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Abstract—This paper investigates the plausibility of using
approximate models for hypothesis generation in a RANSAC
framework to accurately and reliably estimate the fundamental
matrix. Two novel fundamental matrix estimators are introduced
that sample two correspondences to generate affine-fundamental
matrices for RANSAC hypotheses. A new RANSAC framework is
presented that uses local optimization to estimate the fundamental
matrix from the consensus correspondence sets of verified hy-
potheses, which are approximate models. The proposed estimators
are shown to perform better than other approximate models
that have previously been used in the literature for fundamental
matrix estimation in a rigorous evaluation. In addition the
proposed estimators are over 30 times faster, in terms of models
verified, than the 7-point method, and offer comparable accuracy
and repeatability on a large subset of the test set.

I. INTRODUCTION

Epipolar geometry estimation is the initial step in many
computer vision tasks, such as 3D-scene reconstruction, mo-
tion recovery, auto-calibration, and robot navigation. Feature
correspondences are, in practice, corrupted by outliers (i.e.
feature mismatches), which, if included in the model esti-
mation, have an outsized and detrimental effect on model
accuracy. While many approaches have been proposed to
discard outliers, RANSAC and its many variants are typical and
highly effective choices to obtain correct epipolar geometry for
stereo problems [9, 11].

The expected run-time of RANSAC depends on two factors:
the sample size required for generating model hypotheses
and the proportion of correspondences that are outliers. Two
methods have been proposed that estimate approximate models
which require fewer correspondences than the 7-point method
for RANSAC hypothesis generation. Goshen and Shimshoni
[10] assume distinguished regions of SIFT correspondences are
invariant up to a similarity and construct eight correspondences
from two matching SIFT descriptors by using each SIFT’s
dominant gradient and scale [14]. This construction is used
as input to the 8-point method in a RANSAC-like framework
called Balanced Exploration and Exploitation Model Search
(BEEM). Perdoch et al. [19] pursue a similar strategy but
assume that the true camera pair can be approximated by
cameras with fixed partial calibration (principal point in the
image center and square pixels) and with unknown but constant
focal length and estimate the fundamental matrix from the cor-
responding keypoints of two Local Affine Frames (LAFs) [18].
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The calibration assumptions eliminate the need to construct
artificial correspondences (dependent correspondences that are
constructed from extracted features) as done in BEEM, but
problems are expected on stereo pairs with zooming. Common
to both methods is the close grouping of keypoints extracted
from the distinguished region, which causes data-conditioning
problems for model estimation.

A. Contribution

This paper introduces two novel two-correspondence meth-
ods for estimating the fundamental matrix and extensively
compares their performance with the methods listed in Table I
(and in the above introductory text) on a standard test set
of stereo pairs. Both proposed methods estimate the affine-
fundamental matrix for RANSAC hypothesis generation but
use different geometric primitives derived from detected image
features in correspondence. The affine-fundamental matrix is
an approximation to the global model and uses only reliable
constraints from the local measurements. This is in contrast to
previous methods, such as BEEM [10], where an approximation
to the local image mapping is first used to generate additional
point correspondences. The new point correspondences are
then used as constraints to estimate the full model of epipolar
geometry.

We show that on a large subset of the stereo pairs of
the test set, using the affine-fundamental matrix for hypoth-
esis generation gives performance comparable to the 7-point
method when a local optimization step is used in RANSAC,
and that it consistently performs better than hypothesizing the
fundamental matrix with artificially constructed points as in
BEEM or the essential matrix with unknown focal length from
two LAFs as in Perdoch et al. [19].

All hypothesis generators are tested in the general model-
optimization method introduced in Chum et al. [7], which
provides a framework for solving a class of problems where the
local optimization (LO) step of RANSAC includes estimating
a more complex model (in terms of degrees of freedom).

B. Structure of the paper

The rest of the paper is organized as follows: First, image
features and geometric constructions used in this paper are
reviewed in Section II. The analysis of the approximate affine
epipolar geometry model generation is provided in Section III.
The details of the local optimization are given in Section IV.
Section V discusses the experimental evaluation of the meth-
ods; conclusions are drawn in Section VI.



hypothesis denoted relation # corr # models primitive

7-point [11] F7· F 7 1-3 point

FA MLE [11] FxxA FA 2 1 LAF

FA Arandjelović [1] F◦◦A FA 2 0-4 ellipse

Perdoch [19] {E, f}xx E, f 2 1-8 LAF

BEEM [10] F◦◦ F 2 1 oriented ell.

TABLE I: Tested RANSAC hypothesis generators. “relation”
denotes what is estimated, “# corr” the number of correspond-
ing primitives needed for estimation, “# models” the range of
the number of relations generated for an estimate from one
minimal sample, and “primitive” is the geometry extracted
from detected image features that is needed to estimate the
relation. Here E, f are used to denote the essential matrix and
focal length.

II. IMAGE FEATURES

In each image, Maximally Stable Extremal Regions
(MSER) [16] are detected. An ellipse is fitted to each extremal
region in an affine-covariant manner, using region moments of
up to second order. The intensity patch covered by the ellipse
is transformed to the unit circle and the dominant orientation
is detected as in [14]. The SIFT descriptor [14] is extracted
from each of the canonical patches.

Various methods of affine-covariant constructions of local
coordinate systems called local affine frames (LAFs) were
proposed by Obdržálek and Matas [18]. Each of the LAFs
is essentially defined by a triplet of points: its origin and two-
extents. In the paper we have used the one of the simpler
constructions, consisting of the center of gravity of the ellipse,
the point on the ellipse coincident with the direction of the
dominant orientation, and the point on the ellipse given by
the direction perpendicular to the dominant orientation in the
canonical pose.

III. FA FOR HYPOTHESIS GENERATION

In the following paragraph we show that the first order
Taylor approximation of the full epipolar constraint has a form
of an affine epipolar constraint. Let F be a fundamental matrix
and FA an affine fundamental matrix

F =


f1 f2 f3

f4 f5 f6

f7 f8 f9

 , FA =


0 0 a1

0 0 a2

a3 a4 a5

 .

Let x=(x, y, 1)>, x0 = (x0, y0, 1)
> be points in the first image

and x′ = (x′, y′, 1)>, x′0 = (x′0, y
′
0, 1)

> be corresponding
points in the second image. The first order approximation f̂ of
the projective epipolar constraint x′

>
Fx at a correspondence

(x0,x
′
0) is

x′
>
Fx ≈ x′0

>
Fx0 + J ((x, y, x′, y′)−(x0, y0, x′0, y′0))

> , (1)

where J is the Jacobian of the projective epipolar constraint.
Since x′>FAx = a1x

′+a2y
′+a3x+a4y+a5 is a linear function

in the image coordinates, the first order Taylor approximation

f ′ of the projective epipolar constraint can be written as an
affine epipolar constraint with the following entries of FA:

a1 = f1x0 + f2y0 + f3, a2 = f4x0 + f5y0 + f6

a3 = f1x
′
0 + f4y

′
0 + f7, a4 = f2x

′
0 + f5y

′
0 + f8,

a5 = x′0
>
Fx0 − J(x0, y0, x

′
0, y
′
0)
>.

(2)

Thus, local to the correspondences used to estimate FA, we
expect FA to also satisfy the epipolar constraint for projective
cameras. This observation motivates the choice for using the
affine fundamental matrix as an approximate model.

A. FA for RANSAC hypothesis generation

The maximum likelihood estimate of FA can be calcu-
lated from n ≥ 4 point correspondences [11]. We construct
a two-correspondence FA hypothesis generator by using the
triples of points of two LAF correspondences. We use all
point correspondences given by the two LAF correspondences
which gives an over-determined estimate of FA. We call this
hypothesis generator “FA MLE” and denote it FxxA

For use in spatial verification in image retrieval engines,
Arandjelović and Zisserman [1] derive a novel FA estimator
based on the parameterization of the affine-fundamental matrix
introduced by Mendonça and Cipolla [17] that requires only
two ellipse correspondences. An advantage of their parame-
terization is that orientations of the ellipses are not needed so
dominate orientation estimation can be skipped during feature
detection giving a speed-up. We call this hypothesis generator
“FA Arandjelović” and denote it F◦◦A .

IV. GETTING TO F

Chum et al. [7] extend RANSAC by adding a generalized
model optimization step that samples the consensus set to
obtain higher accuracy estimates and, if needed, estimates
a more complex model (a higher parameter model relative
to the hypothesis generator). The approach is applicable to
the approximate model setting: the point correspondences
extracted from SIFT or LAF constructions are close to each
other relative to the size of the image, which adversely affects
data conditioning for model estimation, and the hypothesized
model is, with the exception of BEEM, a lower parameter model
than is required to model the scene geometry. RANSAC requires
high accuracy estimation; otherwise, the required number of
samples will greatly exceed what is predicted by theory [6].
Since speed is the primary motivation for using approxi-
mate models, local optimization (LO) is critical. RANSAC, as
adapted from [7], is listed in Algorithm 1. The only component
in Algorithm 1 that is specific to each approximate model
is hypothesis generation. The remaining components are the
same, and results from experiments are reported as such.

A. Model Quality, Local Optimization and Stopping Criterion

Since LO design is known to be difficult, we use a proven
estimator developed by Lebeda et al. [13] for the presented
framework. Unlike the approximate models used for hypoth-
esis generation, the LO step correctly models the geometry
(modulo lens distortion), gives a maximum likelihood estimate
of the fundamental matrix F, and an inlier-outlier labeling



Input: U , kmax
Output: F∗

k ← 0,Jθ ←∞,JF ←∞, I∗ ← ∅
while k < kmax do

Make S by sampling s correspondences from U
Estimate approximate hypothesis θ consistent with S
Calculate Jθ from θ as in eqn. 3
if Jθ < J ∗θ then
J ∗θ ← Jθ
(F,JF)← run Local Optimization
if JF < J ∗F then

F∗ ← F
Set I∗ as in eqn. 5
Update kmax from eqn. 6 using ε = I∗/|U|

end
end
k ← k + 1

end
return F∗

Algorithm 1: RANSAC for approximate models. The set of
tentative correspondences is denoted U .

of tentative correspondences. The quality of the approximate
model and fundamental matrix gotten from local optimization,
denoted Jθ and JF respectively, are each measured by the
robust cost function

J =
∑
i

ρ
(
e2i /(cσ

2)
)
, (3)

where ρ() is

ρ
(
e2i /(cσ

2)
)
=

 e2i /(cσ
2) if e2i /(cσ

2) < 1

1 otherwise
, (4)

ei is the Sampson error of a keypoint computed from the given
model, σ specifies feature localization noise and is set as in
[13], and c is a tuning parameter (fixed for all experiments)
which is set independently for each of Jθ,JF to account for
the bias introduced by the approximate model. The number of
inliers of F is given by

I =
∣∣{ei | e2i /(cσ2) < 1}

∣∣ (5)

The necessary number of RANSAC iterations is estimated in
the classical manner [9] using the best consensus set estimate
I∗ after estimating F by LO,

kmax =
log(1− η0)
log(1− εs) , (6)

where ε = I∗/|U| is the proportion of inliers, and η0 is the
confidence level (set to 0.99).

V. EXPERIMENTS

The performance of BEEM, Perdoch, and the two proposed
affine-fundamental matrix hypothesis generators were evalu-
ated on a collection of 16 image pairs (Figure 1) for epipolar
geometry estimation. These images were collated from test
sets across a number of publications [2, 3, 4, 8, 15, 16, 19,
20, 22, 21] and are known to challenge state-of-the-art epipolar
geometry estimators. Tentative correspondences were obtained
by matching SIFT descriptors of MSER detections [14, 16].

FxxA F◦◦A {E, f}xx F◦◦

F7· 55.56% 59.59% 57.81% 57.40%

FxxA 53.45% 52.20% 52.84%

F◦◦A 48.74% 49.27%

{E, f}xx 50.88%

TABLE II: Comparison of the RMS Sampson error. Entry (i, j)
is the probability (expressed as a percentage) that the RMS
Sampson error of an annotated correspondence set is less for
epipolar geometry estimated by method i than j on the test
set kusvod2.

The original BEEM method uses Difference of Gaussian
(DoG) features [14] that provide localization, scale, and orien-
tation only, thus the local image-to-image mapping is approx-
imated by a similarity. For fairness of comparison, we extend
the construction of the four-tuple of points to affine-covariant
regions, so that the same geometric features are used in all
compared methods. This construction approximates the local
image-to-image mapping by an affine transformation, which is
significantly more accurate in the wide-baseline setting, thus
improving performance over standard BEEM construction with
DoG features.

In all experiments, in each execution, the compared meth-
ods were forced to draw the same sequence of correspondence
pairs to make the comparison less sensitive to the random
nature of the random sampling.

A. What is measured?

The accuracy of model estimation is given by two mea-
sures: the cardinality of the consensus correspondences (i.e.
inlying feature correspondences to the model), which has been
shown to be a good measure of model quality; and the root-
mean-squared (RMS) distance of manually-annotated ground-
truth points to their corresponding epipolar lines given by the
estimated fundamental matrix. Precision is measured by the
stability of the consensus set and variance of reprojection error
for repeated model estimations.

In each of the methods, the construction of affine frames
requires extra computation, and an affine frame can have
multiple candidate matches because there can be several strong
gradients in the descriptor region that can be used to fix
the rotation of the LAF or SIFT affine frame construction.
Furthermore, affine frames represent a small part of the image,
making each of the above methods very sensitive to noise.
Consequently, all prior methods require a local-optimization
step [6] in the RANSAC loop. In contrast to the previous work,
we seek a minimal solution that imposes no constraints on
camera intrinsics–that is tolerant to noise without the need for
local-optimization–and defines the state-of-the-art in both run-
time performance and estimation stability.

B. Results

Figure 2 plots the cumulative distribution of the RMS
Sampson error on hand-annotated point correspondences col-
lected over all executions of all stereo pairs. The plot shows
that, over all, the highest accuracy was achieved by the 7-point
algorithm, closely followed by the FxxA method. The other three



Fig. 1: The kusvod2 test set used for evaluating fundamental matrix estimators. Each stereo pair has manually annotated ground
truth correspondences that are used to assess the accuracy of the estimated epipolar geometry. The test set with annotated point
correspondences is available at http://cmp.felk.cvut.cz/data/geometry2view/.
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Fig. 2: Empirical cumulative density function of the RMS
Sampson error of F as estimated by the tested methods. Er-
ror is calculated on hand-annotated point correspondences
for each stereo pair in the test set.
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Fig. 3: Empirical cumulative density function of the sam-
ple ratio, calculated as the ratio of the number of RANSAC
samples required by the 7-point method to the denoted
approximate model.

FxxA F◦◦A {E, f}xx F◦◦

F7· 0.24% 1.14% 1.56% 4.24%

FxxA 50.02% 62.75% 76.62%

F◦◦A 52.40% 68.03%

{E, f}xx 60.84%

TABLE III: Comparison of RANSAC samples drawn. Entry
(i, j) is the probability (expressed as a percentage) that the
number of samples required for RANSAC termination is fewer
for method i than j on the test set kusvod2.

methods, in terms of accuracy, give similar results to each
other but perform worse then the first two methods. They rank
descending as {E, f}xx, F◦◦A and BEEM.

For the average number of models per sample, important
for assessing the cost of verifying hypotheses, each of FxxA and
BEEM generate a single model per sample, {E, f}xx method

generates 1.2 to 1.9 models per sample in practice, the 7-
point algorithm generates 2.38 models per sample (the value
is taken from [5], as the executable from Lebeda et al. [13]
does not provide the number of models), and F◦◦A generates 3.0
to 3.4 models per sample, which suggests that it is the most
demanding of the methods in terms of hypothesis verification
runtime.

Figure 3 shows the relative speed-up to the baseline seven-
point algorithm measured by the number of samples. The lower
the curve – the lower fraction of execution with speed-up lower
than a given speed-up – the higher relative speed up. The
highest speed up is achieved by the FxxA . Since this method
also generates the lowest number of models per sample, and
the model estimate is fast, it is the fastest of the hypothesis
generators. The advantage of F◦◦A method is, that unlike the
other methods, it does not require point correspondences or
dominant orientation for model estimation, so some speed may
be gained during feature extraction.



Tables II and III directly compare pairs of methods by
accuracy of fundamental matrix estimation and by the number
of samples required for RANSAC termination respectively. The
entries show the probability that a method listed by row will
outperform a method listed by column on the kusvod2 data
set. Detailed results on a subset of the kusvod2 dataset are
shown in Table IV. Denotations are defined as follows: I ,
absolute number, standard deviation, and minimal and maximal
number of inliers detected; I(%), percentage of inliers detected
from the set of tentative correspondences; Samp, number of
samples drawn by RANSAC with the specified hypothesis gen-
erator; Models, mean number of models verified per sample;
Error, average Sampson error on manually annotated ground
truth point correspondences (they are not used in the estimation
process); LO count, number of local optimization executions.

The Inlss and HInlss histograms embedded in Table IV pro-
vide a concise overview of the stability of epipolar geometry
estimation over 500 repeated executions and are computed as
follows: Inlss is the probability of a particular correspondence
being an inlier, where correspondence ids on the horizontal
axis are ordered so that the values on the vertical axis, the
fraction of executions the correspondence has been labeled
as an inlier, are non-increasing. HInlss is the histogram of
the probability of a correspondence being an inlier, where
the horizontal axis is the percentage of total executions (out
of 500) and the vertical axis is the number of tentative
correspondences that have been labeled as inliers.

VI. CONCLUSION

This paper proposes two two-correspondence methods for
estimating the fundamental matrix. Each of the proposed
methods uses the affine-fundamental matrix as an approxi-
mate model hypothesis generator for RANSAC. The affine-
fundamental matrix is a local approximation to the epipolar
geometry for perspective cameras, and it uses only reliable
constraints from local measurements. The full model is esti-
mated in a generalized model optimization framework similar
to [7, 13].

Experimental validation shows that using the approxima-
tion of the global model from two LAFs outperforms previ-
ously proposed approximate models which include a technique
the uses an approximation of the local image mapping to
construct artificial additional point correspondences for full
model estimation as well as an estimator that adds algebraic
constraints by enforcing certain calibration parameters on the
approximate model [10, 19]. On a large subset of the tested
stereo pairs, using the affine-fundamental matrix for hypoth-
esis generation gives fundamental matrix estimation accuracy
comparable to the 7-point method as measured by root mean
square Sampson error on manually annotated correspondeces
while achieving a significant speed-up in terms of RANSAC
samples required, number of models verified, and number
of local optimization executions made. On nearly the entire
test set FA MLE (FxxA ) was more accurate than all other
approximate hypothesis generators and was at least as fast,
so we recommend it in lieu of the alternatives.
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TABLE IV: Detailed results on selected image pairs.


