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Abstract

Image retrieval methods based on CNN descriptors rely
on metric learning from a large number of diverse exam-
ples of positive and negative image pairs. Domains, such as
night-time images, with limited availability and variability
of training data suffer from poor retrieval performance even
with methods performing well on standard benchmarks. We
propose to train a GAN-based synthetic-image generator,
translating available day-time image examples into night
images. Such a generator is used in metric learning as a
form of augmentation, supplying training data to the scarce
domain. Various types of generators are evaluated and an-
alyzed. We contribute with a novel light-weight GAN archi-
tecture that enforces the consistency between the original
and translated image through edge consistency. The pro-
posed architecture also allows a simultaneous training of an
edge detector that operates on both night and day images.
To further increase the variability in the training examples
and to maximize the generalization of the trained model, we
propose a novel method of diverse anchor mining.

The proposed method improves over the state-of-the-art
results on a standard Tokyo 24/7 day-night retrieval bench-
mark while preserving the performance on Oxford and Paris
datasets. This is achieved without the need of training im-
age pairs of matching day and night images. The source
code is available at https://github.com/mohwald/gandtr.

1. Introduction
Large-scale instance-level image retrieval is commonly

used e.g. as a first step in visual place recognition and vi-
sual localization. As other computer vision problems, im-
age retrieval is dominated by methods based on deep learn-
ing models. Fast and memory efficient approaches learn
global image descriptors via metric learning. A large num-
ber and variety of corresponding image pairs is required to
train well-performing global image descriptors.

One of the recent challenges in retrieval and visual local-
ization is insensitivity to severe illumination changes, such
as day and night [33, 34]. Methods trained mostly on the
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Figure 1. Examples of day-to-night translations with various gen-
erators. Each row consists of (left to right) the source image,
and images translated by: CycleGAN, CyEDA, and the pro-
posed RCFNGAN and HEDNGAN. All models are trained on the
SfM dataset, except for CyEDA where a model pre-trained on
BDD100k is used.
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Figure 2. Comparison of edges extracted from real night images by
RCF [19], HED [45], and proposed HEDN, which is trained jointly
with the edge-consistency based HEDNGAN generator. RCF and
HED were trained mainly on day images and do not detect some
edges in the night.

day domain perform well on that domain, while having rel-
atively poor results when night images are observed. The
goal is an approach that performs well on all domains; im-
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proving results when night images are involved, while at the
same time, the performance on the day domain should be
preserved. The requirement of unharmed performance on
the original (source) domain is, however, often neglected in
the domain adaptation methods (e.g. [16], as shown by our
experiments).

To achieve illumination invariant image retrieval, align-
ment of the day and night domains by metric learning was
proposed by [13]. To achieve this, a large number of match-
ing night to day image pairs is required. The acquisition of
such pairs is a non trivial task, and suffers form significantly
lower variability compared to day-to-day corresponding im-
age pairs. Photo-sharing sites are a popular source of land-
mark image training data. A number of training and testing
datasets were crawled from such sites, for example revisited
Oxford and Paris [26], Google landmarks v1 [23], SfM [28]
and SfM N/D [13]. For day images, these datasets exhibit
sufficient visual variability to train image to descriptor map-
pings that generalize well to unseen scenes. In contrary,
not only there are significantly less images taken during the
night (e.g. in the Aachen Day-Night dataset [33], there are
30 times more day images than night images), but their vari-
ability is also lower, as only parts of the scenes are visually
interesting (e.g. lit) during the night time. Therefore, only a
small fraction of the scene reconstructed from the daytime
images is photographed during night. This has been shown
by day and night 3D reconstructions in [27].

As our main contribution, we propose to replace night
training examples by synthetic images derived from day im-
ages by a generative adversarial network (GAN). In partic-
ular, a standard SfM dataset [30] with high variability of
homogeneous (mostly day to day) matching image pairs is
used and one of the matching images is transformed by a
GAN into a night image, see Figure 1. This alleviates the
necessity of obtaining night to day matching image pairs,
and also significantly increases the variability of the train-
ing pairs. Even though night images are required to train the
GAN, (i) a much lower number of night images is needed
compared to performing the metric learning, (ii) these do
not have to be paired with matching day counterpart. We
compare various existing image translation methods that do
not require pixel-aligned or visually related training data,
in particular CycleGAN [49], DRIT [15], CUT [24], and
CyEDA [3].

Inspired by the relative success of edge-based ap-
proaches to illumination invariance, as a second contribu-
tion, we propose a novel consistency enforcement through
the edge consistency. Specifically, differentiable edge de-
tector HED [45] is used to extract edges from the original
and the translated image and their dissimilarity is penal-
ized. The proposed method has a number of advantages: (i)
it is an order of magnitude faster to train than CycleGAN
while providing similar retrieval results, (ii) it provides in-

sight into the importance and sufficiency of edges in night
vision, (iii) it allows for simultaneous training of an edge
detector (HEDN) that detects edges well in both day and
night images. In this setup, HED [45] is compared to the
more recent edge detector RCF [19].

Training data from automated 3D reconstructions are
popular, as they are very clean and available without any hu-
man annotation. On the downside, the data distribution has
strong modes that correspond to canonical views of popular
landmarks. As a third contribution, we propose to further
increase the variability in the training examples, by a novel
method of diverse anchor mining. Instead of a random se-
lection of training examples for each epoch, pseudo-random
importance sampling is used, preventing over-using training
data from the modes of the training distribution (avoiding
using multiple similar examples in the training).

We explore the idea of using diverse synthetic data for
metric learning, compare different generators, including a
newly proposed one, and study the contribution of individ-
ual aspects of the proposed method on global descriptors.
We evaluate the performance of our models on image re-
trieval and visual localization datasets. The contribution is
applicable to other methods as well, which we demonstrate
by applying the proposed method to HOW [41], a model
that uses local descriptors for retrieval.

2. Related Work

In this section, we first review relevant approaches to
day-night image retrieval and discuss their relation to our
work. Then, we summarize the image-to-image translation
and how it is utilized in the data augmentation task, and fi-
nally we outline how other works are tackling data augmen-
tation for visual recognition and image retrieval through
day–night domain adaptation.

Day-time image retrieval. In GeM [30], a CNN backbone
produces global descriptors which can be compared by L2
norm to measure similarity between images. An alternative
approach to use the CNN backbone to produce a set of lo-
cal features was proposed in DELF [23], HOW [41], and
FIRe [43]. In HOW, the last feature map is treated as a set
of local features, from which the strongest features are used
for image retrieval via ASMK [40]. FIRe follows the same
pipeline, but adds a transformer-based head on top of the
convolutional backbone.

The two paradigms can be combined, such as in
DELG [5] where both global and local descriptors are uti-
lized, each produced by a separate head. In DOLG [46], a
slightly different approach is adopted, using the interactions
between global and local descriptors to produce a stronger
global descriptor. This principle is applied to vision trans-
formers [7] in ViTGaL [25] where a cross-attention between
the CLS token and spatial token embeddings is performed
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at the end of the network. An alternative approach using a
transformer-based backbone is taken by DToP [37], where
local and global representations are produced by separate
branches and the final representation is a concatenation of
the two. The application of the proposed method to any of
these methods is straightforward; we demonstrate its effec-
tiveness on GeM [30] and HOW [41].

Real day-night training data. The closest method of
CNN-based illumination-invariant image retrieval is the
work of [13]. The alignment of the day and night domains
consists of two steps – a photometric normalization of in-
put images, e.g. using CLAHE 1, and the exploitation of
matching pairs of day and night images from a 3D recon-
struction [28] for training. In our work, we remove the
requirement of obtaining matching night and day images.
Further, we show that generating synthetic night images in-
creases the variability in the training data which is reflected
in a better retrieval performance.

Edges and color invariants. In EdgeMAC [29], met-
ric learning is performed on edge-detector responses
(edgemaps), without the need of night training images. It
was shown that edges are preserved in the presence of a
significant change in illumination such as day and night
images, and even for images where colors and textures
are corrupted. However, EdgeMAC was experimentally
shown [29, 13] to perform poorly on standard datasets, as
too much relevant information is lost in the process of turn-
ing images to edgemaps.

For edge detection, EdgeMAC exploits Dollár [6] which
utilizes random decision forests. HED [45] proposed a
CNN-based edge detector where detections from multiple
intermediate feature maps are fused together, combining de-
tections with different receptive fields. RCF [19] follows
the same architecture, but proposes to exploit detections
from every intermediate feature map, which yields better
results at the cost of an increased inference time.

Recently, a zero-shot day-night domain adaptation was
proposed by [16]. A layer with trainable parameters per-
forming color-invariant edge extraction is preceded to the
backbone network. The method achieves interesting results
without any night images during training. However, the
retrieval results are significantly lower than results of the
method proposed in this paper. Further, our experiments
show that while improving the retrieval results in day-night
settings, application of the method [16] substantially harms
retrieval in the original day domain.

Image-to-image Translation. In image-to-image transla-
tion, popularized by the pix2pix [12] and CycleGAN [49]
models, an image in one visual domain is transformed into
another domain, preserving the image content but modify-

1Contrast Limited Adaptive Histogram Equalization, see [39] or [13]
for a detailed description

ing the image style. In CycleGAN [49], the training images
from the two domains do not need to be paired. There are
two generators trained there, each translating in one direc-
tion between the two domains. This enables to constrain the
input image and output image after two consecutive trans-
lations in the opposing directions to be identical.

In a more recent method DRIT [15], a similar architec-
ture is presented, but with the focus on generating diverse
output images. This is achieved by using a single latent
space for all encoders and decoders of generators and split-
ting this latent space into a content and style space while
introducing a new cross-cycle consistency loss.

An uni-directional image translation, training a generator
for a single direction between the domains, is proposed in
CUT [24]. The consistency is enforced by patch-wise con-
trastive loss between corresponding patches from the orig-
inal and target domain (positive pair) and other patches in
the original domain (negative pairs).

An edge-like consistency for CycleGAN has been pro-
posed in CyEDA [3]. Instead of comparing images in pixel-
space, consistence of gradients (Sobel responses) is en-
forced. In our proposed method, sparse edge detections are
used instead, and the edge detector is improved during the
GAN training. Additionally, CyEDA generator introduces
a blending mask mixing the input and output images as a
form of skip-connection, which often fails in our setup, see
Figure 1 top row for an example.

Another line of work focuses on architectures specif-
ically for the task of object detection. In [18], cycle
structure-consistency is enforced by measuring the differ-
ence between corresponding segmentation maps. Another
approach is taken by [35] and consequent work of [4],
where the translation is performed directly for individual
objects, implicitly ensuring a structure consistency in the
context of object detection. Despite the impressive results
in case of object-rich images, such an approach is not suit-
able for landmark recognition.

Data augmentation. To increase the number of training ex-
amples, various types of augmentations [8] were introduced
in computer vision problems. Image-to-image translation
can be also used as a form of data augmentation for training,
which is exercised by the proposed method. Recently, [21]
demonstrated that synthetic data helps in feature matching,
visual localization, and image retrieval.

In [2], augmentation by image-to-image translation is
applied to a car detection problem. Their training data con-
tain car annotations in day images only, so they propose to
translate day images into the night domain, exploiting the
day annotations with the generated night data. This is simi-
lar to the work of [17], with the difference that they design
a custom GAN architecture in order to preserve objects in
the images, aiding the consequent augmentation for a vehi-
cle detection. The same idea of translating day images with
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Figure 3. One training step with unpaired day and night images
(left block) of our HEDNGAN architecture. The day ) night gener-
ator translates the input day image (top left) into a fake night image
(center), enforcing the edge consistency by L1 loss between HED
and HEDNoutputs (top right). The night discriminator predicts
whether the generated night image (center) and the input night im-
age (bottom left) are real or fake. HEDNedge detector (student) is
trained by HED edge detector (teacher, not trained) to output night
image edgemaps while preserving day image edgemaps.

annotations into the night domain is used by [38] for image
segmentation of vehicle-mounted camera images.

Image translation at the test time. Visual localization
is approached by translating night images into day images
during the inference in ToDayGAN [1]. Images from a cam-
era mounted on a car are used, hence the variability in the
images is relatively low. It is not clear whether such an ap-
proach would be applicable to general scenes2. We argue
that generating a synthetic image commits to one of possi-
ble appearances, which, even if photo-realistic, is not guar-
anteed to be similar to the reality. Therefore, the applicabil-
ity of image translation at the test time is limited. Instead,
we attempt to learn an embedding that deals with all possi-
ble appearances, by using the image translation during the
training. This is supported by [38] for the task of image seg-
mentation with vehicle-mounted camera, where translating
night images into day during inference yields significantly
worse results compared to translating day images into night
as a training data augmentation.

3. Method

In the proposed method, a GAN generator is first trained
on unpaired day-night images. The trained generator is ex-
ploited in the consequent metric learning to generate day-
night training examples from labelled day pairs. For metric
learning, a standard global descriptor constrastive learning

2The official GitHub implementation of [1] proclaims “sensitivity to
intrinsic camera characteristics”.

Metric learning

Anchor

Hard-negative mining Embedding

Positive L2

Night image generation

CL
A

H
E

ReLU(μ-L2)

Random skip

D
iv

er
se

 a
n

ch
or

 m
in

in
g

Figure 4. Training data generation and photometric normalization
during embedding network fine-tuning. A mined diverse anchor
(center left day image) is randomly translated into a night image
(gray block, trained generator from Figure 3). The randomly trans-
lated image is used to mine a set of five negative images. The con-
trastive loss is applied on the global descriptors of the positive pair
(L2) and of the negative pairs (ReLU(µ - L2)).

framework is followed [13] with three introduced changes:
(a) diverse anchor images are mined, (b) anchor day images
are translated to a night domain, and (c) negative mining is
preformed after the optional translation step.

3.1. HEDNGAN training

It was shown previously [28, 13] that edges provide in-
formation that survives illumination changes between day
and night. We propose a simple uni-directional image trans-
lator, named HEDNGAN, that attempts to generate images
from the target domain and for which edgemaps are similar
to edgemaps of the corresponding source images. For this
purpose, a differentiable edge detector HED [45] is utilized.

The method is trained on examples from the day and
night domain, where two unpaired images are randomly
sampled in each iteration, one from each domain. The ar-
chitecture consists of three models – the generator, discrim-
inator, and edge detector, as depicted in Figure 3. In each
iteration, a day image is translated via the generator into the
night domain, resulting in a fake night image that is aligned
with the real day image. An edge detection is performed on
both the real day image (generator input) and the fake night
image (generator output), and the resulting two edgemaps
are compared pixel-wise, constraining the edges to be con-
sistent between the two images. The discriminator is ap-
plied on the fake night image, training the generator adver-
sarially, and ensuring that the images outputted are indistin-
guishable from the true night images. At the same time, the
discriminator is trained on both sampled images – the fake
night image and a randomly sampled real night image.

HED detector [45] is trained mainly on day images
which causes it to miss edges in night images, negatively in-
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fluencing the generator performance in our setup. Therefore
HEDN detector is trained jointly with the generator training,
so that HEDN (trained student) and HED (frozen teacher)
have similar responses on both real day and generated night
images. HED with HEDN is also used to measure the simi-
larity of the generator input and output, enforcing the edge
cosistency between them. We also test a variant where the
HED edge detector is not trained, named HEDGAN. The al-
ternative edge detector RCF [19] is evaluated in RCFNGAN
method.

Learning details. In all experiments, each input image is
first randomly downscaled by a scale from 0.8 to 1.0 and
then random-cropped to the final size of 256x256 px. In a
single iteration, two unpaired images from the two domains,
day and night, are processed. Each training epoch consists
of 10000 iterations.

In the HEDNGAN architecture, ResNet generator [49],
patchGAN discriminator [12], and HED edge detector [45]3

are exploited. All three networks are trained simultane-
ously with batch size of 10. The training step of the gen-
erator and discriminator is the same as in CycleGAN [49].
The generator and the discriminator use batch normaliza-
tion and network weights are initalized following [9], both
of which led to an increased stability of the generator during
training in our case. The two HED edge detectors, student
and teacher, are initialized with the weights from [22]; the
teacher weights are not updated during training while the
student weights are optimized with Adam optimizer [14]
with learning rate 10−6, β1 = 0.9, β2 = 0.999, and weight
decay of 0.0002. The edgemaps of the student and the
teacher are compared pixel-wise via L1 distance – in the
optimization step of the edge detector, the L1 loss is ap-
plied on output values before the sigmoid function, while in
the optimization step of the generator, it is after the sigmoid
function.

For the other three tested architectures, CycleGAN [49],
DRIT [15], and CUT [24], their original implementations
are used, in which the networks are trained for 100, 300, and
50 epochs, respectively. In all three architectures, the learn-
ing rate is linearly decayed to zero over the second half of
epochs. For CyEDA [3], its pre-trained models on GTA [31]
and BDD100k [47] are evaluated as well as a variant trained
on SfM120k [30] using its original training implementation.

3.2. Metric learning

The learning of global image descriptors is cast as met-
ric learning via Siamese network, the architecture is visu-
alized in Figure 4. We follow the procedure used in [13]
including the same hyper-parameter settings. First, to bring
the appearance of images from different domains close
together, a non-linear photometric CLAHE [39] normal-

3Re-implementation https://github.com/sniklaus/pytorch-hed is used.

ization. CLAHE is performed on a grid 8x8 with clip
limit of 1. The training is initialized with ImageNet pre-
trained network [32], followed by fine-tuning on the SfM
dataset [28, 13]. For the embedding network architecture,
VGG-16 [36] or ResNet-101 [10] backbone is used, fol-
lowed by GeM pooling and L2 normalization, as described
in [30]. The network is trained for 40 epochs with 2000
iterations each epoch.

To show wide applicability of the proposed method, we
also train a retrieval method based on aggregated local fea-
tures – HoW [41]. The network is trained in a metric learn-
ing framework with a contrastive loss on global descriptors;
the procedure of [41] is followed for both training and in-
ference.

Night image generation. A trained day→night generator
is used to generate day-night examples from day-only pairs.
Before each epoch, 25% of anchors are translated from day
to night domain, while the corresponding positive and neg-
ative images are left unchanged. In the Retrieval-SfM N/D
dataset [13], the same ratio of night anchors is used. The
generator weights are not updated during training.

Hard negative mining. In each iteration of the fine-tuning,
the embedding network takes 7-tuple of images – one image
is the anchor, one image is positive, and the remaining five
images are negative examples, following [28, 13]. For each
anchor, negative examples are mined from different 3D re-
constructions, so that the distance between their descriptors
and the anchor image descriptor is minimal. The negative
mining takes place after the eventual anchor translation into
the night domain.

Diverse anchor mining. In prior approaches of metric
learning on the SfM dataset [28, 13], positive pairs for each
epoch are selected from the set of all positive pairs in the
dataset at random. Such a choice may lead to a repeated
selection of similar anchor images (the same scene with a
near-by view point) within an epoch. To vary the training
examples, we propose to iteratively select diverse anchor
images from a random pool of anchor images. The first
anchor is selected at random. Before the next anchor is se-
lected, the remainder of the pool is ordered by the minimal
distance to already selected anchor images. The distance
is measured as a Euclidean distance of image descriptors
extracted by the network in its current state. New anchor
image is selected at random from images between the 20th
and 80th percentile of the pool ordering. Dropping 20%
of the closest images encourages the diversity in anchors,
dropping 20% of the most distant images prevents select-
ing images with outlying descriptors. In the training, 2000
anchor images are selected from a pool of 10000 anchors.
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4. Experiments
The proposed method is experimentally evaluated on

various standard datasets, including day-night datasets as
well as mostly homogeneous day datasets. The ablation
study shows contributions of individual steps for different
settings and implementation choices. The impact of the
choice of the training dataset and the amount of night im-
ages used in training is discussed.

4.1. Datasets

For training, we use the Retrieval-SfM dataset [30].
Three standard datasets are used for evaluation of image re-
trieval: Tokyo 24/7 [42, 13], revisited Oxford and Paris [26].
The night-time performance is also assessed on visual local-
ization on two datasets: Aachen Day-Night v1.1 [48] and
RobotCar Seasons [33, 20].

Retrieval-SfM [30] (SfM) contains 98045 images from re-
constructed 3D models. This dataset was used in the prior
work of [30, 13] to finetune a CNN for image retrieval.
In this work, we also use the SfM dataset for the metric
learning and day→night generator training. For the genera-
tor training, the generated day-night annotations from [27]
were used and images with dimensions less than 512 px
were removed, resulting in 86385 day and 10039 night im-
ages.

Retrieval-SfM N/D [13] (SfM-N/D) was introduced by [13]
aiming to construct positive pairs with different lighting
conditions. The SfM dataset was enriched by additional
day-night positive pairs by using the information in the orig-
inal 3D models. Note that this dataset is included for com-
parison only, it is not required to achieve results claimed as
contribution of this paper (marked ! in methods).

Tokyo 24/7 [42] (Tokyo) is a collection of 1125 smartphone-
camera pictures capturing each of 375 scenes from 125 dis-
tinct locations in day, night and sunset light conditions. In
this work, we use Tokyo to evaluate retrieval performance
with the same evaluation protocol as proposed in [13] – each
image is used as a query, images from the same scene but
different lighting conditions are counted as positive, while
images from different locations are considered as negative.

Oxford and Paris [26] (ROxf and RPar) are standard im-
age retrieval datasets (in their revisited version) and are used
to evaluate retrieval performance on mostly homogeneous
dataset with day-time images.

Aachen Day-Night v1.1 [34, 33, 48] (Aachen) contains im-
ages of the old inner city of Aachen in Germany. The
database consists of 6697 daytime images taken by hand-
held cameras and the query set contains 824 day-time and
191 night-time query images taken by three mobile phones.
Performance is reported for the night-time queries only.

RobotCar Seasons [20, 33] (RobotCar) consists of images

VGG-16 backbone
Method Avg Tokyo ROxf RPar
GeM [30] 69.9 79.4 60.9 69.3
GeM N/D [13] ! 71.1 83.5 60.0 69.8
CIConv [16] - 83.3 - -
CLAHE C [13] 71.6 84.1 60.8 69.8
CLAHE N/D C [13] ! 72.4 87.0 60.2 70.0
HEDNGAN CD (ours) 73.4 88.9 61.1 70.3
CycleGAN CD (ours) 74.0 90.2 60.7 71.0

ResNet-101 backbone
Method Avg Tokyo ROxf RPar
GeM [30] 75.7 85.0 65.3 76.7
CIConv [16] 75.0 88.3 62.0 74.7
HEDNGAN CD (ours) 78.4 92.2 66.3 76.6
CycleGAN CD (ours) 78.4 92.0 66.8 76.4

HOW ResNet-18 backbone
Method Avg Tokyo ROxf RPar
HOW [41] 80.8 87.8 75.1 79.4
HOW N/D ! 82.0 89.2 75.5 81.4
HEDNGAN CD (ours) 82.0 91.6 74.6 79.7
CycleGAN CD (ours) 82.4 92.9 74.6 79.8

Table 1. Comparison in terms of mAP on Tokyo 24/7, ROxf
Medium and RPar Medium datasets and their average. Methods
marked by ! use paired day-night training data. The best score for
each backbone architecture (in separate tables) is emphasized by
red bold, second best by bold.

Method Avg Tokyo ROxf RPar
DOLG [46] - - 81.5 91.0
DOLG 82.6 75.4 82.4 91.0
ViTGaL [25] - - 82.4 91.4
ViTGaL 83.6 79.8 79.6 91.4

Table 2. Performance of the SoTA methods with publicly available
code. DOLG [46] uses the convolutional backbone ResNet-101,
ViTGaL [25] uses transformer backbone XCiT-S24. All meth-
ods are trained on GLDv2 dataset [44] which overlaps with test
datasets ROxf and RPar. For each method, we provide the results
as reported in their paper (marked by the paper reference) and as
reproduced by their publicly available code. Note the poor perfo-
mance on the Tokyo 24/7 dataset.

captured from 3 vehicle-mounted cameras: 26121 database
images and 11934 query images taken under different con-
ditions. Performance is reported for the night-time eval-
uation protocol of visuallocalization.net benchmark [33]
which contains images taken under night (1314 images) and
night-rain (1320 images) conditions.

4.2. Results

We provide the results for embedding networks with
the VGG-16 as well as ResNet-101 backbone. GAN is

11158



trained on the SfM dataset (using unpaired day and night im-
ages), the embedding network is fine-tuned also on the SfM
dataset (using matching day images pairs), and the final re-
trieval performance is evaluated on Tokyo, ROxf and RPar
datasets. Our method is trained on the GAN-augmented
SfM dataset, contains CLAHE normalization step, diverse
anchor mining, and night examples are generated from day
anchors with probability of 25%. The full version of tables
can be found in the Supplementary Material.

We compare with the baselines GeM [30], CLAHE [13],
CLAHE N/D [13] (day-night training pairs used) and CI-
Conv [16]. The baseline methods in Table 1 are referred to
by their original name and their reference. For GeM [30],
the results of the publicly available github pytorch models4

are reported. Methods proposed in this work are referred
to as a combination of the retrieval training data (Cycle-
GAN, HEDNGAN), whether CLAHE photometric normal-
ization [13] was used (marked C), and whether diversity
mining (contribution of this paper) was used (marked D).
For comparison, results by recent state-of-the-art (day time)
retrieval methods are shown in Table 2.

We trained all methods for 40 epochs, starting from
ImageNet-pretrained backbones. This differs from [13],
where the ImageNet-pretrained embedding network was
trained for 20 epochs – pre-fine-tuned for 10 epochs and
then fine-tuned for 10 epochs in the final configuration5.
Otherwise the setup from [13] was followed precisely for
all methods trained on SfM and SfM-N/D datasets (methods
starting with GeM or CLAHE and GeM N/D ! or CLAHE
N/D C ! respectively).

Beyond global descriptors. The proposed method of gen-
erating night data was also applied to HoW [41], a retrieval
method based on aggregated local features. The results are
summerized in the bottom of Table 1, showing improvement
over the baseline and similar or better results compared to a
version of the HOW network trained on SfM-N/D.

Beyond image retrieval. Visual localization is exploited
to measure the night-time performance on a related task.
We utilize the Kapture pipeline [11], in particular its bench-
mark for image retrieval in the context of visual localiza-
tion. The percentage of images localized within each of
the three thresholds for three paradigms is reported, follow-
ing visuallocalization.net benchmark [33]. Three localiza-
tion paradigms from Kapture pipeline [11] are followed -
Paradigm 1: pose approximation by returning the pose of
the top-1 retrieved image. Paradigm 2a & 2b: pose esti-
mation from top 20 retrieved images without (2a) and with
(2b) a global map respectively. Three methods from Table 1
were evaluated: baseline GeM [30], and our CycleGAN and

4https://github.com/filipradenovic/cnnimageretrieval-pytorch
5Please note that this difference, apart from providing a fair compari-

son, has preserved or slightly increased the performance of the re-trained
baseline methods.

VGG-16 backbone
Method top-1 w/o global map with global map

GeM [30] 0 /0 /16.2 59.2 /73.8 /87.4 62.3 /76.4 /91.1
CycleGAN CD 0 /0 /18.8 61.3 /78.0 /90.6 62.8 /78.5 /92.1
HEDNGAN CD 0 /0 /18.3 62.3 /79.1 /90.1 62.8 /78.5 /92.1

ResNet-101 backbone
Method top-1 w/o global map with global map

GeM [30] 0 /0.5 /16.8 60.7 /75.4 /88.0 62.8 /79.1 /90.6
CycleGAN CD 0 /0.5 /20.4 63.4 /77.0 /92.1 66.0 /80.6 /95.8
HEDNGAN CD 0 /0.5 /19.4 64.9 /79.6 /94.2 65.4 /80.6 /94.2

Aachen v1.1 dataset - night

VGG-16 backbone
Method top-1 w/o global map with global map

GeM [30] 0 /0.6 /7.1 5.9 /11.4 /16.1 8.2 /14.6 /20.3
CycleGAN CD 0.1 /1.3 /17.4 12.2 /21.9 /29.2 14.5 /26.1 /35.6
HEDNGAN CD 0.1 /1.3 /16.3 12.1 /22.7 /31.1 14.0 /27.1 /37.8

ResNet-101 backbone
Method top-1 w/o global map with global map

GeM [30] 0.1 /0.9 /10.1 7.6 /14.6 /20.3 10.3 /18.1 /25.2
CycleGAN CD 0.5 /2.2 /22.6 14.1 /26.2 /36.0 16.3 /29.2 /40.9
HEDNGAN CD 0.3 /1.7 /21.4 13.4 /24.7 /34.3 15.9 /29.7 /40.0

RobotCar Seasons dataset - all night

Table 3. Visual localization evaluation on Aachen and RobotCar
datasets – only results for night conditions are reported. Scores
in each table cell correspond to the percentage of localized query
images within their respective accuracy thresholds: (0.25m, 2°) /
(0.5m, 5°) / (5m, 10°). The columns correspond to three paradigms
from Kapture pipeline [11]: pose approximation from top-1 re-
trieved image, and pose estimation from top 20 images without
global map and with global map. The best score for each dataset
and backbone architecture (in separate tables) is emphasized by by
bold.

HEDNGAN models. The results in Table 3 show a consis-
tent performance improvement over the baseline across all
setups. It should be noted that the results are not compara-
ble to SotA methods trained for visual localization.

Night edge detection. The qualitative comparison of RCF,
HED, and HEDN detectors is shown in Figure 2. To provide
quantitative evaluation, we train EdgeMAC [29] edge em-
bedding with HED, HEDN, and RCFNdetectors, increasing
the image size to 362 and not binarizing the edgemaps to
improve performance. The results are summarized in Ta-
ble 4. The embeddings based on the proposed HEDN out-
perform those based on both RCFNand HED when used
alone or in an ensemble with an image embedding (e.g.
GeM). Similarly to [13], ensembles of edge and image em-
beddings obtain better performance at the cost of double
dimensionality. The best performance is obtained for an en-
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Method Avg Tokyo ROxf RPar
EdgeMAC [29] 45.6 75.9 17.3 43.5
HEDMAC 56.8 79.5 38.3 52.5
HEDNMAC 59.2 81.9 38.4 57.2
RCFNMAC 58.5 88.9 35.1 51.4
HEDMAC+GeM ‡ 72.0 84.8 60.9 70.3
HEDNMAC+GeM ‡ 72.6 85.7 61.1 70.9
HEDNMAC+NGAN ‡ 74.4 91.4 60.6 71.3
HEDNMAC+GAN ‡ 74.7 91.8 60.4 71.9

Table 4. The effect of our trained HEDN detector (from
HEDNGAN) on the EdgeMAC [29] method. HEDMAC and
HEDNMAC is a variant of EdgeMAC method with the HED [45]
edge detector with either original or our weights, respectively.
RCFNMAC is a variant of EdgeMAC with the RCF [19] edge
detector with our weights. In the bottom block, ensembles of
EdgeMAC variants with chosen methods from Table 1 are re-
ported. GeM is from [30], NGAN corresponds to HEDNGAN CD,
and GAN to CycleGAN CD, all from Table 1. Ensembles have
double the dimensionality (1024) and are marked with ‡. The best
score for each dataset in each block is in bold.

semble of our HEDN edge embedding and HEDNGAN CD
or CycleGAN CD image embedding.

Discussion. Results in Table 1 show that using GAN train-
ing data is superior even to using the paired day-night im-
ages from the SfM-N/D dataset (CLAHE N/D C [13]). For
CIConv [16] with the ResNet-101 backbone, we have used
the publicly available model trained by the authors and eval-
uated it on Oxford and Paris benchmarks.6 We observe
drop in both these benchmarks compared to GeM [28]. Our
method outperforms [16] on both backbone architectures;
in fact, our VGG-16 model “HEDNGAN CD” outperforms
CIConv [16] ResNet-101 model on the Tokyo dataset, de-
spite the weaker backbone architecture.

Further, an alternative approach [1] of using the gen-
erator in inference rather than during training was evalu-
ated. On Tokyo dataset, all images with the night class label
(i.e. using oracle, as this label is not exploited in any other
method) were translated to the day domain prior to retrieval.
Two models, the one provided by [1] and our generator,
were tested. However, in both cases the performance was
substantially worse than the retrieval baseline, specifically
39 and 52 mAP for [1] and our generator respectively.

4.3. Diverse anchors

The effect of diverse anchor mining (D) is ablated in
Table 5. Results show consistent improvement of diverse
anchor mining across both baselines and our method on
day-night retrieval (Tokyo dataset), while having little im-
pact on Oxford and Paris datasets. In Table 6, the results

6For VGG-16 backbone, there is no publicly available model, therefore
only results on Tokyo dataset published in [16] are reported

Method Avg Tokyo ROxf RPar
CLAHE C 71.9 85.4 60.0 70.1
CLAHE CD 72.2 85.9 60.3 70.5
CLAHE N/D C ! 72.5 87.5 59.9 70.1
CLAHE N/D CD ! 73.0 87.7 60.8 70.7
HEDNGAN 72.7 88.0 60.2 70.0
HEDNGAN C 73.2 88.7 60.5 70.4
HEDNGAN CD 73.4 88.8 60.7 70.6

Table 5. The effect of diverse anchors (D). Methods CLAHE
C [13] and CLAHE N/D C [13] from Table 1 are reported in the
top block. Please note that we re-train the models for this ablation,
so we obtain a slightly higher performance. In the bottom block,
the effect of CLAHE (C) and diverse anchors (D) is reported on
the proposed method HEDNGAN. The best score for each dataset
in each block is in bold.

Method {day, sunset} {sunset, night} {day, night}

D)S S)D S)N N)S D)N N)D
CLAHE C 97.7 98.2 80.1 81.3 70.9 76.1
CLAHE N/D C ! 97.5 98.2 80.3 86.2 73.0 81.3
HEDNGAN C 97.1 98.2 84.5 86.9 77.1 80.3
HEDNGAN CD 97.5 98.0 84.3 88.3 77.9 81.1

Table 6. Retrieval performance (mAP) on Tokyo for a combination
of three different subsets of the dataset – day (D), sunset (S), and
night (N). Images from the first class are always queries and from
the second class are positives (query→positive); the last image of
the scene from the unused class is excluded from the evaluation.
Scores for selected methods from Tab. 5 are reported.

are broken down into combinations of query and result do-
mains (for example, column D)S means querying with a
Day image where the Sunset image of the same scene is
the only positive). Experiments further show that the pro-
posed HEDNGAN CD method substantially improves the
performance when querying or retrieving night images. We
interpret this observation as the embedding learned by the
proposed method being better at discriminating night im-
ages. A similar trend with a smaller improvement can be
seen when training with paired day-night data or when di-
verse anchors are used. We also observe consistent gains
when the image photometric normalization CLAHE, pro-
posed by [13], is used.

4.4. Impact of training data

In this part, we study how sensitive the retrieval perfor-
mance is to the choice of the night image generator and the
amount of night images used to train the embedding net-
work.

Night image generator. Different night image genera-
tors were compared: CycleGAN, DRIT [15], CUT [24],
CyEDA [3], and a proposed edge-consistency RCFNGAN,
HEDGAN, and HEDNGAN. In our experiments, the best-
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performing generator (Top GAN) is CycleGAN, see Ta-
ble 7. Despite different levels of a photo-realistic percep-
tion, ranging from DRIT to rather abstract HEDNGAN, the
difference in performance is not so severe, all generators
outperforming training with real night images SfM-N/D.
Despite similar scores, the generator training times differ
greatly, as illustrated in Table 8. The lightest model to train
is HEDGAN, followed by HEDNGAN which both train a
degree of magnitude faster than CycleGAN and DRIT.

To some observers, the translated night images (see Fig-
ure 1) may appear as intensity inverted images. Using
images with inverted intensity channel in the LAB colour
space improves the results (avg 71.2) over the baseline (avg
70.0), however, such a simple colour augmentation is far be-
low the results achieved by the proposed trained generators
or training on the SfM-N/D dataset.

Night data amount. We tested the sensitivity of using a
different ratio of day and night training data in the embed-
ding learning. We observe that using 25% or 50% of night
images for learning the embedding does not make a sig-
nificant difference, with a minor increase of scores on the
Tokyo dataset. In all experiments, we report results for the
variant with 25% of night images in order to stay consistent
with the prior work of [13]. We also observe that adding
true night images from SfM-N/D (GAN + SfM-N/D) has a
minimal impact on the retrieval results.

The experiments show that photo-realistic appearance of
the synthetic training images is not important for retrieval
performance, and that using more powerful generator would
not improve the performance, since even adding true night
data does not. However, (local) similarity to real night im-
ages encouraged by the discriminator is important (which is
not the case for a simple intensity inversion augmentation).

5. Conclusions

The training of a deep neural network that embeds im-
ages into a descriptor space suitable for image retrieval in-
sensitive to severe day-night illumination changes was pro-
posed. Synthetically generated night images are used so that
the training does not require corresponding pairs of night
and day images. The proposed method outperforms prior
work, including the work of [13] which uses ground-truth
day-night annotated image pairs.

We have shown that the proposed method is capable of
generating diverse training examples, and that a larger di-
versity of synthesized training data outperforms smaller di-
versity of real training data.

Besides evaluating a number of existing generators, a
light-weight generator exploiting edge consistency was pro-
posed. In our HEDNGAN method, day/night edge detector
HEDN is trained. Its superior performance to HED detector
was shown both qualitatively and quantitatively.

Night Data Avg Tokyo ROxf RPar
DRIT CD 73.5 90.2 59.8 70.5
CUT CD 73.0 87.7 60.3 71.1
CyEDA [3] BDD CD 72.9 87.9 60.4 70.3
CyEDA [3] GTA CD 72.9 87.9 60.3 70.4
CyEDA CD 70.9 82.0 60.1 70.5
RCFNGAN CD 73.2 88.3 60.4 70.8
HEDGAN CD 73.2 88.1 61.0 70.5
HEDNGAN CD 73.4 88.9 61.1 70.3
C-GAN CD 74.0 90.2 60.7 71.0
C-GAN+N/D CD ! 73.5 88.6 60.8 71.1
C-GAN+N/D 50% CD ! 73.9 90.1 61.1 70.6

Table 7. The impact of retrieval training data. In the top block, gen-
erator architectures DRIT [15], CUT [24], CyEDA [3] (pretrained
models from [3] and trained by us on SfM), RCFNGAN (trained
RCF), HEDGAN (frozen HED), HEDNGAN (trained HED), and
CycleGAN [49] are tested. In the bottom block, the best perform-
ing CycleGAN generator architecture is further combined with the
SfM-N/D dataset with ratio 1:1 (CycleGAN+N/D); scores for 25%
(default in experiments) and 50% of night images in the training
data are reported. Methods marked by ! use paired day-night train-
ing data. The best score for each dataset in each block is in bold.

Training Train (h) Epoch (h) Epochs Params
DRIT 196 0:39 300 75.5
CycleGAN 102 1:01 100 51.0
CUT 35 0:42 50 26.0
CyEDA 28 0:24 69 39.6
RCFNGAN 27 0:32 50 40.3
HEDNGAN 21 0:25 50 40.2
HEDGAN 16 0:19 50 25.5

Table 8. Generators training comparison. In the first two columns,
training times in hours are reported (measured on NVIDIA Tesla
P100 16GB). In the pre-last column, the total number of epochs
necessary to converge to the top performance is reported. In the
last column, a number of trainable parameters in millions is illus-
trated.

Finally, we have introduced a method of mining di-
verse anchor images, that further improves the diversity in
the training data which is reflected in increased retrieval
performance. Such an approach is applicable to other
metric-learning and similar tasks where strong modes of the
training-data distribution do not correspond to the distribu-
tion of test data.
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image retrieval learns from BoW: Unsupervised fine-tuning
with hard examples. In ECCV, 2016. 2, 3, 4, 5, 8

[29] Filip Radenovic, Giorgos Tolias, and Ondřej Chum. Deep
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