conic and x and x′ two points not on Q. Let (e, e′) be a pair of epipoles
lying on Q and consistent with correspondences { (y,y) | y ∈ Q }∪ (x,x′). Then the line e× e′

is tangent to the conic (see Figure 6.2)

R = (x>Qx)(x′>Qx′)Q− |Q|(x× x′)(x× x′)>. (6.3)
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Figure 6.2.: Conic R is the envelope of lines joining epipole pairs consistent with conic Q and
the point pair (x,x′).

Proof. A pair of epipoles lying on Q and consistent with { (y,y) | y ∈ Q } ∪ (x,x′) has the
property that the point u = (x × e) × (x′ × e′) lies on Q. Thus, all such epipole pairs are
parameterized by a point u moving on Q.

Given a point u on Q, the second intersection of the line u × x with Q is e = Au where
A = I − 2xx>Q/(x>Qx) is the harmonic homology [22] with the vertex x and the axis Qx.
Similarly, e′ = A′u where A′ = I− 2x′x′>Q/(x′>Qx′).

If Q is real non-degenerate, we can without loss of generality assume Q = diag(1, 1,−1)
and u = [cos t, sin t, 1]>. It can be verified that the expression (e × e′)>R∗(e × e′) vanishes
identically. Hence the line e × e′ is tangent to R for any u lying on Q. Here, R∗ denotes the
matrix of cofactors of R, representing the conic dual to R.

If the signature σ of Q is different from (1, 1,−1), meaning than Q is complex and/or degen-
erate, we proceed the same way using Q = diag(σ) and the appropriate parameterization of u
moving on Q. ut

Alternatively, R is obtained by transforming Q by the homology [22] B with the axis x ×
x′, the vertex Qx × Qx′, and the characteristic ratio µ = (x>Qx′)/

√
(x>Qx)(x′>Qx′) being

the projective invariant of a conic and two points [22, Exercise 2.10.2]. Unlike equation (6.3)
however, this construction is indefinite if the line x× x′ is tangent to Q.

Let j and j′ denote the common points of Q and the line x×x′, and let γ denote the cross-ratio
〈x,x′; j, j′〉. Then it can be shown that 4µ2 − 2 = γ + γ−1.

Assuming non-degeneracy of Q, conic R degenerates if either (x>Qx)(x′>Qx′) = 0 (in that
case, R is the double line x × x′), or x>Qx′ = 0 (then homology B is singular and R is the pair
of tangents to Q from the point Qx× Qx′).

Theorem 6 Let no three of points x1, . . . ,x5 be collinear. Let H be a non-singular homography.
Let (x6,x′6) and (x7,x′7) be two correspondences in general position w.r.t. the first five ones and
H. There is s finite number of EGs consistent with correspondences {(x1, Hx1), . . . , (x5, Hx5),
(x6,x′6), (x7,x′7)} of which one EG is consistent with H.
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Proof. Assume H = I. By Theorem 2, the first five correspondences restrict the epipole pairs to
be in Ep∪Ec where Ep = {(e, e) | e arbitrary} and Ec = {(e, e′) | x1, . . . ,x5, e, e′ conconic}.

By the plane-and-parallax algorithm [22], the subset of Ep consistent with {(x6,x′6), (x7,x′7)}
is given by e = (x6 × x′6)× (x7 × x′7).

Let Q be the conic through x1, . . . ,x5. By Theorem 5, the subset of Ec consistent with
(x6,x′6) is given by requiring the line e × e′ to be tangent to the conic which we denote by R6.
The similar conic for (x7,x′7) is denoted by R7.

An epipole pair lying on Q and consistent with {(x6,x′6), (x7,x′7)} must lie on a common
tangent to R6 and R7. In general case, there is a finite number (up to four) of these tangents,
hence there is a finite number of feasible epipole pairs and the configuration is non-degenerate.

Note, not every common tangent intersects Q in a feasible epipole pair. Some do in epipole
pairs consistent with {(x6,x′6), (x

′
7,x7)} rather than with {(x6,x′6), (x7,x′7)}. A feasible epipole

pair must satisfy that the points (e× x6)× (e′ × x′6) and (e× x7)× (e′ × x′7) lie on Q. ut

6.2. Detection of H-degenerate Samples

This section describes an efficient test whether seven correspondences {(xi,x′i)}7
i=1 are H-

degenerate. The input is not only the seven correspondences but also a fundamental matrix
F consistent with them (one of the F output by the 7-point algorithm). The test verifies whether
there exist five correspondences related by a homography H which is compatible with F.

Given F, only three correspondences {(xi,x′i)}3
i=1 are sufficient to compute a plane homog-

raphy H as [22]
H = A− e′(M−1b)>, (6.4)

where A = [e′]×F and b is a 3-vector with components

bi = (x′i × (Axi))>(x′i × e′)‖x′i × e′‖−2,

and M is a 3× 3 matrix with rows x>i .
A triplet from each five-tuple defines a homography and the other four correspondences are

checked for consistency with this homography. Any of
(
7
5

)
= 21 five-tuples contains at least

one of the triplets {1, 2, 3}, {4, 5, 6}, {1, 2, 7}, {4, 5, 7} and {3, 6, 7}. Hence, at most five
homographies have to be tested.

In general, up to three fundamental matrices are consistent with the seven correspondences
and the test should be carried for all of them. In practice, it is sufficient to check H-degeneracy of
the F consistent with the largest number of tentative correspondences, for details see Section 6.3.

Note that the test is also applicable to samples containing six or seven H-related correspon-
dences, as every fundamental matrix from the sets F6 and F7 is consistent with H.

6.2.1. The Stability of the Test

The test is derived for corresponding points that are exactly related by H. In real tasks, inliers are
typically perturbed by noise. The fundamental matrix F estimated from seven correspondences
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corrupted by noise is not precise and a search for a homography compatible with F may be
too restrictive. The following experiment has been carried out to assess the stability of the
test. Sets of seven correspondences, five correspondences related by H and two not related
by H, were generated at random. The seven-point algorithm was used to produce up to three
fundamental matrices. The fundamental matrix with the highest support was then checked by
the H-degeneracy test. The experiment on the LAMPPOST scene Fig. 6.1 showed, that the test
correctly recognizes about 75% of the H-degenerate samples. The following variations of the
H-degeneracy test were also tested.

For each of the five homographies checked in the test, errors on the seven correspondences
were computed. For every homography, a new homography was re-estimated from five corre-
spondences with the lowest error. The new ‘direct’ homography is more precise, since it is com-
puted directly from the correspondences, not involving F. Note, that the ‘direct’ homography
is generally not compatible with the original fundamental matrix F. If the five correspondences
are fit well by the ‘direct’ homography, the sample is labelled as a H-degenerate sample. This
variation of the test correctly recognized over 99% of the H-degenerate samples.

As an alternative, the followng (faster) method was tested. The ‘direct’ homography is not es-
timated for each of the five tested homographies. Instead, only the homography with the smallest
error on a correspondence with the fourth (fifth respectively) smallest error is re-estimated by
a ‘direct’ homography. Such an approach correctly recognized about 97% of the H-degenerate
samples.

6.3. Two-view Geometry Estimation Unaffected by a
Dominant Plane

In this section, we show how the results on degeneracies of seven point correspondences (Sec-
tion 6.1) can be exploited to design an EG estimation algorithm that is robust to the presence of
a dominant plane in the scene. Epipolar geometry estimators of practical importance must be
able to handle outliers among tentative correspondences. RANSAC, which achieves robustness
by drawing independent samples repeatedly, is the most commonly used EG estimator and we
focus on this algorithm.

Frequently, an incorrect EG is output by RANSAC if the dominant plane is present in the scene,
i.e., if a large fraction of correct tentative correspondences are related by a homography. The
behavior, demonstrated in Fig. 6.5, is not difficult to explain. In standard RANSAC [15], it is
assumed that once an all-inlier sample is drawn, the correct model is recovered. However, this is
a necessary but not a sufficient condition. To estimate the EG correctly, the sample from which
the EG is estimated must also be non-degenerate, i.e. at most five of its correspondences may be
related by a single homography (as shown in Sections 6.2).

Let us analyze the RANSAC stopping criterion in detail. Let PF be the probability that a good
sample is drawn, i.e. a sample that enables estimation of the correct EG. The probability η that
RANSAC failed to find the correct solution after k independent draws, i.e. no good sample has
been drawn, is

η(PF) = (1− PF)k. (6.5)
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In standard RANSAC, an all-inlier sample is assumed to be a good sample. The probability of
drawing an all-inlier (seven-tuple containing seven inliers) is P7/7 = ε7, where ε is the fraction
of inliers in the set of tentative correspondences. However, for the case of a dominant plane, the
probabilities P7/7 and PF differ. The correct EG can only be estimated from an all-inlier sample
with no more than five correspondences from the plane and 2 or more inliers off the plane. Let εH
be the fraction of homography consistent correspondences. Then the probability PF of drawing
a good sample is

PF =
5∑

i=0

(
7
i

)
εi
H(ε− εH)7−i. (6.6)

Note that PF = P7/7 if εH = 0, and PF < P7/7 otherwise. If εH were known (and it never is), the
probability PF could be used to calculate the confidence 1− η(PF). Such a stopping rule would
be very inefficient, as the PF drops to zero when εH approaching ε.

6.3.1. The DEGENSAC Algorithm

The DEGENSAC algorithm that correctly estimates epipolar geometry even for high values of εH
is introduced in this section. The first two steps of the algorithm, summarized in Alg. 5, are
identical to standard RANSAC [22, p.291]. The algorithm repeatedly draws samples Sk of seven
correspondences. The seven-point algorithm produces up to three fundamental matrices. Let Fk

be the fundamental matrix with the largest support Ik of the fundamental matrices calculated
from Sk. If Fk is the best so far (Ik > Ij , j = 1 . . . k − 1) the fundamental matrix and the size
of its support is stored.

When the best sample so far is drawn, the H-degeneracy test involving Fk and the seven-tuple
Sk is performed (step 4) as described in Section 6.2. If no five correspondences are H-related,
the inliers are considered to be in general position and the algorithm continues with the step 1.
Otherwise, an H-degenerate sample is detected which means that a homography Hk consistent
with at least five correspondences from Sk exists. Using Hk, EG is estimated by the plane-and-
parallax algorithm (step 6). In this case, Hk and two additional correspondences are sufficient
to define an EG. The EG with the largest support found in step 6 is stored and the algorithm
proceeds with the next iteration.

6.3.2. DEGENSAC – the Probability of Success

There are two cases how the correct EG is recovered; either from an all-inlier non-degenerate
sample, or by the plane-and-parallax algorithm after a homography is detected. The former case
occurs with probability PF, see (6.6). The latter case happens when a sample containing five
or more H-related correspondences is drawn. The probability P5/7 of drawing an H-degenerate
sample is

P5/7 =
7∑

i=5

(
7
i

)
εi
H(1− εH)7−i. (6.7)

The sample of five H-related and two EG consistent but not H-related correspondences is both a
good and H-degenerate sample. The probability of drawing such a sample, 21ε5

H(ε− εH)2, is in-
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Input: The set of N point-to-point correspondences.
Output: The fundamental matrix F with the largest support; optionally the homog-

raphy H with the largest support.

Set the lower bound on the number of inliers I∗ := 0.

Repeat until the probability η(P7/7) = (1 − (I∗/N)7)k of finding EG with support larger than
I∗ in k-th step falls under threshold η0 :

1 Select a random sample of 7 correspondences, calculate up to three fundamental ma-
trices consistent with the sample. Compute the support for each of them. Let Fk be the
one with the largest support (size Ik).

2 If Ik > I∗:

—
—

—
—

-N
ov

el
ty

—
—

—
– 3 Store Fk and let I∗ := Ik.

4 Evaluate the H-degenerate sample test (see Section 6.2). If 5 or more correspon-
dences from the sample consistent with homography Hk are found:

5 Compute the size IHk of the support of Hk. Store Hk if it has the biggest support
between homographies so far.

6 Execute robust estimation of fundamental matrix FHk based on plane-and-
parallax algorithm and calculate its support size IFk .

7 If IFk > Ik store FHk and let I∗ := IFk .

Algorithm 5: The structure of the DEGENSAC algorithm.

cluded in both probabilities PF and P5/7. Therefore, following the inclusion-exclusion principle,
the probability that the correct EG is recovered by drawing a single sample is

P = PF + P5/7 − 21ε5
H(ε− εH)2. (6.8)

Note, that P ≥ P7/7 as an all-inliers sample is either good or H-degenerate sample, or both.
Probabilities PF, P5/7 and P are plotted in Fig. 6.3 (top). As PF and P5/7 are functions of both

ε and εH, ε = 0.67 was fixed in the figure to keep the plot one-dimensional. The figure shows,
that the probability of drawing a good sample is almost unchanged up to approximately 30% of
inliers lying on a single plane. The probability drops off for higher values of εH/ε. For more
than 52% of coplanar inliers, it becomes more likely to draw an H-degenerate sample than a good
sample. Note that P ≥ max(PF, P5/7). Qualitatively, the dependency is the same for all values of
ε. The log(P5/7/PF) function for different ε is drawn in Fig. 6.3-bottom. The plot shows when
it is more likely to draw a non-degenerate all-inliers sample (log(P5/7/PF) < 0) or H-degenerate
sample.

The termination criterion. The two algorithms, DEGENSAC and RANSAC, have equal prob-
ability of finding a correct solution after the same number of steps if εH = 0. With increasing εH,
the probability of success is increasing for DEGENSAC and decreasing for RANSAC, i.e. εH = 0
is the worst case for DEGENSAC. To ensure the required confidence in the solution even in the
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Figure 6.3.: Probabilities P5/7, PF and P (eqs. (6.6-6.8)), for inlier percentage ε = 67% (top)
and log(P5/7/PF) for values 25%, 60% and 100% of ε respectively (bottom).

worst case, DEGENSAC is terminated when η(P7/7) falls under predefined threshold (typically
5%).

Computational complexity. The computations carried out in DEGENSAC and RANSAC are
identical with one exception – when the best sample so far is drawn. Note that other than the best
samples so far are of no interest, as EG fitting as many correspondences as possible is sought
for. It is not difficult to show [7], that the best sample so far occurs on average only log(k) times,
where k is the number of samples drawn. Thus, the procedure is executed rarely and its time
complexity is not critical.

If the best sample so far is drawn, the H-degeneracy test is performed (step 4). It takes con-
stant (and in practice insignificant) time to evaluate the test. A more complex procedure (step 6),
based on the plane-and-parallax algorithm, is executed if the test detects an H-degenerate sam-
ple. In this step, another RANSAC-like strategy that draws samples of two correspondences not
related by the detected homography Hk is performed. Note that the time complexity of algorithm
searching for a two inlier sample is significantly lower then the complexity of the main loop.

Homography or epipolar geometry? Besides returning the EG, the DEGENSAC algorithm
also outputs the homography with the largest support. The EG is valid unless a planar scene is
observed or if there is a zero translation of the camera center. Some model selection strategy [55]
can be applied to check the validity of the EG. The dominant plane homography may or may
not be of direct interest. It can be used e.g. as a strong geometric constraint in guided matching
[22].
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Figure 6.4.: The ratio of probabilities of drawing an H-degenerate sample and an all-inlier (four
out of four) sample (P5/7/P4/4).

6.3.3. Homography Estimation through EG

Consider the problem of homography estimation from data containing outliers. The standard
approach (of RANSAC) is to draw samples of four correspondences to generate a hypotheses of
homography. Surprisingly, a modified DEGENSAC is almost always able to estimate the homog-
raphy in a smaller number of iterations.

Instead of drawing minimal samples of four correspondences and estimating homography
directly, samples of seven correspondences are drawn and epipolar geometry is estimated in-
stead. If the support of the EG is the best so far, then the H-degenerate sample test is carried
out to recover the homography. In other words, the DEGENSAC algorithm is run and the plane-
and-parallax step is not executed and the estimated EG is ignored. The probability of drawing
an H-degenerate sample is P5/7 and therefore the algorithm is terminated when the confidence
η(P5/7) falls under a predefined threshold.

Let us compare the probability that the solution is found in a single sample by standard
RANSAC, P4/4 = ε4

H, and by the DEGENSAC based algorithm P5/7 (6.7). Fig. 6.4 shows the ratio
of the two probabilities P5/7/P4/4. For εH ∈ (0.052, 1) the DEGENSAC method finds the solution
in less iterations than the standard RANSAC! Note, that the range of values of εH where P5/7 is
bigger than P4/4 covers all practical situations.

However, the estimation of homography through EG is unlikely to bring a significant speed-
up2. Nevertheless, this is an interesting situations where a model of lower dimension can be
estimated indirectly through an estimation of a model of higher dimension.

6.4. Experiments

Properties of EG estimation by the DEGENSAC and RANSAC algorithms are demonstrated on the
BOX (Fig. 6.5) and the LAMPPOST (Fig. 6.1) scenes.

In the BOX experiment, both algorithms processed 958 tentative correspondences established
by wide-baseline matching [35]. The set of correspondences includes 643 inliers (ε = 67%)
and 613 correct matches related by a homography (εH = 64%). The fraction of inliers that lie

2There are up to three fundamental matrices defined by seven points and hence the decrease in the number of
samples will be offset by increased number of verified fundamental matrices.
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(a) 643 inliers (ε = 0.67) (b) 621 inliers (ε = 0.65) (c) 615 inliers (ε = 0.64)

(d) 614 inliers (ε = 0.64) (e) 616 inliers (ε = 0.64) (f) 615 inliers (ε = 0.64)

Figure 6.5.: The BOX experiment. Examples of three EGs estimated during hundred executions
of standard RANSAC (b-f); all 100 EGs estimated by DEGENSAC (a) were qualitatively the same.
Epipolar lines F>x′ and Fx for four ground truth correspondences, two off the plane and two
in the plane, are superimposed over the images. The EGs on (b-d) are consistent with the floor
plane, but not with the correspondences off the plane.

on a plane is εH/ε = 95%. For such values of ε and εH, the probabilities PF of drawing a good
sample (6.6) and a H-degenerate sample P5/7 (6.7) are PF = 0.003 and P5/7 = 0.5 respectively.

Both the RANSAC and DEGENSAC algorithms, were executed one hundred times. The per-
centage of runs where a given correspondence was labeled as an inlier is plotted in Fig. 6.6,
for both RANSAC (top) and DEGENSAC (bottom). The same correspondence occupies the same
column in both plots and the correspondences are sorted according to the DEGENSAC results.

In each of the hundred executions, DEGENSAC detected the same set of 613 H-related corre-
spondences. From the set of the remaining 345 correspondences, 329 were classified constantly
in every single execution of DEGENSAC: 29 as inliers and 300 as outliers. This demonstrates the
stability of the estimated EG. The remaining 16 correspondences consist of 8 correct matches
and 8 mismatches that lie on the boundary of the error threshold. On average, of the 16 borderline
correspondences, 4 correct matches and 2.8 mismatches were labeled as inliers per execution of
DEGENSAC.

On the other hand, RANSAC often failed to find correct off-plane matches and returned an
incorrect EG defined by in-plane matches and some random mismatches. To visualize the re-
sulting epipolar geometries, four ”ground truth” correspondences were established manually
ex-post, two off the plane and two in the plane3.

The EG detected by DEGENSAC is shown in Fig. 6.5a. All four ”ground truth” correspon-
dences, both in and off the plane, satisfy the epipolar constraint. Examples of EGs estimated

3The manually established correspondences were, of course, not part of the input to RANSAC and DEGENSAC.
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Figure 6.6.: Each column in the graph represents a correspondence off the plane. The bars show
the number of runs when the correspondence was labeled as inlier during 100 repetitions of
RANSAC (top) and DEGENSAC (bottom). Note the bimodality of the DEGENSAC output.

by RANSAC are depicted in Fig. 6.5b-d. Note, that even though the number of correspondences
labeled as inliers in Fig. 6.5b-d are non random and close to the number of inliers in Fig. 6.5a,
the resulting EG is incorrect. Only the in-plane correspondences satisfy the epipolar constraint.

Similar results were obtained for the LAMPPOST scene Fig. 6.1. In this experiment, the frac-
tion of inliers was ε = 86% and the fraction of in-plane correspondences was εH = 65%;
εH/ε = 76%. Most of the off-plane inliers lie close to the dominant frontal plane (correspon-
dences on the roof). Together, 97% of correspondences were in or near the plane. Ten inliers
most distant from the plane, critical for the well-posedness of the solution, are located on the
lamppost. In all of the one hundred DEGENSAC executions, all ten correspondences on the lamp-
post were labelled as inliers. RANSAC selected as inlier none of them in 83 executions. In the
remaining 17 executions, RANSAC labelled no more than 4 of the correspondences as inliers.

6.4.1. Limitations of the Method

The DEGENSAC algorithm alleviates the problems caused by the presence of a dominant plane
in the scene. There are some more treacherous configurations, that are not handled by the algo-
rithm. Consider a plane with a repeated pattern whose elements repeat along lines that intersect
in a single (finite or infinite) point E. In two views, let the plane induce a homography H and let
the projection of E into the second image be e′.

The automatic matching method will match some of the features on the plane correctly and
some incorrectly to another appearance of the feature in the repeated pattern. All correct matches
from the plane are linked by the homography H. All mismatched points x′ in the second image
(mismatched due to the repeated structure) lie on a line [e′]×Hx. Therefore, the epipolar geom-
etry represented by a fundamental matrix F = [e′]×H is consistent with all matches, both good
and mismatches, from the plane. The fundamental matrix F has possibly large support on the
plane (i.e. linked by the homography H) and off the plane (i.e. not linked by the homography H).
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from a set of correspondences alone, unless some constraints are imposed on the 3D scene.
More information, typically available in the earlier stages of matching, have to be exploited.
Two approaches to overcome the repeated pattern problem follow.

Possible solutions. An intra-image matching can be done in the images in order to detect
repeated structures along lines that intersect in a single point. Epipolar geometry with an epipole
in such a point will be treated as suspicious.

Second method assumes, that the (dominant) plane homography H was already recovered. The
correspondences that are not consistent with H can be checked, whether there is an alternative
match on a location predicted by the homography H. Correspondences with such a property
should not be used in the EG estimation, since they possibly are mismatches caused by the
repeated pattern.

Relatively common instance of the situation described in this section are images of an urban
scene. Consider two images of a house facade (with repeated horizontal pattern) taken with
arbitrary camera motion. The mismatches cause the estimated camera motion to be parallel
(horizontal) to the repeated pattern, regardless of the true motion.

6.5. Conclusions

The concept of H-degeneracy of a sample of seven correspondences was defined. The cases
with five, six and seven H-related correspondences were analyzed separately and a single test of
H-degeneracy for all three cases was proposed.

Exploiting the results on H-degeneracy, a novel algorithm, DEGENSAC, was designed. If no
large plane is present in the scene, DEGENSAC works exactly as RANSAC. If a dominant plane
is detected, DEGENSAC switches to EG estimation using the plane-and-parallax strategy. The
computational cost of the H-degeneracy test and, potentially, plane-and-parallax is not signifi-
cant, since the steps not present in RANSAC are executed only in log(k) times, where k is the
total number of samples drawn.

The EG estimation process was analyzed and we showed that the larger the number of H-
related correspondences, the higher the probability that DEGENSAC finds the solution. As a
consequence, with the increase in the number of points in a dominant plane the running time
of DEGENSAC decreases. It was demonstrated experimentally that, unlike RANSAC, DEGENSAC

estimates both the EG and the homography correctly and reliably in the presence of a dominant
plane.
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Standard RANSAC algorithm does not model the local matching process. It is viewed as a black
box that generates N tentative correspondences, i.e. the error-prone matches established by com-
paring local descriptors. The set U of tentative correspondences contains an a priori unknown
number I of correct matches (inliers). The inliers are consistent with a global geometric model
that is found by fitting a model to a randomly selected subset of U . The hypothesize-and-test
loop is terminated when the probability of finding a superior solution falls below a pre-selected
threshold. The time complexity of RANSAC depends on N , I , and the complexity m of the
geometric model. The average number of samples drawn is proportional to (N/I)m [22].

In this chapter, we introduce a new hypothesize-and-verify (sample-and-test) matching ap-

Figure 7.1.: The Great Wall image pair with an occlusion. Given 250 tentative correspondences
as input, both PROSAC and RANSAC found 57 correct correspondences (inliers). To estimate the
epipolar geometry, RANSAC tested 106,534 seven-tuples of correspondences in 10.76 seconds
while PROSAC tested only 9 seven-tuples in 0.06 sec (on average, over hundred runs). Inlier
correspondences are marked by a line segment joining the corresponding points.
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proach called PROSAC (PROgressive SAmple Consensus). The method achieves large compu-
tational savings (with speed-up factors of the order of 102 compared to RANSAC) by exploiting
the linear ordering structure of U . The ordering is defined at least implicitly in all commonly
used local matching methods, because the set of tentative correspondences is obtained by first
evaluating a real-valued similarity function (or “quality”) q(·) that is subsequently thresholded
to obtain the N correspondences. Correlation of intensities around points of interest [64], Ma-
halanobis distance of invariant descriptors [60] or the ratio of distances in the SIFT space of the
first to second nearest neighbor [32] are commonly used examples of q(·).

In PROSAC, samples are semi-randomly drawn from progressively larger sets of tentative cor-
respondences. The improvement in efficiency rests on the mild assumption that tentative cor-
respondences with high similarity are more likely to be inliers. More precisely, we assume
that the ordering defined by the similarity used during the formation of tentative matches is not
worse than random ordering. The assumption was found valid in our experiments, for all qual-
ity functions and for all tested image pairs. Experiments presented in Section 7.2 demonstrate
that the fraction of inliers among the top n sorted correspondences falls off fairly rapidly and
consequently PROSAC is orders of magnitude faster than the worst-case prediction.

The PROSAC process is in principle simple, but to fully specify it, two problems must be
addressed. First, the growth function n = g(t) that defines the set Un of n top-ranked corre-
spondences that is sampled after t trials must be selected. Second, a stopping criterion giving
guarantees similar to RANSAC about the optimality of the obtained solution must be found.
We propose a growth function g(t) guaranteeing that PROSAC is at least equally likely to find
the optimal solution as RANSAC. However, we have not been able to prove analytically that
PROSAC and RANSAC have the same performance for the worst-case situation, i.e. when the
correspondences are ordered randomly. Nevertheless, the comparison of PROSAC and RANSAC

on randomly ordered sets of correspondences showed that their performance was effectively
identical.

The PROSAC algorithm has two other desirable features. The size N of the set of tentative
correspondences has limited influence on its speed, since the solution is typically found early,
when samples are taken from a smaller set. One parameter of the matching process is thus effec-
tively removed. Instead, the user controls the behavior of PROSAC by specifying the time when
the sampling distribution of PROSAC and RANSAC become identical. For the growth function
g(t) selected according to the above-mentioned criteria, PROSAC can be interpreted as a process
running RANSAC processes in parallel for all Un, n ∈ {m . . .N}. In experiments presented in
Section 7.2, PROSAC speed was close to that of RANSAC that would operate on (the a priori
unknown) set of correspondences with the highest inlier ratio.

Related work. Tordoff and Murray [53] combine the MLESAC [57] algorithm with non-
uniform (guided) sampling of correspondences. This is the published work closest to PROSAC,
that differs in two important aspects. First, guided sampling requires estimates of the probabil-
ity of correctness of individual correspondences while here we only assume that some quantity
monotonically related to the probability is available. Second, PROSAC dynamically adapts the
sampling strategy to the information revealed by the sampling process itself. The hypothesize-
and-verify loop is a series of incorrect guesses until the first success. Each failure decreases the
likelihood that the correspondences used to estimate the model parameters are correct. Grad-
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ually, the observed evidence against a priori preferred correspondences should result in the
reduction of their preference. PROSAC can be viewed as an instance of a process that starts by
deterministically testing the most promising hypotheses and than converging to uniform sam-
pling as the confidence in the “quality” of the a priori sorting declines after unsuccessful tests.

The objective of PROSAC is to find inliers in the set of all tentative correspondences UN in
the shortest possible time and to guarantee, with a certain probability, that all inliers from UN

are found. Issues related to the precision of the model that is computed from the set of inliers
are not discussed since they are not directly related to the problem of efficient sampling. Bundle
adjustment [59] can be performed ex post.

Notation. The set of N data points (tentative correspondences) is denoted as UN . The data
points in UN are sorted in descending order with respect to the quality function q

ui,uj ∈ UN : i < j ⇒ q(ui) ≥ q(uj).

A set of n data points with the highest quality is denoted Un. A sample M is a subset of data
pointsM⊂ UN , |M| = m where m is the size (cardinality) of the sample. The quality function
on samples is defined as the lowest quality of a data point included in the sample

q(M) = min
ui∈M

q(ui).

7.1. Algorithm

The structure of the PROSAC algorithm is similar to RANSAC. First, hypotheses are generated
by random sampling. The samples, unlike in RANSAC, are not drawn form all data, but from a
subset of the data with the highest quality. The size of the hypothesis generation set is gradually
increased. The samples that are more likely to be uncontaminated are therefore examined early.
In fact, PROSAC is designed to draw the same samples as RANSAC, only in a different order. The
hypotheses are verified against all data. As in RANSAC, the algorithm is terminated when the
probability of the existence of solution that would be better than the best so far becomes low
(smaller than 5%). Two important issues, the choice of the size of the hypothesis generation set
and the termination criterion of the sampling process, are discussed below.

7.1.1. The Growth Function and Sampling

The design of the growth function defining the Un must find a balance between the over-
optimistic reliance on the pre-sorting by the quality and the over-pessimistic RANSAC approach
that treats all correspondences equally. If the probabilities P{ui} = P{corresp. ui is correct}
were known, it would be in principle possible to adopt a Bayesian approach. After each sample-
and-test cycle, the posterior probability would be re-computed for all correspondences included
in the sample. The correspondences would be sorted by their posterior probabilities and samples
with the highest probability would be drawn. We pursued this line of research, but abandoned it
for two reasons. Firstly, probabilities P{ui} of correspondences tested are not independent after
a test and it is not feasible to represent the joint probability for all but the simplest models. Sec-
ondly, errors in estimates of P{ui} propagate through the Bayes formula and are accentuated.
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So if the initial estimate of P{ui} based on the similarity of the correspondence is incorrect, the
posterior probability becomes worthless soon.

The alternative, pursued here, is to make minimal assumptions about the link between P{ui}
and the similarity function q(uj). In particular, we assume monotonicity, i.e.

q(ui) ≥ q(uj) ⇒ P{ui} ≥ P{uj}. (7.1)

Sequences of correspondences satisfying

i < j ⇒ P{ui} ≥ P{uj} (7.2)

will be called not-worse-than-random.
Note that we are searching for a single growth function. It seems possible to adapt the growth

function to reflect the result of previous sample-and-test cycles. However, all PROSAC (and
RANSAC) runs are alike: a sequence of failures followed by a ‘hit’ due to an all-inlier sample.
The history of the sampling process is thus fully captured by t, the number of tests carried so far.

The sampling strategy. Imagine standard RANSAC drawing TN samples of size m out of N
data points. Let {Mi}TN

i=1 denote the sequence of samples Mi ⊂ UN that are uniformly drawn
by RANSAC, and let {M(i)}TN

i=1 be sequence of the same samples sorted in descending order
according to the sample quality

i < j ⇒ q(M(i)) ≥ q(M(j)).

If the samples are taken in order M(i), the samples that are more likely to be uncontaminated
are drawn earlier. Progressively, samples containing data points with lower quality function are
drawn. After TN samples, exactly all RANSAC samples {Mi}TN

i=1 were drawn.
Let Tn be an average number of samples from {Mi}TN

i=1 that contain data points from Un only

Tn = TN

(
n
m

)(
N
m

) = TN

m−1∏
i=0

n− i

N − i
, then

Tn+1

Tn
=

TN

TN

m−1∏
i=0

n + 1− i

N − i

m−1∏
i=0

N − i

n− i
=

n + 1
n + 1−m

.

Finally, the recurrent relation for Tn+1 is

Tn+1 =
n + 1

n + 1−m
Tn. (7.3)

There are Tn samples containing only data points from Un and Tn+1 samples containing only
data points from Un+1. Since Un+1 = Un ∪ {un+1}, there are Tn+1 − Tn samples that contain
a data point un+1 and m − 1 data points drawn from Un. Therefore, the procedure that for
n = m . . .N draws Tn+1 − Tn samples consisting of a data point un+1 and m − 1 data points
drawn from Un at random efficiently generates samples M(i).
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As the values of Tn are not integer in general, we define T ′
m = 1 and

T ′
n+1 = T ′

n + dTn+1 − Tne. (7.4)

The growth function is then defined as

g(t) = min{n : T ′
n ≥ t}. (7.5)

In PROSAC, the t-th sample Mt consists of

Mt = {ug(t)} ∪M′
t, (7.6)

where M′
t ⊂ Ug(t)−1 is a set of |M′

t| = m− 1 data points drawn from Ug(t)−1 at random. The
parameter TN defines after how many samples the behavior of PROSAC and RANSAC becomes
identical. In our experiments, the parameter was set to TN = 200000.

t := 0, n := m, n∗ := N
Repeat until a solution satisfying eqs. (3.3), (7.9) is found.
1. Choice of the hypothesis generation set

t := t + 1
if (t = T ′

n) & (n < n∗) then n := n + 1 (see eqn. 7.4)
2. Semi-random sample Mt of size m

if T ′
n < t then

The sample contains m− 1 points selected from Un−1 at random and un

else
Select m points form Un at random

3. Model parameter estimation
Compute model parameters pt from the sample Mt

4. Model verification
Find support (i.e. consistent data points) of the model with parameters pt

Select termination length n∗ if possible according to Section 7.1.2

Algorithm 6: Outline of the PROSAC algorithm.

7.1.2. Stopping Criterion

The PROSAC algorithm terminates if the number of inliers In∗ within the set Un∗ satisfies the
following conditions:

• non-randomness – the probability that In∗ out of n∗ data points are by chance inliers to
an arbitrary incorrect model is smaller than Ψ (typically set to 5%)

• maximality – the probability that a solution with more than In∗ inliers in Un∗ exists and
was not found after k samples is smaller than η0 (typically set to 5%).
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From all such solutions the one that causes the termination first is chosen.
The non-randomness requirement prevents PROSAC from selecting a solution supported by

outliers that are by chance consistent with it. The constraint is typically checked ex-post in stan-
dard approaches [2]. The distribution of the cardinalities of sets of random ‘inliers’ is binomial

PR
n (i) = βi−m(1− β)n− i + m

(
n−m

i−m

)
, (7.7)

where β is the probability, that an incorrect model calculated from a random sample containing
an outlier is supported by a correspondence not included in the sample.

We set β pessimistically based on geometric considerations. If needed, the estimate of β can
be made more precise during the sampling of PROSAC.

For each n, the minimal number of inliers Imin
n is calculated so that the probability of size of

such support being random is smaller than Ψ

Imin
n = min

j :
n∑

i=j

PR
n (i) < Ψ

 . (7.8)

A non-random solution found on Un∗ must satisfy

In∗ ≥ Imin
n∗ . (7.9)

A maximality constraint defines how many samples are needed to be drawn to ensure the
confidence in the solution and is the (only) termination criterion of RANSAC [22].

For a hypothesis generation set Un, the probability PIn that an uncontaminated sample of size
m is randomly selected from a set Un of n correspondences is

PIn =

(
In

m

)(
n
m

) =
m−1∏
j=0

In − j

n− j
≈ εm

n , (7.10)

where In is the number of inliers in Un and εn = In/n is the fraction of inliers. The probability
η of missing a set of inliers of the size In on the set Un after k samples of PROSAC, where
g(k) ≤ n, is

η = (1− PIn)k. (7.11)

The number of samples that have to be drawn to ensure the probability η falls under the prede-
fined threshold η0 is

kn∗(η0) ≥ log(η0)/ log(1− PIn∗ ). (7.12)

The termination length n∗ is chosen to minimize kn∗(η0) subject to In∗ ≥ Imin
n∗ .
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Figure 7.2.: The fraction of inliers ε among top n correspondences sorted by quality for the
GREAT WALL (left), MUG background (center) and MUG foreground (right) scenes. The circles
mark the (average) size of the largest set of correspondences that PROSAC sampled, i.e. the size
it sampled when it stopped. The circles are close to the optimal stopping size.

7.2. Experiments

The not-worse-than-random assumption about the ordering of correspondences was tested
for two different similarity functions.

Matching based on SIFT descriptors [32] was used to obtain tentative correspondences in
PLANT and MUG experiments1. The similarity was defined as the ratio of the distances in the
SIFT space of the best and second match. The threshold for the similarity is set to 0.8 as sug-
gested in [32]. This setting has been shown experimentally [32, 50] to provide a high fraction of
inliers in the tentative correspondences. However, this thresholding also leads to small absolute
number of tentative correspondences.

In the GREAT WALL experiment, the Euclidean distance of the first fifteen Discrete Cosine
Transform (DCT) coefficients was used as a similarity function [42, 7]. The DCT was computed
on normalized, affine invariantly detected, parallelograms. As tentative correspondences, points
with mutually best similarity were selected.

Figures 7.2 and 7.4 show the dependence of the fraction of inliers ε on the order of a ten-
tative correspondence induced by the similarity function. In all experiments, regardless of the
similarity function used, the assumption of not-worse-than-random ordering held. The fraction
of inliers ε decreased almost monotonically as a function of the number of tentative correspon-
dences n.

Comparison of efficiency. The number of samples drawn by RANSAC and PROSAC as well
as wall clock time of both algorithms were measured on three scenes.

For the GREAT WALL scene (Fig. 7.1) both PROSAC and RANSAC algorithms found 57 inliers
among the 250 tentative correspondences. RANSAC needed on average (over hundred runs)
106,534 samples which took 10.76 sec. PROSAC estimated the 57-inlier epipolar geometry after
9 samples (0.06 sec) on average.

The PLANT scene is challenging due to a large number of depth discontinuities and the pres-
ence of both repetitive (floor) and locally similar (leafs) patterns. Tentative correspondences are
obtained by SIFT matching [32] computed on MSERs [35]. For the 0.8 threshold, the tentative
correspondences include only 12 inliers. The epipolar geometry could not be estimated reliably

1The code was kindly provided by David Lowe, UBC, Vancouver, Canada.
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Figure 7.3.: The PLANT scene. Depth discontinuities, self-occlusions and repetitive patterns
reduce the probability that a correspondence with high quality (similarity) is indeed an inlier.
RANSAC fails to estimate epipolar geometry on this image pair.
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Figure 7.4.: The dependence of the fraction of inliers ε on the ordering by the SIFT similarity
on the PLANT scene. The first 30 correspondences have similarity below the threshold 0.8. The
circle shows the optimal stopping length n∗ chosen by PROSAC.
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Figure 7.5.: Motion segmentation. The motion of the background and the foreground (the mug)
are denoted by light and black lines respectively.

Background N = 783, ε = 79%
I k time [sec]

PROSAC 617 1.0 0.33
RANSAC 617 15 1.10

Mug N = 166, ε = 31%
I k time [sec]

PROSAC 51.6 18 0.12
RANSAC 52.3 10,551 0.96

Table 7.1.: The number of inliers (I) detected, samples (k) and the time needed in the motion
estimation of the background (top) and the foreground (bottom) in the MUG experiment.

by either RANSAC or PROSAC. When the SIFT threshold was set to 0.95, there were N = 559
tentative correspondences and I = 51 inliers. In this case, RANSAC fails due to low fraction
of inliers ε = 9.2%; on average, RANSAC would need 8.43 · 107 samples to find the solution,
which is not realistic. PROSAC, on the other hand, found all the inliers and estimated the correct
epipolar geometry after 3,576 samples in 0.76 sec on average (over 100 execution).

The MUG scene, (Fig. 7.5) is non-rigid. The mug moved between the acquisition of the two
images. Tentative correspondences were obtained matching MSER [35] and affine-invariant
[38] regions using SIFT descriptors. First, epipolar geometry was estimated on all tentative
correspondences. Then, inliers to the first epipolar geometry were removed and another EG was
estimated to segment the motion in the scene. The results are summarized in Tab. 7.1.

In the Fig. 7.2, the dependency of ε on the ordering is shown for the background segmentation
(center) and the foreground (the mug) segmentation (right). All the correct correspondences on
the mug are outliers to the background motion while having high similarity score. This can
be observed in Fig. 7.2(center) as dips in the plot. This also shows that the probability of a
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k min k max k time [sec]
RANSAC 106,534 97,702 126,069 10.76
PROSAC 9 5 29 0.06
PROSAC OR 61,263 1,465 110,727 6.28

Table 7.2.: The comparison of the number of samples drawn by RANSAC, PROSAC, and PROSAC

with random ordering on the GREAT WALL experiment. The values of k are average, minimum,
and maximum over 100 runs respectively.
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Figure 7.6.: Histogram of the stopping length n∗ of PROSAC for 100 random orderings in the
GREAT WALL scene.

correspondence being an inlier to a given geometric model depends on other factors besides the
similarity of local descriptors.

Testing robustness to the worst case situation, i.e. to random ordering of tentative corre-
spondences. To compare RANSAC and PROSAC in the least favorable situation for PROSAC,
an experiment was carried out on sequences of randomly permuted correspondences. The 250
correspondences from the GREAT WALL experiment were used. For PROSAC, the average num-
ber of samples taken over 100 different random permutations was 61, 263 (standard deviation
2.94 · 104). The number of samples ranged from 1, 465 to 110, 727. For RANSAC, the average
and standard deviation were 130, 419 and 6.55 · 103 respectively. The results, together with
results of PROSAC on tentative correspondences sorted by the similarity function are shown in
Tab. 7.2.

PROSAC drew less samples and was faster than RANSAC in this experiment. The difference
in the average number of samples can be attributed to the fact that even in a randomly permuted
sequence there are sub-sequences with higher than average inlier fractions, allowing PROSAC to
terminate earlier. The histogram of PROSAC termination lengths n∗ is plotted in Fig. 7.6. Only a
fraction of PROSAC executions were terminated on the full set of the tentative correspondences,
where RANSAC is terminated. However, the maximal number of samples drawn are comparable
for PROSAC and RANSAC, i.e. in the worst case PROSAC behaves as RANSAC.

The stopping criterion. In all experiments, the optimal stopping length n∗ calculated ex-post
was identical with the length automatically selected by PROSAC. The values of n∗ are depicted
in Figs 7.2 and 7.4 as circles.
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7.3. Conclusions

PROSAC – a novel robust estimator of the hypothesize-and-verify type was introduced. The
PROSAC algorithm exploits the ordering structure of the set of tentative correspondences, as-
suming that the ordering by similarity computed on local descriptors is better than random. The
assumption held in all our experiment for both quality measures that were tested.

The sampling on progressively larger subsets consisting of top-ranked correspondences brings
very significant computational savings. In comparison to RANSAC, PROSAC was more than
hundred time faster on non-trivial problems. Using synthetically generated sequences of cor-
respondences, we showed that the worst-case behavior of PROSAC and RANSAC are effectively
identical.

PROSAC removes one parameter of the matching process – the threshold on the similarity
function for selection of tentative correspondences. Thus robustness against either having too
few correspondences or a large number of tentative correspondences with high outlier percentage
is achieved. In one tested problem, PROSAC found a solution of the matching problem that
cannot be solved by RANSAC.
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8 Randomized RANSAC

The speed of RANSAC depends on two factors. First, the percentage of outliers determines the
number of random samples needed to guarantee the 1 − η0 confidence in the optimality of the
solution. Second, the time needed to assess the quality of a hypothesized model parameters is
proportional to the number N of the input data points. The total running time t of RANSAC can
be expressed as

t = k(tM + mS tV ), (8.1)

where k is the number of samples drawn, tM is time needed to instantiate a model hypotheses
given a sample, mS is an average number of models per sample and tV is average time needed to
evaluate the quality of the sample. We choose the time needed to verify a single correspondence
as the unit of time for tM , tV and t (in standard RANSAC, tV = N ).

The core idea of the Randomized (hypothesis evaluation) RANSAC is that most model pa-
rameter hypotheses evaluated are influenced by outliers. To reject such erroneous models, it is
sufficient to perform a statistical test on only a small number of data points. The test can be
formulated as follows. The hypothesis generation step proposes a model. It is either ‘good’, i.e.
it leads to the optimal solution (the solution with maximal support), or it is ‘bad’, i.e. one of the
data points in the sample is an outlier. The property ‘good’ is a hidden state that is not directly
observable but is statistically linked to observable events. The observable events are ”data point
(correspondence) is/is-not consistent with the model”.

The statistical test reduces the number of verified correspondences (and thus time complexity
of the verification step) on one hand, and brings in a probability α of rejection (overlooking)
of a good sample on the other. The probability α is a significance of the test and influences
(increases) the number of samples drawn before the 1 − η0 confidence is ensured. The genuine
model parameters are recovered if an uncontaminated sample is drawn and passes the test. This
happens with probability

P = Pg(1− α).

Typically, the more data points are processed by the test the lower probability that a ‘good’
model will be rejected. The task is to find the balance between the number of correspondences
processed by the test and the increase in the number of samples, so that the total running time t
(8.1) is minimised. To simplify the derivation, we show that minimizing time to the first all-inlier
sample is approximately equivalent. It was shown in section 3.2.1 that kη0

≈ − ln η0 k̄, where
k̄ is the average number of samples before first uncontaminated sample is drawn. Therefore the
total time and the time to the first all-inlier sample differ only by a multiplicative constant and
minimizing (8.1) with k = k̄ and k = kη0

is equivalent. Since the average time to draw an
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uncontaminated model that passes the test is k̄ = 1/(Pg(1− α)), we have

t =
1

Pg(1− α)
(tM + mS tV ). (8.2)

The design of the test generally depends on two probabilities ε and δ, where ε denotes the
fraction of inliers within the set of data points and δ is a probability that a data point is consistent
with a model with arbitrary parameters. These probabilities are typically unknown beforehand
and have to be either estimated during the course of the algorithm, or the test must be efficient
for very large range of the values.

Two different test are described in the chapter: T(d,d) test and a test based on Wald’s Sequential
Probability Ratio Test (SPRT) [61].

The T(d,d) test (section 8.1) is based on testing d data points, the test is passed when all d
out of d randomly selected data points are consistent with the model. This test is not optimal,
however it is simple and the derivation of it properties is mathematically tractable. Experiments
demonstrate, that even such a simple test can increase the speed of the RANSAC procedure.

The RANSAC with SPRT provides an optimal sequential test assuming that the parameters ε
and δ are known beforehand, as shown in section 8.2. An algorithm with near optimal behaviour,
that estimates the probabilities ε and δ is discussed in section 8.3.

8.1. The Td,d Test

In this section we introduce a simple and thus mathematically tractable class of preverification
tests. Despite its simplicity, the experiments show its potential. The test we analyze is defined
as follows:

Definition (the T(d,d)) The T(d,d) is passed if all d data points out of d randomly selected
are consistent with the hypothesized model.

In the Td,d test, the number of verified correspondences per a test depends on d and is ex-
pressed as

tV (d)=Pg

(
αN+(1− α)t̄α

)
+ (1− Pg)

(
βN+(1− β)t̄β

)
. (8.3)

Here, β stands for the probability, that a bad sample passes the preverification test. Note that it
is important that β � α, i.e. a bad (contaminated) sample is consistent with a smaller number
of data points than a good sample. In the rest of this section we derive the optimal value for d.
First of all we express constants as introduced in the previous section as

α = εd and β = δd,

where δ is the probability that a data point is consistent with a ”random” model. Since we do
not need to test all d points (since single failure means that the pre-test failed), the average time
spent in the preverification test is

t̄α =
d∑

i=1

i (1−ε) εi−1 and t̄β =
d∑

i=1

i (1−δ) δi−1
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8. Randomized RANSAC

Since
d∑

i=1

i(1− x)xi−1 ≤
∞∑
i=1

i(1− x)xi−1 =
1

1− x
, (8.4)

we have
t̄α ≤

1
1− ε

and t̄β ≤
1

1− δ
.

The approximation we get after substituting (8.4) into (8.3)

tV (d)≈εm

(
εdN +

1− εd

1− ε

)
+ (1− εm)

(
δdN +

1− δd

1− δ

)
is too complicated for finding optimal d. Therefore, we incorporate the following approxima-
tions

(1− εm)
1− δd

1− δ
≈ 1,

(1− εm)δdN ≈ δdN , and

εdN � 1− εd

1− ε
,

which are sufficiently accurate for commonly encountered values of ε, δ and N . After applying
these approximations, we have

tV (d) ≈ N δd + 1 + εm+d N (8.5)

The average time spent in R-RANSAC in number of verified data points is then approximately

t(Td,d) ≈
1

εm εd

(
tM + mS(N δd + εm+d N + 1)

)
(8.6)

We are looking for the minimum of t(Td,d) which is found by solving for d in ∂t(Td,d)
∂d = 0. The

optimal length of the Td,d test is

d∗ ≈
ln
(

ln ε(tM+mS)
mSN (ln δ−ln ε)

)
ln δ

. (8.7)

The value of dopt must be an integer greater or equal to zero, so it could be expressed as

dopt = max(0, arg min
d∈{bd∗c,dd∗e}

t(Td,d)). (8.8)

Since the cost function t(Td,d) has only one extremum and for d → ± ∞we have t(Td,d) →
∞, we can say that R-RANSAC is faster than the standard RANSAC if

t(T0,0) > t(T1,1).
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From this equation we get (after approximation)

N >
tM + mS

mS
· 1− ε

ε− δ
. (8.9)

For broad range of values of ε and δ, the optimal value of d is d = 1. Therefore, without any
prior knowledge of ε and δ, the suggested test (from the Td,d class of tests) is T1,1.
Note: Instead of drawing m data points and verifying only d data points in the test, the following
approach can be adopted in the Td,d test when efficient. Draw randomly m + d data points and
fit model parameters to the sample. Measure error on the m + d data points in the sample. If
the error is smaller than predefined threshold ∆, i.e. there is a model that fits all the data well,
proceed with the verification step, otherwise generate a new hypothesis. The advantage of such
an approach is, that a single model can be obtained from m + d data points (in contrary to mS

models from m data points only) and also a model of higher accuracy is typically obtained if
more points are used. This is specific to the Td,d class of tests, where the consistency of all d
data points is required.

8.2. The Optimal Sequential Test

Thus far, a special type (simple and mathematically tractable) of test was described and its
property were derived. In this section, the theory of sequential testing is exploited.

In sequential testing, as applied e.g. in industrial inspection, the problem is to decide whether
the model (or the batch of products) is ‘good’ or ‘bad’ in the shortest possible time (i.e. making
the smallest number of observations) and yet satisfying the predefined bounds on the probabili-
ties of the two possible errors – accepting a ‘bad’ model as ‘good’ and vice versa. Wald proposed
the sequential probability ratio test (SPRT) and showed [61] that, given errors bound on the er-
rors of the first and second kind, it minimizes the number of observations (time to decision)
1.

Wald’s SPRT test is a solution of a constrained optimization problem. The user supplies the
acceptable probabilities of the errors of the first and the second kind and the resulting optimal
test is a trade-off between time to decision (or cost of observations) and the errors committed.
However, when evaluating RANSAC, the situation is different. First of all, a ‘good’ model is
always evaluated for all data points (correspondences) since the number of inliers is one of the
outputs of the algorithms. So the only error that can be committed is an early rejection of a
‘good’ model (error of the first kind). But this only means that more samples have to be drawn
to achieve the required confidence 1 − η0 of finding the optimal solution. So unlike in the
classical setting, we are solving a global optimization problem, minimizing a single real number
– the time to decision, since the consequence of an error is also a loss of time.

The model evaluation step of the optimal R-RANSAC proceeds as Wald’s sequential probabil-
ity ratio test (SPRT) with the probability α of rejecting a ‘good’ sample set to achieve maximum
speed of the whole RANSAC process. To understand the operation of R-RANSAC with SPRT,

1Precisely speaking, the SPRT is only approximately optimal. However, the approximation has been shown by
Wald to be so close to the optimum that, for practical purposes, it is considered the optimal test.
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8. Randomized RANSAC

some familiarity with Wald’s decision theory is required. We therefore introduce its relevant
parts. Some of the results are presented in a form that is not fully general, but sufficient for the
derivation of the R-RANSAC with SPRT algorithm. Some of Wald’s terminology is modified in
order to make the exposition more accessible.

In the model evaluation step, our objective is to decide between the hypothesis Hg that model
is ‘good’ and the alternative hypothesis Hb that the model is ‘bad’. A ‘good’ model is computed
from an all-inlier sample. The Wald’s SPRT is based on the likelihood ratio [61]

λj =
j∏

r=1

p(xr|Hb)
p(xr|Hg)

= λj−1 ·
p(xj |Hb)
p(xj |Hg)

, (8.10)

a ratio of two conditional probabilities of an observation xr under the assumptions of Hg and Hb

respectively. In RANSAC, xr is equal to 1 if the r-th data point is consistent with a model with
parameters θ and 0 otherwise. For example, a correspondence is consistent with (i.e. supporting)
an epipolar geometry represented by a fundamental matrix F if its Sampson’s error is smaller
than some predefined threshold [22]. The probability p(1|Hg) that any randomly chosen data
point is consistent with a ‘good’ model is approximated by the fraction of inliers ε among the
data points2. The probability of a data point being consistent with a ‘bad’ model is modeled as
a probability of a random event with Bernoulli distribution with parameter δ: p(1|Hb) = δ. The
process of estimation of δ and ε is discussed in section 8.3.

Output: model accepted/rejected, number of tested data points, a fraction of data points
consistent with the model

Set j = 1
1 Check whether j-th data point is consistent with the model
2 Compute the likelihood ratio λj eq. (8.10)
3 If λj > A, decide the model is ’bad’ (model ”rejected”), else increment j or continue

testing
4 If j = N the number of correspondences decide model ”accepted”

Algorithm 7: The adapted sequential probability ratio test (Adapted SPRT).

After each observation the standard Wald’s SPRT makes one of three decisions: accept a
‘good’ model, reject a ‘bad’ model, or continue testing. Since in RANSAC the total number of
inliers is needed to decide on termination, nothing is gained by an early decision in favor of a
‘good’ model. Therefore the option of an early acceptance of the model has been removed in the
adapted SPRT (Alg. 7). The full SPRT is described e.g. in Wald [61] and, in a more accessible
form, in Lee [30].

2The probability ε would be exact if the data points were selected with replacement. Since the objective of the
verification is to count the size of the support of the model, the correspondences are drawn without replacement.
However, the approximation is close.
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8.2.1. The Optimal Value of the Decision Threshold

The decision threshold A is the only parameter of the Adapted SPRT. We show how to set it to
achieve optimal performance, i.e. minimal average RANSAC running time given the probabilities
δ and ε. We use the following theorems (for proofs, see [61]).

Theorem 7 The probability α of rejecting a ‘good’ model in SPRT α ≤ 1/A.

Proof: Wald’s theorem [61, p. 41] states α ≤ (1− β)/A, where β stands for the probability that
a ‘bad’ model is incorrectly accepted as ‘good’. In the adapted SPRT, since the only decision of
the test can be ”reject”, β = 0 and thus α ≤ 1/A. �
The approximation α ≈ 1/A is close and is often used.

Theorem 8 (Wald’s lemma) The average number of observations (checked data points) car-
ried out while testing a ‘bad’ model is C−1 log A, where

C = p(0|Hb) log
p(0|Hb)
p(0|Hg)

+ p(1|Hb) log
p(1|Hb)
p(1|Hg)

. (8.11)

Proof: According to [61, p. 53]

C = E

(
log

p(x|Hb)
p(x|Hg)

)
. (8.12)

The value of x is from {0, 1}. The expectation E is a sum of two terms weighted by probability
p(x|Hb). Equation (8.11) follows. �

In the particular case of RANSAC, p(1|Hb) = δ, p(0|Hb) = 1 − δ, p(0|Hg) = 1 − ε, and
p(1|Hg) = ε. Therefore the average number of verified correspondences per model is:

log A

C
=
(

(1− δ) log
1− δ

1− ε
+ δ log

δ

ε

)−1

log A. (8.13)

The value of A influences the total running time in two opposing ways. The larger the value
of A, the smaller the probability of rejection of a ’good’ model. On the other hand, the number
of correspondendes verified per model increases with log A (eq (8.13)). We wish to set A to
achieve minimal average time needed to find the solution.

The average time-to-solution in R-RANSAC is t = k̄t̄s, where k̄ is the average number of sam-
ples drawn until a ‘good’ model and t̄s is the average testing time per sample. In the following,
the time unit will be the time needed to check one data point. The probability Pg of drawing a
‘good’ model is Pg = εm, where m is the number of data points in the RANSAC sample. The
number of tested samples before a ’good’ one is drawn and not rejected is a random variable
with geometric distribution and mean k̄ = 1/(Pg(1 − α)) ≈ 1/(Pg(1 − 1/A)). The average
time t̄s of processing a sample consists of two components: time tM needed to instantiate a
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8. Randomized RANSAC

model hypotheses given a sample3, and the average time of testing each hypothesis. Let mS be
the number of models that are verified per sample4 and C−1 log A be the average length of the
SPRT (Theorem 8). The average time to the solution expressed as a function of A is

t(A) =
1

Pg(1− 1/A)
(tM + mS

log A

C
). (8.14)

The formula (8.14) can be simplified to

t(A) =
K1 + K2 log A

1− 1/A
,

where K1 = tM/Pg and K2 = mS/(PgC). We are interested in the optimal value of A, i.e.

A∗ = arg min
A

t(A).

The minimum is found by solving

dt

dA
= −K1 + K2 −K2A + K2 log A

(A− 1)2
= 0.

After rearrangements, we have

A∗ =
K1

K2
+ 1 + log A∗ =

tMC

mS
+ 1 + log A∗. (8.15)

Equation (8.15) has two real solutions for positive K1/K2, A∗
1 < 1 < A∗

2. Since δ < ε, the
contribution to the likelihood ratio (eq. (8.10)) of a correspondence that is not consistent with
the model is greater than 1, therefore the solution of interest is A∗ > 1. This solution can be
obtained as A∗ = limn→∞ An, where A0 = K1/K2 + 1 and An+1 = K1/K2 + 1 + log(An).
The series converges fast, typically within four iterations.

8.2.2. Extension to MLE Framework

In RANSAC, it is observed whether a data point supports the model or not. In practice, an error
function ρ is evaluated and data points with the error function under a threshold are thought
to support the model. In MLESAC [57, 53], it is assumed that the error x = ρ(θ,x) of a data
point x with respect to a model with parameters θ is distributed as a mixture of Gaussian error
distribution for inliers and uniform error distribution for outliers for a ‘good’ model and as a
uniform distribution for a ‘bad’ model

p(x|Hg) = ε

(
1

σ
√

2π
e

x2

2σ2

)
+ (1− ε)

1
Z

p(x|Hb) =
1
Z

3Computing model parameters from a sample takes the same time as verification of tM data points.
4In the 7-pt algorithm for epipolar geometry estimation, 1 to 3 models have to be verified.
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Then, the likelihood ratio λj is expressed as

λj = λj−1

(
Zε

1
σ
√

2π
e

x2
j

2σ2 + (1− ε)

)−1

, (8.16)

where xj is an error of j-th data point.
The term C defining the average number C−1 log A of observations carried out while testing

a ‘bad’ model is derived, following equation (8.12), as follows

C =
∫ Z

0
p(x|Hb) log

p(x|Hb)
p(x|Hg)

dx,

and finally

C =
1
Z

∫ Z

0
− log

(
Zε

1
σ
√

2π
e

x2

2σ2 + (1− ε)
)

dx. (8.17)

Unfortunately, the integral in (8.17) has to be either approximated or evaluated numerically. The
rest of the derivation is identical with RANSAC.

8.3. R-RANSAC with SPRT

The R-RANSAC with SPRT algorithm is outlined in Alg. 8. To fully specify the details of the
algorithm, two issues have to be addressed. First, the estimation of parameters δ and ε; second,
the termination criterion guaranteeing 1− η confidence in the solution has to be derived.

Initialize ε0, δ0, calculate A0 and set i = 0.

Repeat until the probability η (eq. (8.20)) of finding a model with support larger than ε̂ falls
under a user defined confidence value η0 :

1. Hypothesis generation
• Select a random sample of minimum size m from the set of data points.
• Estimate model parameters θ fitting the sample.

2. Verification
Execute the SPRT (Alg. 7) and update the estimates if
a Model rejected: re-estimate δ. If the estimate δ̂ differs from δi by more than 5% design

(i+1)-th test (εi+1 = εi, δi+1 = δ̂, i = i + 1)
b Model accepted and the largest support so far: design (i+1)-th test (εi+1 = ε̂, δi+1 = δ̂,

i = i + 1). Store the current model parameters θ.

Algorithm 8: The structure of R-RANSAC with SPRT.

The algorithm proceeds like standard RANSAC [15, 22], only instead of checking all data
points in the model verification step, the data points are evaluated sequentially and hypotheses
with low support are rejected early. After a hypothesis is rejected, δ is re-estimated (Alg. 8, step
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2a). Accepted hypotheses are candidates for the RANSAC outcome (see below). The overhead
of the evaluation of the likelihood ratio λj eq. (8.10) is negligible compared to the evaluation of
the model versus data point error function.

The optimal test derived in section 8.2 requires the knowledge of two parameters, ε and δ.
These probabilities are different for different data sets and we assume they are unknown. The
proposed algorithm uses values of ε and δ that are estimated during the sampling process and
the test is adjusted to reflect the current estimates.

If the probabilities ε and δ are available a-priori, e.g. in some standard setting where the
algorithm is run repeatedly, they can be used in the initialisation of the algorithm.

Estimation of δ. Since almost all tested models are ‘bad’5, the probability δ can be estimated
as the average fraction of consistent data points in rejected models. When current estimate δ
differs from the estimate used to design the SPRT (by more than 5%, for example), new (i+1)-th
test is designed. The initial estimate δ0 is obtained by geometric considerations, i.e. as a fraction
of the area that supports a hypothesised model (a strip around an epipolar line in case of epipolar
geometry) to the area of possible appearance of outlier data (the area of the search window).
Alternatively, a few models can be evaluated without applying SPRT in order to obtain an initial
estimate of δ.

Estimation of ε. In general, it is not possible to obtain an unbiased estimate of ε, since this
would require the knowledge of the solution to the optimization problem we are solving. The
tightest lower bound on ε is provided by the size of the largest support so far. It was shown in
[34] that a sample with the largest support so far appears log k times, where k is the number of
samples drawn. When such a sample (with support of size Ii+1) appears, new test is designed
for εi+1 = Ii+1/N . Throughout the course of the algorithm, a series of different tests with

ε0 < · · · < εi < · · · < ε

are performed. The initial value of ε0 can be derived from the maximal time the user is willing
to assign to the algorithm.

The termination criterion. The algorithm is terminated, when the probability η of missing a
set of inliers larger than the largest support found so far falls under a predefined threshold η0 . In
standard RANSAC, where the probability of rejection of a ‘good’ model is zero, the probability
is equal to

ηR = (1− Pg)
k .

In R-RANSAC, the probability of hypothesising and not rejecting a ‘good’ model is Pg(1 − α)
and the probability η becomes as

η = (1− Pg(1− α))k .

In R-RANSAC with SPRT, the SPRT is adjusted to current estimates of δi and εi, so α is no
more constant. Theorem 7, which gives the probability α of rejecting a ‘good’ model for the test
designed for optimal value of ε, does not cover this situation. The following theorem is needed:

5RANSAC verifies, on average, − log(η0) ‘good’ models, e.g. for the typical η0 = 0.05 a ‘good’ model is hypothe-
sised three times prior to termination of the algorithm.
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Theorem 9 The probability of rejecting a ‘good’ model with fraction of inliers ε in a SPRT
designed for εi and δi with threshold Ai is

αi = A−hi
i , (8.18)

where hi is given by

ε

(
δi

εi

)hi

+ (1− ε)
(

1− δi

1− εi

)hi

= 1. (8.19)

Proof: For proof see [61, p. 50]. �

Equation (8.19) has two solutions, one being hi = 0. Since εi < ε, hi > 1 holds for other
solution. This solution is found numerically.

Let for each of l tests the following values be stored: the expected fraction of inliers εi, the
SPRT threshold Ai, the number of samples ki processed by the test, and hi satisfying (8.19).
Then, the probability η is given by

η(l) =
l∏

i=0

(
1− Pg(1−A−hi

i )
)ki

. (8.20)

The number kl of samples that are needed to be drawn with current (i.e. l-th) SPRT follows from
(8.20) as

kl =
log η0 − log (η(l − 1))

log(1− PgA
−1
l )

(8.21)

Implementation note: since η > ηR the equation (8.21) does not have to be evaluated before
ηR < η0 is satisfied.

8.4. Experiments

Several experiments were performed comparing the proposed R-RANSAC with SPRT with three
other RANSAC algorithms: (1) standard RANSAC that verifies all correspondences for every
model, (2) R-RANSAC with the Td,d test [34] that rejects the model when the first checked cor-
respondence is not consistent with it (d=1), and (3) R-RANSAC with the a priori SPRT, i.e. the
R-RANSAC with SPRT designed for the true values of ε and δ (labelled SPRT∗). The results
achieved with a priori SPRT show the best achievable performance of RANSAC with a random-
ized verification step for a problem characterized by given δ and ε.

For epipolar geometry estimation, the time needed to compute model parameters tM = 200
was set within the range observed in a large number of experiments (i.e. in our implementation,
checking whether a correspondence is consistent with a fundamental matrix is 200 times faster
than estimating the matrix). The exact value depends on many factors including the CPU speed
and type. The constant mS = 2.38 was set to the experimentally observed average of the number
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of models generated by the 7-point algorithm per sample 6. The initial values of δ and ε were
set to δ0 = 0.05 and ε = .2 respectively.

For homography estimation, the values were set as follows tM = 200, mS = 1, δ0 = 0.01,
ε0 = 0.1.

The experimental image pairs are displayed in Fig. 8.1. The number N of correspondences
as well as the true values of ε and δ estimated by evaluation 100,000 verifications of random
models are summarized in Tab. 8.2. The results of compared algorithms are shown in Table 8.1.

As a consequence of the randomization of model verification that erroneously rejects some
‘good’ models, on average, the randomized algorithms must draw a larger number of samples
than standard RANSAC. This is confirmed in the first column of Table 8.1. This small increase is
more than compensated by the reduction in the number of data points (correspondences) checked
on average per model. The running time of RANSAC is reduced by factors ranging from 2.8 to
10.9 In all experiments the SPRT outperforms the Td,d test.

8.5. Conclusions

We have derived an optimal sequential strategy for randomised evaluation of model quality in
RANSAC. A method for estimating the two probabilities characterising the problem and critically
influencing the design of the optimal strategy was proposed. A termination criterion maintaining
the 1− η confidence in the solution was derived.

Properties of R-RANSAC with SPRT were tested on wide range of standard data. Tests
included epipolar geometry estimation in both wide baseline setting and narrow baseline settings
and homography estimation.

The method was 2.8 to 10 times faster than the standard RANSAC and up to 4 times faster than
R-RANSAC with Td,d test.

6It is known that the 7-point algorithm produces 1 to 3 potential models. In experiments, the average number of
models per sample – 2.38 – has been observed consistently in a number of scenes. No theoretical justification of
the stability of this average is known to the authors.
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8.5. Conclusions

The ROTUNDA A experiment
k models vpm time spd-up

RANSAC 195 470 886.0 4.3 1.0
Td,d 345 834 49.0 1.4 3.1
SPRT∗ 201 486 29.1 0.8 5.4
SPRT 200 483 41.5 0.9 4.9

The GREAT WALL experiment
k models vpm time spd-up

RANSAC 48085 122223 507.0 667 1.0
Td,d 224865 571059 6.9 642 1.0
SPRT∗ 56678 143993 14.4 178 3.8
SPRT 55796 141761 16.3 178 3.7

The CORRIDOR experiment
k models vpm time spd-up

RANSAC 145 344 600.0 2.3 1.0
Td,d 243 576 86.6 1.2 2.0
SPRT∗ 154 366 32.9 0.6 3.7
SPRT 153 364 77.2 0.8 2.8

The LEUVEN experiment
k models vpm time spd-up

RANSAC 1855 4434 786.0 35.5 1.0
Td,d 4490 10730 27.5 14.8 2.4
SPRT∗ 2025 4839 20.4 6.8 5.3
SPRT 1982 4736 23.2 6.8 5.2

The GRAFFITI experiment
k models vpm time spd-up

RANSAC 121 121 405.0 3.0 1.0
Td,d 287 287 16.7 1.0 2.8
SPRT∗ 132 132 35.1 0.6 4.6
SPRT 129 129 47.1 0.7 4.1

The homography LEUVEN experiment
k models vpm time spd-up

RANSAC 1203 1203 789.0 53.1 1.0
Td,d 5323 5323 3.4 15.0 3.5
SPRT∗ 1351 1351 14.5 4.7 11.2
SPRT 1266 1266 20.7 4.9 10.9

Table 8.1.: The comparison of RANSAC, R-RANSAC with Td,d test, a priori SPRT∗ and SPRT: the
number of samples (k), the number of models (models), the number of checked correspondences
per model (vpm), time in ms (time), and relative speed-up with respect to standard RANSAC

(spd-up). Averaged over 500 runs.
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8. Randomized RANSAC

corr ε δ

ROTUNDA 893 0.60 0.052
THE GREAT WALL 514 0.28 0.014

CORRIDOR 607 0.56 0.142
LEUVEN 793 0.47 0.032

GRAFFITI 409 0.51 0.018
LEUVEN H 793 0.29 0.004

Table 8.2.: Number of correspondences (corr), fraction of inliers (ε), the probability of a corre-
spondence being consistent with bad model (δ).

ROTUNDA CORRIDOR

THE GREAT WALL LEUVEN

GRAFITTI LEUVEN H

Figure 8.1.: The experimental image pairs with inliers (left) and outliers (right) superim-
posed. Two wide-baseline epipolar geometry experiments ROTUNDA and the GREAT WALL;
two narrow-baseline EG experiments LEUVEN and CORRIDOR; two homography experiments
GRAFITTI and LEUVEN H.
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9 Oriented Constraints

Some applications impose additional constraints on the model parameters that do not reduce the
model complexity (the number of data points that define the model ‘uniquely’). For example,
consider fitting circles of radius r, rmin ≤ r ≤ rmax, to points in a plane. One possible approach
would be to modify the hypothesis generator (e.g. by using some additional data structures) to
generate only allowed hypotheses. However, this might render the hypothesis generation time
demanding or might be even intractable. Another, rather passive, option is just to ignore the ad-
ditional constraint and count on the fact that the models not satisfying the constraint are arbitrary
and will not have sufficient support. This is often true and therefore an incorrect solution that
does not satisfy the additional constrains is not observed as a problem. Nevertheless, such an
approach may waste a significant proportion of time verifying many (even a majority) of sam-
ples that do not satisfy the additional constraints. This can be avoided in a very simple way – by
testing the validity of the parameters before the verification step. In this chapter, it is shown
that checking the orientation constraint often saves significant amount of computational time
compared with the standard approaches that ignore those constraints.

9.1. Oriented Projective Geometry

For “real” cameras (i.e. physical devices), only points in front of the camera are visible. This is
modeled in the framework of the oriented projective geometry [52], where cameras form images
by projecting along half-lines emanating from a projection center. Points in two views taken
by a camera satisfy, besides the epipolar constraint, some additional constraints [29, 62]. The
constraints have been used before for outlier removal after the epipolar geometry was recovered
[29], but not directly in the process of epipolar geometry estimation.

In this chapter we show that the use of oriented constraints within RANSAC brings significant
computational savings. The approach has no negative side-effects, such as limited applicability
or poor worst-case performance, and thus should become a part of any state-of-the-art RANSAC

implementation of epipolar geometry estimation.
In RANSAC, epipolar geometry is obtained by repeating a hypothesize-and-verify loop. If the

hypothesized epipolar geometry violates the oriented constraint, the verification step does not
have to be carried out. Since the orientation test takes negligible time compared to both the
epipolar geometry computation and the verification, a speed-up may be achieved virtually for
free. The overall impact of the orientation constraint on RANSAC depends on the fraction of
hypothesized models that can be rejected, without verification, solely on the basis of failing the
orientation constraint test. We empirically measure this fraction in a number of real scenes, both
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9. Oriented Constraints

in a wide-baseline and narrow-baseline stereo settings. The performance evaluation carried out
shows that the the impact of exploiting the orientation constraint on RANSAC running time is in
many circumstances significant.

The rest of the chapter is structured as follows. First, the derivation of the oriented epipolar
constraint is reviewed in section 9.2. RANSAC with the orientation constraint is introduced in
section 9.3. Next, in section 9.4, performance of the improved RANSAC constraint is evaluated.
Two quantities are measured: the fraction of hypothesis that fail the orientation test and the time
saved as a consequence of inserting the orientation test into the RANSAC loop.

9.2. Oriented Epipolar Constraint

Let1 a camera with 3× 4 projection matrix P observe a rigid scene. An image point represented
by a homogeneous 3-vector x is a projection of a scene point represented by a homogeneous
4-vector X if and only if x ∼ PX [20].

Following the classical (i.e. unoriented) projective geometry, the homogeneous quantities x,
X, and P represent the same geometric objects if multiplied by a non-zero scale. E.g., the
homogeneous vectors x = (x, y, 1)> and−x = (−x,−y,−1)> represent the same image point
with affine coordinates (x, y)>.

It has been noticed that the oriented projective geometry [52, 28] is a more appropriate model
for multiple view geometry as it can represent ray orientations. In oriented geometry, vectors
x and −x represent two different image points, differing by whether the corresponding scene
point lies in front of or behind the camera. The (oriented) relation between scene point X and
its image x is x +∼ PX, as opposed to unoriented relation x ∼ PX.

The orientation of image points is known from the fact that all visible points lie in front of
the camera [28]. Formally, image points lie on the positive side of the image line at infinity l∞.
For the usual choice l∞ = (0, 0, 1)>, the correctly oriented homogeneous vector representing
an image point with affine coordinates (x, y)> is (x, y, 1)> or its positive multiple.

Let two cameras with projection matrices P and P′ observe a rigid scene. It is well-known
[20] that there exists a 3 × 3 fundamental matrix F of rank 2 such that any pair x ↔ x′ of
corresponding image points satisfies the epipolar constraint

x′>Fx = 0. (9.1)

The oriented version of the epipolar constraint is [62]

e′ × x′ +∼ Fx. (9.2)

It is implied by the following lemma (we omit the proof).

Lemma 1 Any 3× 4 full-rank matrices P and P′ and a 4-vector X satisfy

e′ × (P′X) = F(PX), (9.3)
1In this section, a ∼ b denotes equality of two vectors up to a non-zero scale and a +∼ b equality up to a positive

scale. Vector product of two 3-vectors is a × b. Symbol [a]× denotes the matrix such that [a]×b = a × b.
Matrix pseudoinverse is denoted P+ and vector norm ‖a‖.
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9.3. RANSAC with Oriented Constraint

corrs inliers ε [%]
Juice 447 274 61.30
Shelf 126 43 34.13
Valbonne 216 42 19.44
Great Wall 318 68 21.38
Leuven 793 379 47.79
Corridor 607 394 64.91

Table 9.1.: The number of correspondences (‘corrs’), inliers (‘inliers’) and the fraction of inliers
(‘ε’) in the experiments.

where F = [e′]×P′P+, e′ = P′C, and C is uniquely determined by equations PC = 0 and
det(P> |C) = ‖C‖2.

Note that (9.1) is invariant to the change of signs of x,x′ and F whereas (9.2) is not. Therefore
(9.2) implies (9.1) (multiply (9.2) by x′> from the left), but not vice versa. Thus, the oriented
epipolar constraint is stronger than the unoriented one.

9.3. RANSAC with Oriented Constraint

The standard seven-point algorithm [20] is used to hypothesize the fundamental matrix. The
two-dimensional space of 3× 3 matrices satisfying (9.1) for the seven sampled correspondences
is found by QR factorization rather than SVD, as suggested in [40]. Each fundamental matrix is
then tested whether it satisfies the oriented constraint (9.2). This is the only step in which the new
algorithm differs form the standard one. The test can be performed very efficiently, requiring
only 27 – 81 floating point operations (i.e. multiplications and additions). If the orientation test
is passed, the support of the fundamental matrix is computed as the number of correspondences
with Sampson’s distance [20] below threshold.

9.4. Experiments

The RANSAC algorithm with the oriented constraints was tested on six standard image pairs,
including wide-baseline stereo (experiments Juice, Shelf, Valbonne and the Great Wall) and
narrow-baseline stereo (Leuven and Corridor).
Obtaining tentative correspondences. By a tentative correspondence we mean a pair of points
x ↔ x′, where x is from the first image and x′ is from second image. The set of tentative
correspondences contains both inliers and outliers.

The tentative correspondences for the wide-baseline experiments were obtained automatically
by matching normalized local affine frames [36]. Only mutually best candidates were selected
as tentative correspondences.

In the narrow-baseline experiments, the Harris operator [18] was used to detect interest points.
Point pairs with mutually maximal normalised cross-correlation of rectangular windows around
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models rejected passed [%]
Juice 1,221,932 760,354 37.77
Shelf 1,233,770 1,094,533 11.29
Valbonne 1,256,648 1,176,042 6.41
Great Wall 1,274,018 1,181,084 7.29
Leuven 1,194,238 336,515 71.82
Corridor 1,187,380 120,916 89.82

Table 9.2.: The number of fundamental matrices generated by RANSAC (‘models’) over 500,000
samples, the number of models rejected by the orientation constraint (‘rejected’) and the per-
centage of models that passed the test (‘passed’). Note that regardless of the setting, there is
always approximately 2.4 fundamental matrices per sample on average.

interest points were kept as tentative correspondences. The size of the used windows were 15 and
7 pixels for Leuven and Corridor, respectively. The proximity constraint, ensuring that the co-
ordinates of corresponding points would not differ by more than 100 and 30 pixels respectively,
was also used. The numbers of tentative correspondences and the numbers of inliers for each
experiment are summarized in Tab. 9.1. The image pairs, with inliers and outliers superimposed,
are depicted in Fig. 9.1.
The fraction of rejected models. The number of hypotheses that can be rejected on the ba-
sis of the orientation constraint was measured. The results of the experiment are summarized
in Tab. 9.2. A sample of seven correspondences was selected at random 500,000 times. The
seven-point algorithm produces 1 to 3 fundamental matrices satisfying the unoriented epipolar
constraint (9.1). The total number of the models is given in the ‘models’ column of Tab. 9.2. The
number of models that are rejected by the orientation constraint (9.2) is shown in the ‘rejected’
column.

The fraction of rejected models varies widely. What affects the fraction of hypothesis that can
be rejected solely based on the orientation constraint? This question goes far beyond the scope
of this chapter. From the results of the experiments we observed that more models were rejected
in the wide-baseline setting than in the narrow-baseline one. We believe this is due to different
distribution of outliers which is caused by limited correspondence search window in the narrow-
baseline case. The fraction of rejected models is proportional to the fraction of outliers among
the tentative correspondences.
Running time. The time saved by using the oriented epipolar constraint was measured. The
standard and oriented versions of RANSAC were executed 500 times and their running-time was
recorded (on a PC with K7 2200+ processor). To ensure that both methods draw the same
samples, the pseudo-random generator was initialized by the same seed.

9.5. Conclusions

In this chapter, RANSAC enhanced by the oriented epipolar constraint was experimentally eval-
uated. The application of the oriented constraint reduced the running time by 5% to 46%, com-
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9.5. Conclusions

Juice Shelf Valbonne

Great Wall Leuven Corridor

Figure 9.1.: The experimental settings. Inliers and outliers are superimposed over the first and
second images respectively.
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9. Oriented Constraints

standard oriented speed-up [%]
Juice 1.4 0.9 35.08
Shelf 53.6 45.1 15.82
Valbonne 930.8 584.8 37.17
Great Wall 1109.0 599.3 45.96
Leuven 18.5 15.1 18.52
Corridor 1.2 1.2 5.77

Table 9.3.: Time (in ms) spent in standard and oriented versions of RANSAC and the relative
speed-up (right column).

pared with standard RANSAC. The efficiency increase of RANSAC with the orientation con-
straint is achieved by reducing the number of verification steps. As a consequence, the more
time-consuming the verification step is the higher relative speed-up is achieved. This applies not
only to situations with large number of correspondences, but also to RANSAC-type algorithms
that perform expensive verification procedures. An example of such an algorithm is MLESAC

[57] which estimates the parameters of a mixture of inlier and outlier distributions. Since the
evaluation of the orientation test takes virtually no time compared to the epipolar geometry
computation, the epipolar geometry estimation via RANSAC should exploit the oriented epipolar
constraint.
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10 Conclusions

In the thesis, a robust estimator RANSAC was thoroughly analyzed. The thesis contributed to
the state of the art in robust estimation of geometric models by several novel algorithms derived
from RANSAC. These algorithms are addressing the stability, the sensitivity to the noise, and the
computational complexity of the estimation process in two-view geometry. In particular,

• A known discrepancy (caused by noise on inliers) between theoretical prediction of the
time required to find the solution and practically observed running times was traced to a
tacit assumptions of RANSAC. The algorithm is modified to reach almost perfect agree-
ment with theoretical predictions without any negative impact on the time complexity
by applying local optimization to the-best-so-far samples. It was shown that the com-
putational time is significantly reduced, when approximate models are hypothesized and
coarse to fine strategy is used in the local optimization.

• An unified approach estimating model and its degenerate configuration (epipolar geometry
and homography of a dominant plane) at the same time without a priori knowledge of the
presence of the degenerate configuration (dominant plane) was derived.

• An algorithm, called PROSAC, exploiting (possibly noisy) match quality to modify the
sampling strategy was introduced. The quality of a match is an often freely available
quantity in the matching problem. The approach increased the efficiency of the proposed
algorithm while keeping the same robustness as RANSAC in the worst-case situation (when
the match quality is unrelated to whether a correspondence is a mismatch or not).

• The concept of randomized cost function evaluation in RANSAC was introduced. Superi-
ority of randomized RANSAC (R-RANSAC) over the RANSAC with deterministic evaluation
was shown.

• It was shown that using oriented geometric constraints that arise from a realistic model of
physical camera devices saves non-negligible fraction of computational time, without any
negative side effect.

Most of the algorithms in the thesis were motivated by (and presented on) estimation of a
multi-view geometry. The algorithms are, however, general robust estimation techniques and
can be easily used in other application areas as well. Moreover, all algorithms proposed in the
thesis can, and are recommended, to use together, as no initial assumptions of any two of the
algorithms are mutually exclusive.
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model optimization. In Proc. of the ACCV, volume 2, pages 812–817, January 2004.
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from maximally stable extremal regions. Image and Vision Computing, 22(10):761–767,
Sep 2004.
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Figure A.1.: The average error (left) and the standard deviation of the error for samples of 7,8,9,
14 and all 100 points respectively with respect to the noise level.

An experiment testing the dependence of the quality of the epipolar geometry on the number
of points (and the algorithm) used to estimate a fundamental matrix is presented. It has been
mentioned in [54], that the fundamental matrix estimated from a seven point sample is more
precise than the one estimated form eight points using a linear algorithm [19]. The difference
stems in the difference in the seven-point and the eight-point algorithm. The seven point algo-
rithm calculates directly a rank defficient 3-by-3 matrix F that satisfies the epipolar constraints
x′>i Fxi = 0 for seven given correspondences {xi ↔ x}7

i=1. The eight-point algorithm finds in
general regular matrix G (which is not a fundamental matrix) that satisfies x′>i Gxi = 0 for the
eight given correspondences. To obtained a (rank deficient) fundamental matrix, the matrix G is
projected into the space of singular matrices.

The following experiment shows that the observation holds only for eight point samples and
that by increasing the number of points gives more stable results than those obtained when the
fundamental matrix is computed from seven points only.

Experiment: This experiment shows, how the quality of a hypothesis depends on the number
of correspondences used to calculate the fundamental matrix. For seven points, the seven point
algorithm was used [54] and for eight and more points the linear algorithm [19] was used. The
course of experiment was as follows. Noise of different levels was added to the noise-free image
points correspondences divided into two sets of hundred correspondences. Samples of different
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sizes were drawn from the first set and the average error over the second was computed. This
was repeated 1000 times for each noise level. Results are displayed in Figure A.1.

This experiment suggests, that the more points are used to estimate the model (in this case
fundamental matrix) the more precise solution is obtained (with the exception of eight points).
The experiment also shows that the minimal sample gives hypotheses of rather poor quality. One
can use different cost functions that are more complicated than simply the number of inliers, but
evaluating this function only at parameters arising from the minimal sample will get results at
best equal to the proposed method of local optimization.
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